JPH0568975A - Electrolytic type water purifier - Google Patents

Electrolytic type water purifier

Info

Publication number
JPH0568975A
JPH0568975A JP3265491A JP26549191A JPH0568975A JP H0568975 A JPH0568975 A JP H0568975A JP 3265491 A JP3265491 A JP 3265491A JP 26549191 A JP26549191 A JP 26549191A JP H0568975 A JPH0568975 A JP H0568975A
Authority
JP
Japan
Prior art keywords
water
ion
exchange resin
chamber
electrolytic cell
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP3265491A
Other languages
Japanese (ja)
Inventor
Tsutomu Ikebe
勉 池辺
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Eagle Industry Co Ltd
Original Assignee
Eagle Industry Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Eagle Industry Co Ltd filed Critical Eagle Industry Co Ltd
Priority to JP3265491A priority Critical patent/JPH0568975A/en
Publication of JPH0568975A publication Critical patent/JPH0568975A/en
Withdrawn legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/46Treatment of water, waste water, or sewage by electrochemical methods
    • C02F1/461Treatment of water, waste water, or sewage by electrochemical methods by electrolysis
    • C02F1/46104Devices therefor; Their operating or servicing
    • C02F1/4618Devices therefor; Their operating or servicing for producing "ionised" acidic or basic water

Abstract

PURPOSE:To enhance electrolytic efficiency of an ion exchange resin by removing a buffer ion having buffer action to a pH change in water by the ion exchange resin. CONSTITUTION:A water purifier contains the cation and anion exchange resins 30, 40 provided to the water introducing passages 20A, 20B to an electrolytic cell 10, the storage tanks 71, 81 provided to water discharge passages 70, 80 and alkali and acidic ion water return means 90, 100 returning the ion waters Wa, Wb in the storage tanks 71, 81 to the ion exchange resins 30, 40 through the electrolytic cell 10. Water from which a buffer ion is removed by ion exchange is electrolyzed and the ion exchange resins 30, 40 lowered in capacity can be regenerated by returning ion waters Wa, Wb.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、健康用、医療用として
有用な酸性イオン水及びアルカリイオン水を得る電解式
浄水器に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an electrolytic water purifier for obtaining acidic ionized water and alkaline ionized water useful for health and medical purposes.

【0002】[0002]

【従来の技術】従来から、水を電気分解することによっ
てそのpHを変化させ、すなわち陽極側で水を酸化して
酸性イオン水を生成し、陰極側で水を還元してアルカリ
イオン水を生成する電解式浄水器が周知である。しかし
ながら、たとえば酸性イオン水を得る場合、電気分解し
ようとする水に炭酸イオンや炭酸水素イオンが存在して
いると、従来の電解式浄水器では電解効率が低下する問
題がある。
2. Description of the Related Art Conventionally, by electrolyzing water, its pH is changed, that is, water is oxidized on the anode side to generate acidic ionized water, and water is reduced on the cathode side to generate alkaline ionized water. Electrolytic water purifiers are known. However, in the case of obtaining acidic ionized water, for example, if carbonate ions or hydrogen carbonate ions are present in the water to be electrolyzed, there is a problem that the electrolytic efficiency of the conventional electrolytic water purifier decreases.

【0003】すなわち、炭酸 H2CO3は、水溶液中では未
電離の分子と解離によって生じたイオンが次の解離(電
離)平衡状態にある。 H2CO3 ⇔ 2H++ CO3 2- ・・・・ また、このときの平衡定数(電離定数)Kは、 K=[H+]2[CO3 2-]/[H2CO3] ・・・ である。
That is, in H 2 CO 3 carbonate, unionized molecules and ions generated by dissociation are in the next dissociation (ionization) equilibrium state in an aqueous solution. H 2 CO 3 ⇔ 2H + + CO 3 2 -... Also, the equilibrium constant (ionization constant) K at this time is K = [H + ] 2 [CO 3 2- ] / [H 2 CO 3 ]. ...

【0004】この溶液に、完全に解離する炭酸水素ナト
リウムを添加すると、炭酸水素ナトリウムNaHCO3は、 NaHCO3→ Na++H++ CO3 2- ・・・ のように解離するので、CO3 2- イオンの濃度[CO3 2-] が
上昇し、上記式の平衡が左辺に傾いてH2CO3 の濃度[H
2CO3] も上昇し、平衡定数Kは一定値となって解離が抑
制される。このため[H2CO3] は初期の炭酸濃度C1 と等
しく、[CO3 2-] は添加した炭酸水素ナトリウムNaHCO3
濃度C2 と等しくなることから、水素イオン濃度[H+]2
は、 [H+]2 =K・C1 /C2 ・・・・ となる。すなわち、水溶液中に共通イオン(上記の場合
は CO3 2-)が存在している場合には、水素イオンH+の濃
度は、初期に解離平衡状態にあった塩と添加した塩の濃
度の比となる。そしてこのような水溶液に少量の酸(水
素イオンH+)を添加しても、このH+イオンは水溶液中に
大量に存在する CO3 2-と化合するので水溶液のpHは変
わらない。また、アルカリ(水酸化物イオンOH- )を添
加すると、このOH- イオンはH+イオンと化合するが、 H
2CO3が解離してH+を放出するため、結局pHは変わらな
い。
[0004] To this solution, the addition of sodium bicarbonate to completely dissociated, sodium bicarbonate NaHCO 3 Since the dissociation as NaHCO 3 → Na + + H + + CO 3 2- ···, CO 3 2 - increases the concentration of ions [CO 3 2-] is the concentration of H 2 CO 3 equilibrium of the above formula tilted left [H
2 CO 3 ] also rises, the equilibrium constant K becomes a constant value, and dissociation is suppressed. Therefore, [H 2 CO 3 ] becomes equal to the initial carbon dioxide concentration C 1, and [CO 3 2− ] becomes equal to the concentration C 2 of the added sodium hydrogen carbonate NaHCO 3 , so that the hydrogen ion concentration [H + ] 2
Becomes [H + ] 2 = K · C 1 / C 2 ... That is, when a common ion (CO 3 2− in the above case) is present in the aqueous solution, the concentration of hydrogen ion H + depends on the concentration of the salt that was initially in the dissociation equilibrium state and that of the added salt Ratio. Even if a small amount of acid (hydrogen ion H + ) is added to such an aqueous solution, the pH of the aqueous solution does not change because the H + ions are combined with CO 3 2− present in a large amount in the aqueous solution. Moreover, alkali (hydroxide ion OH -) is added, and the OH - ions is combine with H + ions, H
2 CO 3 dissociates and releases H + , so the pH does not change.

【0005】[0005]

【発明が解決しようとする課題】したがって、従来の定
電流法もしくは定電圧法による電解式浄水器では、水中
に炭酸イオンや炭酸水素イオンが存在すると、上記のよ
うな緩衝作用によって陽極電解反応によるpHの変化が
抑制され、水中のFe3+、Al3+あるいは有機酸等の陽イオ
ンの存在も同様に、陰極電解反応によるpH変化に対す
る緩衝作用を有するため、電解効率が低いものであっ
た。しかも水中の炭酸イオンや炭酸水素イオン等の濃度
は取水場所(地域)によって異なるため、同一電流値で
同一pHの電解水を得ることが困難であった。また、こ
のような緩衝性イオンはイオン交換樹脂を用いて除去す
ることができるが、イオン交換樹脂はその効力が経時的
に衰えるという問題があった。
Therefore, in the conventional electrolytic water purifier according to the constant current method or the constant voltage method, when carbonate ions or hydrogen carbonate ions are present in the water, the anodic electrolytic reaction is caused by the buffering action as described above. The change in pH was suppressed, and the presence of cations such as Fe 3+ , Al 3+ or organic acid in water also had a buffering effect on the pH change due to the cathodic electrolysis reaction, so the electrolysis efficiency was low. .. Moreover, since the concentration of carbonate ions, hydrogen carbonate ions, etc. in water varies depending on the water intake location (region), it has been difficult to obtain electrolyzed water with the same current value and the same pH. Further, although such buffering ions can be removed by using an ion exchange resin, there is a problem that the effectiveness of the ion exchange resin deteriorates with time.

【0006】本発明は、上記のような問題に鑑みてなさ
れたもので、その目的とするところは、pH変化に対し
て緩衝作用を有する水中の緩衝物イオンをイオン交換樹
脂により除去して電解効率を向上させ、かつイオン交換
樹脂の効力を容易に再生できるようになすことにある。
The present invention has been made in view of the above problems, and an object of the present invention is to remove a buffer ion in water having a buffering action against a pH change by an ion exchange resin to perform electrolysis. It is to improve the efficiency and to easily regenerate the effect of the ion exchange resin.

【0007】[0007]

【課題を解決するための手段】上記課題を解決するた
め、本発明の第一請求項に係る電解式浄水器は、水を電
気分解して陽極側の酸性イオン水及び陰極側のアルカリ
イオン水を生成する電解槽と、電解槽の陽極室への入水
路に設けた陽イオン交換樹脂と、前記陽極室から延びる
出水路に設けた貯留槽と、この貯留槽内の酸性イオン水
を陽極室を経由して前記陽イオン交換樹脂へ還流させる
酸性イオン水還流手段を含む構成としたものである。ま
た、本発明の第二請求項に係る電解式浄水器は、上記第
一請求項と同様の原理を陰極側に適用したもので、すな
わち、電解槽の陰極室への入水路に設けた陰イオン交換
樹脂と、前記陰極室から延びる出水路に設けた貯留槽
と、この貯留槽内のアルカリイオン水を陰極室を経由し
て前記陰イオン交換樹脂へ還流させるアルカリイオン水
還流手段を含む構成としたものである。
In order to solve the above-mentioned problems, an electrolytic water purifier according to the first aspect of the present invention electrolyzes water to produce acidic ionized water on the anode side and alkaline ionized water on the cathode side. An electrolytic cell for generating a cation exchange resin provided in a water inlet to the anode chamber of the electrolytic cell, a reservoir provided in a water outlet extending from the anode chamber, and acidic ionized water in the reservoir to the anode chamber. It is configured to include acidic ion water reflux means for refluxing to the cation exchange resin via. Further, the electrolytic water purifier according to the second claim of the present invention, the same principle as in the first claim is applied to the cathode side, that is, the shade provided in the water inlet to the cathode chamber of the electrolytic cell. A configuration including an ion exchange resin, a storage tank provided in a water outlet extending from the cathode chamber, and an alkali ion water reflux means for refluxing alkali ion water in the storage tank to the anion exchange resin via the cathode chamber. It is what

【0008】[0008]

【作用】本発明の構成によると、入水路から電解槽の陽
極室へ供給される水は、その陽イオン分が陽イオン交換
樹脂のH+イオンと交換される。このH+イオンは、水中の
炭酸水素イオン等、pH変化に緩衝作用を有する陰イオ
ンと化合し、これを中和してpH変化に対する緩衝作用
のない塩を生成する。同様に、入水路から電解槽の陰極
室へ供給される水は、その陰イオン分が陰イオン交換樹
脂のOH- イオンと交換される。この OH-イオンは、水中
のFe3+イオン等、pH変化に緩衝作用を有する陽イオン
と化合し、これを中和してpH変化に対する緩衝作用の
ない塩を生成する。このためpH変化の阻害となるイオ
ン物質の濃度を低下させることができる。電解槽で生成
された酸性イオン水及びアルカリイオン水は、陽極室側
及び陰極室側のそれぞれの出水路に設けた貯留槽に一旦
貯えられ、これらの貯留槽から選択的に取水される。
According to the structure of the present invention, the cation component of the water supplied from the water inlet to the anode chamber of the electrolytic cell is exchanged with the H + ion of the cation exchange resin. The H + ions combine with anions that have a buffering effect on pH changes, such as hydrogen carbonate ions in water, and neutralize the anions to form salts that do not have a buffering effect on pH changes. Similarly, in the water supplied from the water inlet to the cathode chamber of the electrolytic cell, the anion component thereof is exchanged with the OH ion of the anion exchange resin. This OH ion combines with a cation having a buffering effect on pH change, such as Fe 3+ ion in water, and neutralizes it to form a salt having no buffering effect on pH change. Therefore, it is possible to reduce the concentration of the ionic substance that inhibits the pH change. The acidic ionized water and the alkaline ionized water generated in the electrolytic cell are temporarily stored in the storage tanks provided in the water discharge paths on the anode chamber side and the cathode chamber side, respectively, and the water is selectively taken from these storage tanks.

【0009】陽イオン交換樹脂は上記のH+イオン交換反
応を続けることによって、また陰イオン交換樹脂は、上
記のOH- イオン交換反応を続けることによって、それぞ
れイオン交換の効力が経時的に低下する。しかし本発明
の構成によると、たとえば取水が終了した時などに酸性
イオン水還流手段あるいはアルカリイオン水還流手段を
駆動させることによって、陽極室側の貯留槽に貯えられ
た酸性イオン水を陽極室を経由してさらに陽極電解しつ
つ陽イオン交換樹脂に還流させ、あるいは陰極室側の貯
留槽に貯えられたアルカリイオン水を陰極室を経由して
さらに陰極電解しつつ陰イオン交換樹脂に還流させれ
ば、それぞれ上記イオン交換の逆反応がなされるので、
陽イオン交換樹脂及び陰イオン交換樹脂の効力を容易に
再生することができる。
The cation exchange resin continues to undergo the above H + ion exchange reaction, and the anion exchange resin continues to undergo the above OH ion exchange reaction. .. However, according to the configuration of the present invention, by driving the acidic ionized water reflux means or the alkaline ionized water reflux means, for example, when the water intake is completed, the acidic ionized water stored in the storage chamber on the anode chamber side is stored in the anode chamber. The cation exchange resin is refluxed via the anodic electrolysis resin, or the alkaline ionized water stored in the storage chamber on the cathode chamber side is refluxed to the anion exchange resin via the cathodic chamber while further cathodic electrolyzing. For example, since the reverse reaction of the above ion exchange is performed,
The potency of the cation exchange resin and the anion exchange resin can be easily regenerated.

【0010】[0010]

【実施例】次に、本発明の電解式浄水器を、図1に示す
一実施例を参照しながら説明すると、10は内部を隔膜
11によって陽極室10Aと陰極室10Bに分割された
電解槽である。陽極室10A内には陽極板12が設けら
れ、陰極室10B内には陰極板13が設けられ、この陽
極板12と陰極板13は整流器(直流電源)14を介し
て接続されている。隔膜11には、 0.1〜0.5 μm程度
の無数の微細孔を有する多孔質の膜が用いられ、また、
陽極板12及び陰極板13は、ステンレス鋼、チタン、
白金、フェライト、カーボン等が用いられる。
EXAMPLE Next, an electrolytic water purifier of the present invention will be described with reference to an example shown in FIG. 1. Reference numeral 10 denotes an electrolytic cell in which the inside is divided into an anode chamber 10A and a cathode chamber 10B by a diaphragm 11. Is. An anode plate 12 is provided in the anode chamber 10A, and a cathode plate 13 is provided in the cathode chamber 10B. The anode plate 12 and the cathode plate 13 are connected via a rectifier (DC power supply) 14. A porous membrane having innumerable micropores of about 0.1 to 0.5 μm is used for the diaphragm 11, and
The anode plate 12 and the cathode plate 13 are made of stainless steel, titanium,
Platinum, ferrite, carbon or the like is used.

【0011】20は電解槽10への入水路で、バルブ2
1を有し、陽極室10Aに接続される陽極室側入水路2
0Aと陰極室10Bに接続される陰極室側入水路20B
に分岐している。陽極室側入水路20AにはH+型の陽イ
オン交換樹脂30が設けられ、陰極室側入水路20Bに
は OH-型の陰イオン交換樹脂40の充填部が設けられて
いる。さらに、陽極室側入水路20A及び陰極室側入水
路20Bからは、それぞれ陽イオン交換樹脂30の充填
部及び陰イオン交換樹脂40の充填部の手前で排水路5
0,60が分岐して延びており、これら排水路50,6
0にはそれぞれバルブ51,61が設けられている。
Reference numeral 20 is a water inlet to the electrolytic cell 10, which is a valve 2
1, which has an anode chamber-side inlet 2 connected to the anode chamber 10A
0A and cathode chamber 10B, cathode chamber side water inlet 20B
Has branched to. The anode chamber side water inlet 20A is provided with an H + type cation exchange resin 30 and the cathode chamber side water inlet 20B is provided with a filling portion of an OH type anion exchange resin 40. Further, from the anode chamber side water inlet 20A and the cathode chamber side water inlet 20B, the drainage channel 5 is provided in front of the cation exchange resin 30 filling portion and the anion exchange resin 40 filling portion, respectively.
0 and 60 branch and extend, and these drainage channels 50 and 6
0 are provided with valves 51 and 61, respectively.

【0012】70は陽極室10Aから延びる酸性イオン
水の出水路、80は陰極室10Bから延びるアルカリイ
オン水の出水路である。酸性イオン水の出水路70には
貯留槽71と取水口側のバルブ72が設けられており、
同様に、アルカリイオン水の出水路80には貯留槽81
と取水口側のバルブ82が設けられている。また、酸性
イオン水の貯留槽71と陽極室10Aの間には、出水路
70とは別の還流水路91があり、この還流水路91に
は、バルブ92と、貯留槽71から陽極室10Aへ送水
するポンプ93が設けられ、これらが酸性イオン水還流
手段90を構成している。同様に、アルカリイオン水の
貯留槽81と陰極室10Bの間には、出水路80とは別
の還流水路101があり、この還流水路101には、バ
ルブ102と、貯留槽81から陰極室10Bへ送水する
ポンプ103が設けられ、これらがアルカリイオン水還
流手段100を構成している。
Reference numeral 70 is a water ion outlet for acidic ionized water extending from the anode chamber 10A, and 80 is a water outlet for alkaline ionized water extending from the cathode chamber 10B. A storage tank 71 and a valve 72 on the intake side are provided in the outlet 70 of the acidic ionized water.
Similarly, a reservoir 81 is provided in the outlet 80 of the alkaline ionized water.
And a valve 82 on the intake side. Further, between the acidic ionized water storage tank 71 and the anode chamber 10A, there is a reflux water channel 91 which is different from the water discharge channel 70, and in this reflux water channel 91 there is a valve 92 and from the storage tank 71 to the anode chamber 10A. A pump 93 for supplying water is provided, and these constitute the acidic ion water reflux means 90. Similarly, between the alkaline ionized water storage tank 81 and the cathode chamber 10B, there is a reflux water channel 101 which is different from the water discharge channel 80, and in this reflux water channel 101 is a valve 102 and from the storage tank 81 to the cathode chamber 10B. A pump 103 for supplying water to the alkaline ionized water reflux means 100 is provided.

【0013】以上の構成において、図示しない給水源か
らの未処理水Wは、入水路20のバルブ21を開弁し、
排水路50,60のバルブ51,61を閉弁することに
よって、入水路20から20A,20Bに分流して電解
槽10の陽極室10A及び陰極室10Bにそれぞれ供給
される。このとき、直流電源である整流器14をONす
ると、陽極室10Aでは陽極板12によって水が酸化さ
れ、すなわち+電解によって、次の反応が起こる。 H2O →2H++2e-+1/2O2・・・・・・・・・・・・・・・・・・ また、陰極室10Bでは陰極板13によって水が還元さ
れ、すなわち−電解によって、次の反応が起こる。 H2O +e-→OH- +1/2H2・・・・・・・・・・・・・・・・・・・・
In the above structure, the untreated water W from the water supply source (not shown) opens the valve 21 of the water inlet 20,
By closing the valves 51 and 61 of the drainage channels 50 and 60, the water is branched from the water inlet channel 20 to 20A and 20B and supplied to the anode chamber 10A and the cathode chamber 10B of the electrolytic cell 10, respectively. At this time, when the rectifier 14 which is a DC power supply is turned on, water is oxidized by the anode plate 12 in the anode chamber 10A, that is, the following reaction occurs due to + electrolysis. H 2 O → 2H + + 2e + 1 / 2O 2 ····· In the cathode chamber 10B, water is reduced by the cathode plate 13, that is, by −electrolysis, The following reactions occur. H 2 O + e - → OH - + 1 / 2H 2 ····················

【0014】この反応によって陽極室10A内に生成さ
れた水素イオンH+及び陰極室10B内に生成された水酸
化物イオンOH- は、極性の強い水分子と会合するので、
隔膜11を通過しにくい大きさとなってそれぞれ陽極室
10A及び陰極室10Bに留められ、水分子がこの隔膜
11を自由に通過することによって、継続的に電気分解
を可能にしている。このため、陽極室10A内では水素
イオンH+の濃度が高くなり、pHが低下し、酸性イオン
水Waが生成される一方、陰極室10B内では水酸化物
イオンOH- の濃度が高くなり、pHが上昇し、アリカリ
イオン水Wbが生成される。
The hydrogen ions H + generated in the anode chamber 10A and the hydroxide ion OH generated in the cathode chamber 10B by this reaction are associated with water molecules having a strong polarity.
The diaphragm 11 has a size that does not easily pass through the diaphragm 11 and is retained in the anode chamber 10A and the cathode chamber 10B, respectively, and water molecules freely pass through the diaphragm 11 to enable continuous electrolysis. Therefore, the concentration of hydrogen ions H + increases in the anode chamber 10A, the pH decreases, and acidic ion water Wa is generated, while the concentration of hydroxide ions OH increases in the cathode chamber 10B. The pH rises and the alkaline water Wb is produced.

【0015】陽極室10Aで生成された酸性イオン水W
aは、貯留槽71に一旦ストックされ、また陰極室10
Bで生成されたアルカリイオン水Wbは、貯留槽81に
一旦ストックされ、バルブ72,82の開閉操作によっ
て出水路70または80から選択的に取水される。
Acidic ion water W produced in the anode chamber 10A
a is temporarily stocked in the storage tank 71, and the cathode chamber 10
The alkaline ionized water Wb generated in B is temporarily stocked in the storage tank 81, and is selectively taken from the water discharge passage 70 or 80 by opening / closing the valves 72 and 82.

【0016】ここで、陽極室側入水路20Aを経由する
未処理水Wは、陽極室10Aに流入する前に陽イオン交
換樹脂30を通過することによって、次のようなイオン
交換がなされる。 RH++M+ →RM+ +H+ ・・・・・・・・・・・・・・・・・・・・・・ (RM+ はH+型イオン交換樹脂、M+ は水中の陽イオ
ン) このため、水W中に含まれる炭酸水素イオンは、上記
によるH+イオンとの次の反応によって中和される。 H++HCO3 - →H2CO3 ・・・・・・・・・・・・・・・・・・・・・・ したがって、陽極室10Aで生成されたH+イオンと化合
してpH低下の阻害となる炭酸水素イオンが除去される
ので、上記の陽極電解反応を促進させることができ
る。
Here, the untreated water W passing through the anode chamber side water inlet 20A passes through the cation exchange resin 30 before flowing into the anode chamber 10A, whereby the following ion exchange is carried out. RH + + M + → RM + + H + ... (RM + is H + type ion exchange resin, M + is cation in water) Therefore, the hydrogen carbonate ions contained in the water W are neutralized by the subsequent reaction with the H + ions as described above. H + + HCO 3 - → H 2 CO 3 ······················ Therefore, pH decreased combines with H + ions generated in the anode chamber 10A Since the hydrogen carbonate ion that inhibits the above is removed, the above anodic electrolysis reaction can be promoted.

【0017】また、陰極室側入水路20Bを経由する未
処理水Wは、陰極室10Bに流入する前に陰イオン交換
樹脂40を通過することによって、次のようなイオン交
換がなされる。 ROH- +A- →RA- +OH- ・・・・・・・・・・・・・・・・・・・・ (ROH- は OH-型イオン交換樹脂、A-は水中の陰イオ
ン) このため、水W中に含まれるたとえばFe3+イオンは、上
記による OH-イオンとの次の反応によって中和され
る。 3OH- +Fe3+→Fe(OH-)3・・・・・・・・・・・・・・・・・・・・ したがって、陰極室10Bで生成された OH-イオンと化
合してpH上昇の阻害となるこのようなFe3+,Al3+,有
機酸等の陽イオン分が除去されるので、上記の陰極電
解反応を促進させることができる。
Further, the untreated water W passing through the cathode chamber side water inlet 20B passes through the anion exchange resin 40 before flowing into the cathode chamber 10B, whereby the following ion exchange is carried out. ROH - + A - → RA - + OH - ···················· (ROH - is OH - type ion exchange resin, A - in water anions) for this , Fe 3+ ions contained in the water W are neutralized by the following reaction with OH ions according to the above. 3OH + Fe 3+ → Fe (OH ) 3 ······· Therefore, the pH rises by combining with OH ions generated in the cathode chamber 10B. Since the cation components such as Fe 3+ , Al 3+ , and organic acid, which hinder the above, are removed, the above-mentioned cathodic electrolysis reaction can be promoted.

【0018】陽イオン交換樹脂30及び陰イオン交換樹
脂40は、上記あるいはの処理を続けることによっ
て、イオン交換の効力が経時的に低下するので、その効
力を再生させる必要がある。そこで、たとえば取水が終
了した時点で、入水路20のバルブ21と出水路70,
80のバルブ72,82を閉弁し、排水路50,60の
バルブ51,61と酸性イオン水還流手段90及びアル
カリイオン水還流手段100のバルブ92,102を開
弁し、ポンプ93,103を駆動させ、かつ整流器14
をONにする。これによって、貯留槽71に貯えられた
酸性イオン水Waが陽極室10Aでさらに陽極電解さ
れ、十分に酸性となって陽イオン交換樹脂30に還流
し、また、貯留槽81に貯えられたアルカリイオン水W
bが陰極室10Bでさらに陰極電解され、十分にアルカ
リ性となって陰イオン交換樹脂40に還流するので、そ
れぞれ上記及びの逆反応が起こり、これによっ
てイオン交換樹脂30,40が再生される。
The cation exchange resin 30 and the anion exchange resin 40 are required to be regenerated because the effectiveness of ion exchange decreases with time by continuing the above treatment. Therefore, for example, when the water intake is completed, the valve 21 of the water inlet 20 and the water outlet 70,
The valves 72 and 82 of 80 are closed, the valves 51 and 61 of the drainage channels 50 and 60, the valves 92 and 102 of the acidic ion water reflux means 90 and the alkaline ion water reflux means 100 are opened, and the pumps 93 and 103 are turned on. Drive and rectifier 14
Turn on. As a result, the acidic ionized water Wa stored in the storage tank 71 is further subjected to anodic electrolysis in the anode chamber 10A, becomes sufficiently acidic, and is refluxed to the cation exchange resin 30, and the alkaline ions stored in the storage tank 81 are also stored. Water w
Since b is further subjected to cathodic electrolysis in the cathode chamber 10B and becomes sufficiently alkaline and is refluxed to the anion exchange resin 40, the reverse reactions of the above and and, respectively, occur, whereby the ion exchange resins 30 and 40 are regenerated.

【0019】図2は上記電解式浄水器を用いてイオン交
換した水を電解した場合と、従来の電解式浄水器を用い
てイオン交換しない水を電気分解した場合の陽極室内の
pHの変化を示す実験値である。この結果、イオン交換
後の水を電気分解する本発明の浄水器の方が、各電流値
においてpHの低下が顕著であり、酸性イオン水として
の有効性が高まることが確認された。
FIG. 2 shows the change in pH in the anode chamber when the ion-exchanged water is electrolyzed using the electrolytic water purifier and when the non-ion-exchanged water is electrolyzed using the conventional electrolytic water purifier. It is the experimental value shown. As a result, it was confirmed that the water purifier of the present invention which electrolyzes water after ion exchange has a more remarkable decrease in pH at each current value and is more effective as acidic ionized water.

【0020】なお、本発明は上記一実施例に限定される
ものではない。たとえば、給水源からの水W中の炭酸イ
オンや炭酸水素イオンの濃度を低下させるには、水中へ
の酸の投入、たとえば乳酸等の添加も有効であり、曝気
による方法も有効であるため、入水路20に酸の添加装
置や曝気装置を設けても良い。また、上記実施例による
と、貯留槽71,81から還流させてイオン交換樹脂3
0,40の再生に使用された水は排水路50,60から
排出されるが、この水は図示しない貯留手段で一時スト
ックし、入水路20からの未処理水Wとともに電解槽1
0へ供給して再使用するようにしても良い。
The present invention is not limited to the above embodiment. For example, in order to reduce the concentration of carbonate ions and hydrogen carbonate ions in the water W from the water supply source, it is effective to add an acid into water, for example, to add lactic acid, and the aeration method is also effective. The water inlet 20 may be provided with an acid addition device or an aeration device. In addition, according to the above-described embodiment, the ion-exchange resin 3 is made to flow back from the storage tanks 71 and 81.
The water used for regenerating 0, 40 is discharged from the drainage channels 50, 60, but this water is temporarily stocked by a storage means (not shown), and is treated together with the untreated water W from the inlet channel 20 in the electrolytic cell 1
It may be supplied to 0 for reuse.

【0021】[0021]

【発明の効果】以上の説明から明らかなように、本発明
の電解式浄水器によると、イオン交換によって水中の緩
衝物イオンを中和させた水を電気分解する構成としたた
め、電解によるpHの変化を顕著にして電解効率を向上
させることができる。また、上記緩衝物イオンの濃度を
一定値まで低下させることができるので、水質の異なる
条件でも、同一電流値で同一pHのイオン水を得ること
ができる。また、効力の衰えたイオン交換樹脂は、貯留
槽にストックしたイオン水を還流してさらに電気分解
し、このイオン水でイオン交換逆反応させることによっ
て、容易に再生することができるといった優れた効果を
奏する。
As is apparent from the above description, according to the electrolytic water purifier of the present invention, since the water in which the buffer ions in the water are neutralized by the ion exchange is electrolyzed, the pH of the electrolyzed It is possible to make the change remarkable and improve the electrolysis efficiency. Further, since the concentration of the above-mentioned buffer ions can be reduced to a constant value, it is possible to obtain ionic water having the same current value and the same pH even under different water qualities. In addition, the ion exchange resin with reduced potency has an excellent effect that it can be easily regenerated by refluxing the ionized water stocked in the storage tank, further electrolyzing it, and performing an ion exchange reverse reaction with this ionized water. Play.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の一実施例の概略構成を示す説明図であ
る。
FIG. 1 is an explanatory diagram showing a schematic configuration of an embodiment of the present invention.

【図2】脱炭酸処理水と脱炭酸処理しない水を電解した
場合の陽極室内のpHの変化を示すグラフである。
FIG. 2 is a graph showing a change in pH in the anode chamber when electrolyzing decarboxylated water and non-decarboxylated water.

【符号の説明】[Explanation of symbols]

10 電解槽 10A 陽極室 10B 陰極室 20,20A,20B 入水路 30 陽イオン交換樹脂 40 陰イオン交換樹脂 50,60 排水路 70,80 出水路 71,81 貯留槽 90 酸性イオン水還流手段 100 アルカリイオン水還流手段 W 未処理水 Wa 酸性イオン水 Wb アルカリイオン水 10 Electrolyzer 10A Anode Chamber 10B Cathode Chamber 20,20A, 20B Water Inlet 30 Cation Exchange Resin 40 Anion Exchange Resin 50,60 Drainage 70,80 Water Outlet 71,81 Storage Tank 90 Acid Ion Water Reflux Means 100 Alkaline Ion Water reflux means W Untreated water Wa Acid ionized water Wb Alkaline ionized water

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 水を電気分解して陽極側の酸性イオン水
及び陰極側のアルカリイオン水を生成する電解槽と、電
解槽の陽極室への入水路に設けた陽イオン交換樹脂と、
前記陽極室から延びる出水路に設けた貯留槽と、この貯
留槽内の酸性イオン水を陽極室を経由して前記陽イオン
交換樹脂へ還流させる酸性イオン水還流手段を含むこと
を特徴とする電解式浄水器。
1. An electrolytic cell for electrolyzing water to produce acidic ionized water on the anode side and alkaline ionized water on the cathode side, and a cation exchange resin provided in a water inlet to the anode chamber of the electrolytic cell,
Electrolysis comprising a storage tank provided in a water outlet extending from the anode chamber, and acidic ion water reflux means for refluxing the acidic ion water in the reservoir to the cation exchange resin via the anode chamber. Water purifier.
【請求項2】 水を電気分解して陽極側の酸性イオン水
及び陰極側のアルカリイオン水を生成する電解槽と、電
解槽の陰極室への入水路に設けた陰イオン交換樹脂と、
前記陰極室から延びる出水路に設けた貯留槽と、この貯
留槽内のアルカリイオン水を陰極室を経由して前記陰イ
オン交換樹脂へ還流させるアルカリイオン水還流手段を
含むことを特徴とする電解式浄水器。
2. An electrolytic cell for electrolyzing water to produce acidic ionized water on the anode side and alkaline ionized water on the cathode side, and an anion exchange resin provided in a water inlet to the cathode chamber of the electrolytic cell,
Electrolysis characterized by including a storage tank provided in a water outlet extending from the cathode chamber, and alkali ion water reflux means for refluxing the alkali ion water in the storage chamber to the anion exchange resin via the cathode chamber. Water purifier.
JP3265491A 1991-09-18 1991-09-18 Electrolytic type water purifier Withdrawn JPH0568975A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3265491A JPH0568975A (en) 1991-09-18 1991-09-18 Electrolytic type water purifier

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3265491A JPH0568975A (en) 1991-09-18 1991-09-18 Electrolytic type water purifier

Publications (1)

Publication Number Publication Date
JPH0568975A true JPH0568975A (en) 1993-03-23

Family

ID=17417924

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3265491A Withdrawn JPH0568975A (en) 1991-09-18 1991-09-18 Electrolytic type water purifier

Country Status (1)

Country Link
JP (1) JPH0568975A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0910769A (en) * 1995-06-27 1997-01-14 Tookemi:Kk Production of electrolytic ion water
JP5061266B1 (en) * 2012-06-26 2012-10-31 日科ミクロン株式会社 Ozone water generator
CN111630003A (en) * 2018-11-27 2020-09-04 韩商爱乐卡美迪有限公司 Water ionizer comprising a stack of electrolyzers and flow switching devices with inlet separated from outlet

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0910769A (en) * 1995-06-27 1997-01-14 Tookemi:Kk Production of electrolytic ion water
JP5061266B1 (en) * 2012-06-26 2012-10-31 日科ミクロン株式会社 Ozone water generator
CN111630003A (en) * 2018-11-27 2020-09-04 韩商爱乐卡美迪有限公司 Water ionizer comprising a stack of electrolyzers and flow switching devices with inlet separated from outlet
JP2021522988A (en) * 2018-11-27 2021-09-02 アルカメディ カンパニー リミテッド Ion water device with separate water inlet and outlet and equipped with a laminated electrolytic cell and flow path switching device
CN111630003B (en) * 2018-11-27 2022-04-05 韩商爱乐卡美迪有限公司 Water ionizer comprising a stack of electrolyzers and flow switching devices with inlet separated from outlet

Similar Documents

Publication Publication Date Title
JP3349710B2 (en) Electrolyzer and electrolyzed water generator
JPH09290269A (en) Production of acidic water, and electrolytic cell
MXPA03007923A (en) Method and apparatus for producing negative and positive oxidative reductive potential (orp) water.
JP3820248B2 (en) Electrolytic water conditioner
JP4641003B2 (en) Electrolyzed water generation method and electrolyzed water generator
JPH0568975A (en) Electrolytic type water purifier
JP2001523566A (en) Method and apparatus for partial desalination of water
JP3196143B2 (en) Electrolytic water purifier
JP2732818B2 (en) Method for producing electrolytic ionic water
JPH0780457A (en) Method and apparatus for making electrolytic water
JPH10216535A (en) Regeneration device for cation exchange resin and method therefor
JPH1057960A (en) Generating method of electrolytic water and device therefor
JPH11216496A (en) Device for removing oxidized nitrogen
JPH05138171A (en) Electrolytic water purifier
JP3303263B2 (en) Electrolytic ionic water generator
JP2000093964A (en) Alkali water making method and electrolytic apparatus
JP4915843B2 (en) Electric softening device, softening device and soft water production method
JP2001246381A (en) Method and device for manufacturing alkaline ionized water
JP3269784B2 (en) Ozone water production method and ozone water production device
JPH0526194U (en) Electrolytic water purifier
JP3677331B2 (en) Electrolyzed water generator
JPH11221566A (en) Production of electrolytic water
JPH11114569A (en) Electrolyzed water producing device
JP2000218269A (en) Electrolytic water generator
JP2002186968A (en) Device for removal of floating matter in brine tank

Legal Events

Date Code Title Description
A300 Application deemed to be withdrawn because no request for examination was validly filed

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 19981203