JPH11216496A - Device for removing oxidized nitrogen - Google Patents

Device for removing oxidized nitrogen

Info

Publication number
JPH11216496A
JPH11216496A JP2297098A JP2297098A JPH11216496A JP H11216496 A JPH11216496 A JP H11216496A JP 2297098 A JP2297098 A JP 2297098A JP 2297098 A JP2297098 A JP 2297098A JP H11216496 A JPH11216496 A JP H11216496A
Authority
JP
Japan
Prior art keywords
cathode
water
chamber
denitrification
treated
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2297098A
Other languages
Japanese (ja)
Inventor
Ryoichi Haga
良一 芳賀
Masaru Nanba
勝 難波
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP2297098A priority Critical patent/JPH11216496A/en
Publication of JPH11216496A publication Critical patent/JPH11216496A/en
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/46Treatment of water, waste water, or sewage by electrochemical methods
    • C02F1/461Treatment of water, waste water, or sewage by electrochemical methods by electrolysis
    • C02F1/467Treatment of water, waste water, or sewage by electrochemical methods by electrolysis by electrochemical disinfection; by electrooxydation or by electroreduction
    • C02F1/4676Treatment of water, waste water, or sewage by electrochemical methods by electrolysis by electrochemical disinfection; by electrooxydation or by electroreduction by electroreduction
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/46Treatment of water, waste water, or sewage by electrochemical methods
    • C02F1/461Treatment of water, waste water, or sewage by electrochemical methods by electrolysis
    • C02F1/46104Devices therefor; Their operating or servicing
    • C02F1/46109Electrodes
    • C02F2001/46152Electrodes characterised by the shape or form
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2101/00Nature of the contaminant
    • C02F2101/10Inorganic compounds
    • C02F2101/16Nitrogen compounds, e.g. ammonia
    • C02F2101/163Nitrates
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F3/00Biological treatment of water, waste water, or sewage
    • C02F3/005Combined electrochemical biological processes

Abstract

PROBLEM TO BE SOLVED: To provide a device for removing the nitrate nitrogen and nitrite nitrogen dissolved in water. SOLUTION: An electrolytic denitrification tank 6 is divided by a hydrogen ion-permeable membrane 12 into the cathode compartment contg. a cathode 11 and the anode compartment 14 contg. an anode 10. The cathode compartment is divided by a water-permeable cathode plate 11 into a cathodic reaction chamber 15a and a denitrification chamber 15b. Plate-shaped protrusions 8 and 7 are alternately arranged respectively in the cathodic reaction chamber 15a and denitrification chamber 15b to narrow the pH distribution in the cathode compartment.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、水中に溶解した硝
酸態窒素や亜硝酸態窒素の如き酸化態窒素を水素酸化脱
窒菌を用いて還元,除去するための装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an apparatus for reducing and removing oxidized nitrogen, such as nitrate nitrogen and nitrite nitrogen, dissolved in water using a hydrogen oxidizing denitrifying bacterium.

【0002】[0002]

【従来の技術】生活用水として使用される被処理水の硝
酸態窒素や亜硝酸態窒素等の酸化態窒素による汚染が深
刻化しつつあり、これらの浄化手段の開発が急務であ
る。硝酸態窒素や亜硝酸態窒素を除去する方法として、
独立栄養細菌のひとつである水素酸化細菌を利用する生
物的脱窒法があり、特公平6−104230 号公報,特開平8
−39095 号公報,特開平8−224598 号公報及び特開平9
−75996号公報等に記載されている。
2. Description of the Related Art Pollution by oxidized nitrogen, such as nitrate nitrogen and nitrite nitrogen, of treated water used as domestic water is becoming serious, and the development of these purification means is urgently required. As a method to remove nitrate nitrogen and nitrite nitrogen,
There is a biological denitrification method using a hydrogen oxidizing bacterium which is one of the autotrophic bacteria.
-39095, JP-A-8-224598 and JP-A-9-224598
-75996.

【0003】特公平6−104230 号公報には、水の電気分
解用陰極の表面に水素酸化脱窒菌を固定することが示さ
れている。特開平8−224598 号公報には、金属製陽極で
発生する酸素を陰極板と陽極板の間に電子を透過する隔
膜を設けて隔離することが示されている。特開平9−759
96号公報には、隔膜により陰極と陽極とを隔離した上で
陽極液を陰極室に供給することが示されている。
[0003] Japanese Patent Publication No. 6-104230 discloses fixing of hydrogen oxidizing and denitrifying bacteria on the surface of a cathode for electrolysis of water. Japanese Patent Application Laid-Open No. H8-224598 discloses that oxygen generated at a metal anode is isolated by providing a diaphragm for transmitting electrons between the cathode plate and the anode plate. JP 9-759A
No. 96 discloses that an anolyte is supplied to a cathode chamber after a cathode and an anode are separated by a diaphragm.

【0004】[0004]

【発明が解決しようとする課題】水の電気分解において
金属製陽極で発生する酸素による脱窒反応の阻害を防止
するために陽極と陰極の間をイオン交換膜等の隔膜で隔
離する方法では、陰極室内のpHが生物処理に適さなく
なる問題を生じる。このため、中和のために酸やアルカ
リ等の薬剤添加が必要となり、脱窒処理水の生活用水と
しての利用を制限される問題がある。
In order to prevent the denitrification reaction due to oxygen generated at the metal anode in the electrolysis of water from being hindered, a method of separating the anode and the cathode by a membrane such as an ion exchange membrane is disclosed. This causes a problem that the pH in the cathode chamber is not suitable for biological treatment. For this reason, it is necessary to add an agent such as an acid or an alkali for neutralization, and there is a problem that the use of the denitrification-treated water as domestic water is limited.

【0005】本発明の目的は、中和用薬剤の使用量を極
力低減しつつ水素酸化脱窒菌固定層でのpHを至適範囲
に調節することによって、反応速度を高め、効率的に酸
化態窒素を除去できる水中に溶解した酸化態窒素の除去
装置を提供することにある。
[0005] An object of the present invention is to increase the reaction rate by efficiently adjusting the pH in the fixed layer of the hydrogen oxidizing and denitrifying bacterium while minimizing the amount of the neutralizing agent used, thereby increasing the reaction rate and efficiently oxidizing. An object of the present invention is to provide an apparatus for removing oxidized nitrogen dissolved in water capable of removing nitrogen.

【0006】[0006]

【課題を解決するための手段】このような従来技術の問
題点を解決するために、本発明では以下に述べる手段を
用いている。
In order to solve the problems of the prior art, the present invention uses the following means.

【0007】すなわち、本発明の水中に溶解した酸化態
窒素の除去装置は、陰極板と陽極板と水素酸化脱窒菌を
収容する電気分解槽を用いて被処理水の電気分解を行わ
せて陰極面で水素を発生させ、該水素を利用して被処理
水中に溶解する酸化態窒素を窒素に生物的に還元して除
去する装置において、前記陰極板面に被処理水の混合手
段を設けたことを特徴とする。
More specifically, the apparatus for removing oxidized nitrogen dissolved in water according to the present invention uses a cathode plate, an anode plate, and an electrolysis tank containing hydrogen oxidizing and denitrifying bacteria to perform the electrolysis of the water to be treated, thereby forming a cathode. In a device for generating hydrogen on the surface and biologically reducing and removing oxidized nitrogen dissolved in the water to be treated using the hydrogen by using the hydrogen, a means for mixing the water to be treated is provided on the cathode plate surface. It is characterized by the following.

【0008】電気分解槽の中の陰極及び陽極に電圧を付
加することにより、水の電気分解が行われ、陰極では水
素と水酸イオンが、陽極では酸素と水素イオンがそれぞ
れ生成する。本来、陰極で発生する水酸イオンと陽極で
発生する水素イオンの生成量は等量であり、混合すれば
pHの変化は生じない。しかし、容積効率を向上させる
ために電気分解槽内部の陰極板と陽極板の間隙はできる
だけ狭隘なものにすることが望ましく、かつ反応液の流
動速度も大きなものにすることができない。
[0008] By applying a voltage to the cathode and the anode in the electrolyzer, water is electrolyzed, and hydrogen and hydroxide ions are generated at the cathode, and oxygen and hydrogen ions are generated at the anode. Essentially, the amount of hydroxyl ions generated at the cathode and the amount of hydrogen ions generated at the anode are equal, and if mixed, the pH does not change. However, in order to improve the volumetric efficiency, it is desirable that the gap between the cathode plate and the anode plate in the electrolysis tank be as narrow as possible, and the flow rate of the reaction solution cannot be increased.

【0009】このため、反応液の混合が不十分となり、
陰極近傍では水酸イオン濃度が高くなってアルカリ性と
なり、陽極近傍では水素イオン濃度が高くなって酸性と
なる。水素酸化脱窒菌の脱窒反応至適pHはおおよそ7
〜8.5 の範囲であり、電気分解槽内部のpH分布は脱
窒反応速度の低下を引き起こす。そこで、本発明では特
に陰極板面に混合手段を設けてpH分布の縮小を図って
いる。
For this reason, the mixing of the reaction solution becomes insufficient,
In the vicinity of the cathode, the concentration of hydroxyl ions increases to make the region alkaline, and in the vicinity of the anode, the concentration of hydrogen ions increases to become acidic. The optimal pH for the denitrification reaction of hydrogen oxidizing denitrifying bacteria is about 7
88.5, and the pH distribution inside the electrolysis tank causes a decrease in the denitrification reaction rate. Therefore, in the present invention, the pH distribution is reduced particularly by providing a mixing means on the surface of the cathode plate.

【0010】本発明になる次の装置としては、陰極板と
陽極板の狭隘な空間を混合手段として電極板面に突起物
を設けたことを特徴とする。電極板面に設けた突起物の
近傍では反応液の流動速度及び流動方向が変化し、これ
によって液の混合が引き起こされる。
The next apparatus according to the present invention is characterized in that a projection is provided on the electrode plate surface by using a narrow space between the cathode plate and the anode plate as a mixing means. In the vicinity of the protrusion provided on the electrode plate surface, the flow speed and the flow direction of the reaction liquid change, thereby causing the liquid to mix.

【0011】電極板面に設けた突起物は、導電性の物質
で構成されている場合、突起部分に電気分解用電流の集
中をまねき、局所的なpH上昇や水素発生を引き起こ
す。
When the projections provided on the electrode plate surface are made of a conductive substance, the electrolysis current is concentrated on the projections, causing a local increase in pH and hydrogen generation.

【0012】従って、本発明になる次の装置としては、
突起物が非導電体で構成されていることを特徴とする。
Therefore, the next apparatus according to the present invention includes:
The projection is made of a non-conductive material.

【0013】陰極面に設けた突起物によって反応液を混
合するに際しては、陰極面のみならず、陰極面に相対す
る面にも同様な突起物を設けることが望まれる。なおか
つ、陰極面及び陰極面と相対する面に設けた突起物は、
それぞれ異なる位置に設置することが混合を効率よく行
う上で好ましい。
When mixing the reaction solution with the projections provided on the cathode surface, it is desirable to provide similar projections not only on the cathode surface but also on the surface facing the cathode surface. In addition, the projection provided on the cathode surface and the surface opposite to the cathode surface,
It is preferable to install them at different positions in order to perform mixing efficiently.

【0014】従って、本発明になる次の装置としては、
陰極板面に設けた突起物と陰極板に相対する面に設けら
れた突起物が交互に配置されていることを特徴とする。
Therefore, the next device according to the present invention includes:
The projections provided on the cathode plate surface and the projections provided on the surface facing the cathode plate are alternately arranged.

【0015】本発明において用いる水素酸化脱窒菌によ
る脱窒反応は嫌気反応であるため、陽極と陰極との間に
隔膜を配置して、陽極で発生する酸素を遮断することが
望ましい。隔膜としては、酸素を遮断しかつ水素イオン
を透過せしめる材料で構成されていることが望まれる。
Since the denitrification reaction by the hydrogen oxidizing and denitrifying bacterium used in the present invention is an anaerobic reaction, it is desirable to dispose a diaphragm between the anode and the cathode to block oxygen generated at the anode. It is desired that the diaphragm is made of a material that blocks oxygen and allows hydrogen ions to pass therethrough.

【0016】従って、本発明になる次の装置としては、
前記電気分解槽が陰極板と陽極板の間に配置された酸素
を透過せず水素イオンを透過する隔膜によって陰極板と
水素酸化脱窒菌を収容する陰極室と陽極板を収容する陽
極室とに区画されたものであり、前記陰極板に相対する
面が隔膜面であり、被処理水を前記陰極室に供給するこ
とを特徴とする。
Therefore, the next device according to the present invention includes:
The electrolysis tank is divided into a cathode chamber containing a cathode plate and a hydrogen oxidizing and denitrifying bacterium and an anode chamber containing an anode plate by a diaphragm which is arranged between the cathode plate and the anode plate and does not allow oxygen to permeate but permeates hydrogen ions. A surface facing the cathode plate is a diaphragm surface, and water to be treated is supplied to the cathode chamber.

【0017】本発明において、電気分解槽容積あたりの
脱窒速度を向上するには水素供給速度、すなわち電気分
解電流密度を増大することが必要である。しかるに、電
気分解用電流を増加すると水素酸化脱窒菌の活性を低下
させる現象が発生する。特に陰極板の表面に水素酸化脱
窒菌の生物膜を形成させた生物電極法において脱窒活性
低下が著しい。脱窒菌を電気分解を行う面以外のところ
に配置すれば脱窒活性低下を起こすことなく電解用電流
密度を増加させることができる。
In the present invention, it is necessary to increase the hydrogen supply rate, that is, the electrolysis current density, in order to increase the denitrification rate per volume of the electrolysis tank. However, when the current for electrolysis is increased, a phenomenon occurs in which the activity of the hydrogen oxidizing and denitrifying bacteria decreases. In particular, in the bioelectrode method in which a biofilm of oxidizing and denitrifying bacteria is formed on the surface of the cathode plate, the denitrification activity is significantly reduced. If the denitrifying bacteria are arranged at a place other than the surface where the electrolysis is performed, the current density for electrolysis can be increased without lowering the denitrifying activity.

【0018】そこで、陰極として水及びイオンが通過で
きる空隙部を有する部材で構成し、陰極の背面にも脱窒
菌を固定することとした。この場合、陰極の背面にも反
応液を流通せしめるため、被処理水の流動方向に対して
直角に配置した板状の突起物を用いることが望ましい。
板状の突起物は陰極板の隔膜に面する面とその裏面とに
それぞれ交互に設置し、被処理水を陰極板の隔膜に面す
る面とその裏面との間で交互に流通させることが望まし
い。
In view of the above, the cathode is constituted by a member having a space through which water and ions can pass, and denitrifying bacteria are fixed also on the back of the cathode. In this case, in order to allow the reaction liquid to flow also on the back surface of the cathode, it is desirable to use plate-shaped projections arranged at right angles to the flow direction of the water to be treated.
The plate-shaped protrusions are alternately provided on the surface of the cathode plate facing the diaphragm and the back surface thereof, and the water to be treated can be alternately circulated between the surface of the cathode plate facing the diaphragm and the back surface. desirable.

【0019】従って、本発明になる次の装置としては、
前記電気分解槽が陰極板と陽極板の間に配置された酸素
を透過せず水素イオンを透過する隔膜によって陰極板と
水素酸化脱窒菌を収容する陰極室と陽極板を収容する陽
極室とに区画され、なおかつ前記陰極室が水及びイオン
が通過できる空隙部を設けた陰極板によって陰極反応室
と水素酸化脱窒菌を収容する脱窒室とに区画されたもの
であり、該陰極板の隔膜に面する面とその背面の脱窒室
に面する面のそれぞれに交互に配置された板状の前記突
起物を設け、被処理水を陰極反応室に供給し、次いで該
被処理水を前記陰極反応室と前記脱窒室を陰極板を通過
して交互に流通せしめることを特徴とする。
Therefore, the next device according to the present invention includes:
The electrolysis tank is divided into a cathode chamber containing a cathode plate and a hydrogen oxidizing and denitrifying bacterium and an anode chamber containing an anode plate by a diaphragm which is arranged between the cathode plate and the anode plate and does not allow oxygen to permeate but permeates hydrogen ions. The cathode chamber is partitioned into a cathode reaction chamber and a denitrification chamber containing hydrogen oxidizing and denitrifying bacteria by a cathode plate provided with a gap through which water and ions can pass, and the cathode chamber is separated from the diaphragm by the cathode plate. The plate-like projections are alternately arranged on the surface to be treated and the surface facing the denitrification chamber on the back side, and the water to be treated is supplied to the cathode reaction chamber. The chamber and the denitrification chamber are alternately circulated through a cathode plate.

【0020】電気分解槽内での被処理水の流動速度は小
さなことから、単に陰極板の表と裏の面に板状の突起物
を交互に配置したのみでは、陰極反応室と前記脱窒室の
間を交互に流通せしめることは困難である。このため、
板状の突起物を相対する面に接触させて流路を閉鎖し、
被処理水を強制的に陰極反応室と前記脱窒室を交互に流
通せしめることが望ましい。
Since the flow rate of the water to be treated in the electrolysis tank is low, merely disposing the plate-like projections on the front and back surfaces of the cathode plate simply means that the cathode reaction chamber and the denitrification do not occur. It is difficult to circulate between rooms alternately. For this reason,
Close the flow path by contacting the plate-shaped projection with the opposite surface,
It is desirable to force the water to be treated to flow alternately between the cathode reaction chamber and the denitrification chamber.

【0021】従って、本発明になる次の装置としては、
前記突起物をそれぞれ相対する面に接触せしめて実質的
に前記陰極反応室と前記脱窒室をそれぞれ少なくとも2
個以上に区画したことを特徴とする。
Therefore, the next device according to the present invention includes:
The projections are brought into contact with opposing surfaces so that the cathode reaction chamber and the denitrification chamber are at least 2
It is characterized by being divided into more than one pieces.

【0022】陽極で発生する水素イオンと陰極で発生す
る水酸イオンの生成量は等量であるが、両極間に設置さ
れたイオン交換膜の透過抵抗により陰極室に透過してく
る水素イオン量は水酸イオン量より少なくなる。また、
水素酸化脱窒菌による脱窒反応によっても水酸イオンが
生成されるため、陰極室はアルカリ化することになる。
The amount of hydrogen ions generated at the anode and the amount of hydroxyl ions generated at the cathode are equal, but the amount of hydrogen ions permeating into the cathode chamber due to the permeation resistance of the ion exchange membrane installed between the two electrodes Is less than the amount of hydroxyl ions. Also,
Since the hydroxyl ion is also generated by the denitrification reaction by the hydrogen oxidizing and denitrifying bacterium, the cathode compartment is alkalized.

【0023】このため、水素イオンの不足量に相当する
炭酸ガスを予め被処理水中に溶解させることにより、脱
窒菌固定層を脱窒反応に好ましいpH環境に調節するこ
とが望まれる。さらに、陰極板として水及びイオンが通
過できる空隙部を有する部材を使用することによって水
素酸化脱窒菌の固定量が減少し、脱窒速度の向上効果が
得られない。そこで、陰極の近傍に脱窒菌固定層を配置
することが望ましい。従って、本発明になる次の装置と
しては、被処理水に炭酸ガスを溶解させる炭酸ガス溶解
槽を付加し、前記脱窒室の陰極板の近傍に表面に前記水
素酸化脱窒菌を固定してなる水が通過できる空隙を有す
る脱窒菌固定層を設け、前記陰極反応室に炭酸ガスを溶
解せしめた前記被処理水を導入し、該被処理水を前記陰
極反応室と前記脱窒室の間を陰極板及び脱窒菌固定層を
通過して交互に流通せしめることを特徴とする。
For this reason, it is desirable to adjust the pH of the denitrifying bacteria fixed layer to a preferable pH environment for the denitrification reaction by previously dissolving carbon dioxide gas corresponding to the shortage of hydrogen ions in the water to be treated. Furthermore, by using a member having a void portion through which water and ions can pass as the cathode plate, the amount of hydrogen oxidizing and denitrifying bacteria fixed decreases, and the effect of improving the denitrifying rate cannot be obtained. Therefore, it is desirable to dispose a denitrifying bacteria fixed layer near the cathode. Therefore, as the next apparatus according to the present invention, a carbon dioxide dissolving tank for dissolving carbon dioxide in the water to be treated is added, and the hydrogen oxidizing and denitrifying bacteria are fixed on the surface near the cathode plate of the denitrification chamber. Provided with a denitrifying bacteria fixed layer having a gap through which water can pass, introducing the treated water in which carbon dioxide gas is dissolved into the cathode reaction chamber, and flowing the treated water between the cathode reaction chamber and the denitrification chamber. Are alternately passed through the cathode plate and the denitrifying bacteria fixed layer.

【0024】本発明では陰極室内のアルカリ化を防止す
るため、水素イオンの不足量に相当する炭酸ガスを予め
被処理水中に溶解させることにより、脱窒菌固定層を脱
窒反応に好ましいpH環境に調節する。しかし、電解電
流量が大きかったり、被処理水中の酸化態窒素濃度が高
いと多量の炭酸ガスを溶解させることが必要になり、被
処理水が強酸性化してしまうという問題が生じる。この
問題を解決するために、電解電流量が大きかったり、被
処理水中の酸化態窒素濃度が高い場合には、陰極室から
流出する脱窒処理水を炭酸ガス溶解槽に返送し、循環さ
せることが望ましい。
In the present invention, in order to prevent alkalinization in the cathode chamber, carbon dioxide gas corresponding to an insufficient amount of hydrogen ions is previously dissolved in the water to be treated, so that the denitrifying bacteria fixed layer is brought into a pH environment favorable for the denitrification reaction. Adjust. However, if the amount of electrolysis current is large or the concentration of oxidized nitrogen in the water to be treated is high, it is necessary to dissolve a large amount of carbon dioxide gas, causing a problem that the water to be treated is strongly acidified. In order to solve this problem, when the amount of electrolytic current is large or the concentration of oxidized nitrogen in the water to be treated is high, the denitrification treatment water flowing out of the cathode chamber should be returned to the carbon dioxide gas dissolving tank and circulated. Is desirable.

【0025】従って、本発明になる次の装置としては、
前記脱窒室から流出する陰極水を前記炭酸ガス溶解槽に
返送する流路を設け、陰極水の少なくとも一部を炭酸ガ
ス溶解槽に戻すことを特徴とする。
Therefore, the next device according to the present invention includes:
A flow path for returning the cathode water flowing out of the denitrification chamber to the carbon dioxide gas dissolving tank is provided, and at least a portion of the cathode water is returned to the carbon dioxide gas dissolving tank.

【0026】被処理水に溶解すべき炭酸ガス量は、脱窒
菌に接触する被処理水の酸化態窒素の濃度及び水素酸化
脱窒菌の脱窒活性、及び電気分解用電流量によって決定
される。被処理水への炭酸ガス溶解量は、pHを指標と
して炭酸ガス溶解槽への炭酸ガス供給量,陰極水の返送
量のいずれか、又は両者を制御することによって調節さ
れる。
The amount of carbon dioxide to be dissolved in the water to be treated is determined by the concentration of oxidized nitrogen in the water to be treated and the denitrifying activity of the hydrogen oxidizing and denitrifying bacteria, and the amount of electrolysis current. The amount of carbon dioxide dissolved in the water to be treated is adjusted by controlling one or both of the amount of carbon dioxide supplied to the carbon dioxide gas dissolving tank and the amount of cathode water returned using the pH as an index.

【0027】従って、本発明の次の装置は、炭酸ガス溶
解槽より流出する炭酸ガス溶解被処理水のpHを炭酸ガ
ス供給量及び/又は脱窒処理水返送量の制御によって調
節することを特徴とする。
Therefore, the next apparatus of the present invention is characterized in that the pH of the water to be treated for dissolving carbon dioxide gas flowing out of the carbon dioxide dissolving tank is adjusted by controlling the supply amount of carbon dioxide gas and / or the return amount of denitrification treatment water. And

【0028】陰極室から流出する陰極水中には、未反応
の水素が溶解していることから、これを有効活用しつつ
脱窒処理水中から除去することが好ましい。
Since unreacted hydrogen is dissolved in the cathode water flowing out of the cathode chamber, it is preferable to remove the unreacted hydrogen from the denitrification-treated water while making effective use of the hydrogen.

【0029】従って、本発明の次の装置は、内部に水素
酸化脱窒菌を固定した脱窒槽を付加し、該脱窒槽に前記
脱窒室から流出するガス及び陰極水の少なくとも一部を
通じて未利用の水素を利用して陰極水中の酸化態窒素を
窒素に還元することを特徴とする。
Therefore, in the next apparatus of the present invention, a denitrification tank in which hydrogen oxidizing and denitrifying bacteria are fixed is added, and the denitrification tank is not used through at least a part of the gas and cathode water flowing out from the denitrification chamber. And reducing the oxidized nitrogen in the cathode water to nitrogen using the hydrogen.

【0030】陰極水又は脱窒槽から流出する脱窒水は、
酸素のない嫌気状態であり、弱アルカリ性で炭酸,重炭
酸イオン、及び炭酸イオンを含有している。脱窒処理水
を活用するためには、水中に酸素を溶解させ、かつ中和
し、なおかつ炭酸,重炭酸イオン、及び炭酸イオンをで
きるだけ低減することが望ましい。
The denitrified water flowing out of the cathode water or the denitrification tank is
It is an anaerobic state without oxygen, is weakly alkaline, and contains carbonate, bicarbonate and carbonate ions. In order to utilize the denitrification water, it is desirable to dissolve and neutralize oxygen in the water and to reduce carbonic acid, bicarbonate ions and carbonate ions as much as possible.

【0031】従って、本発明の次の装置は、陰極水又は
脱窒槽から流出する脱窒水に通気下で陽極室より流出す
る陽極水の一部を加えてpHが5.8〜8.5、好ましく
は6.5〜7.5の処理水を得ることを特徴とする。
Therefore, in the next apparatus of the present invention, a part of the anode water flowing out of the anode chamber under aeration is added to the cathode water or the denitrification water flowing out of the denitrification tank to adjust the pH to 5.8 to 8.5. , Preferably 6.5 to 7.5 treated water.

【0032】[0032]

【発明の実施の形態】本発明になる酸化態窒素除去装置
の一実施例を示す図2により詳細に説明する。被処理水
1は電解脱窒槽6に供給される。電解脱窒槽6は、内容
積500mlのプラスチック製であり、水素イオン透過膜
12によって直流電圧を印加した陰極11と水素酸化脱
窒菌を収容する陰極室15、及び陽極10を収容する陽
極室14で構成されている。陰極11はステンレス平
板、陽極10は白金メッキチタン平板で作られており、
面積はいずれも200cm2 である。陰極11の表面に
は、直径5mm,高さ10mmの円柱状の突起物8が設けら
れている。突起物8の設置概要を図3に示す。陰極室1
5内の水素利用脱窒菌は、陰極11の表面及び陰極室内
面に形成された脱窒菌層19に存在する。水素イオン透
過膜12としては、一価イオン選択性陽イオン交換膜を
使用した。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS An embodiment of the apparatus for removing nitrogen oxides according to the present invention will be described in detail with reference to FIG. The water to be treated 1 is supplied to an electrolytic denitrification tank 6. The electrolytic denitrification tank 6 is made of plastic having an inner volume of 500 ml, and includes a cathode 11 to which a DC voltage is applied by a hydrogen ion permeable membrane 12, a cathode chamber 15 for accommodating hydrogen oxidizing denitrifying bacteria, and an anode chamber 14 for accommodating the anode 10. It is configured. The cathode 11 is made of a stainless steel plate, and the anode 10 is made of a platinum-plated titanium plate.
Each area is 200 cm 2 . On the surface of the cathode 11, a columnar projection 8 having a diameter of 5 mm and a height of 10 mm is provided. FIG. 3 shows an outline of the installation of the protrusion 8. Cathode room 1
The hydrogen-utilizing denitrifying bacteria in 5 are present on the surface of the cathode 11 and the denitrifying bacteria layer 19 formed on the inner surface of the cathode chamber. As the hydrogen ion permeable membrane 12, a monovalent ion selective cation exchange membrane was used.

【0033】陽極10及び陰極11を直流電源40に接
続し、直流電圧を印加することによって電流が流れ、そ
の結果、水の電気分解が起こる。陰極及び陽極での反応
は、次の(1)(2)式で表される。
The anode 10 and the cathode 11 are connected to a DC power supply 40, and a current flows by applying a DC voltage. As a result, electrolysis of water occurs. The reactions at the cathode and anode are represented by the following equations (1) and (2).

【0034】[0034]

【化1】 電極反応(陰極) 10H2O+10e-→5H2+10OH- …(1)Embedded image Electrode reaction (cathode) 10H 2 O + 10e → 5H 2 + 10OH (1)

【0035】[0035]

【化2】 電極反応(陽極) 5H2O→5/2O2+10H++10e- …(2) 水の電気分解においては、理論上、陰極で発生する水酸
イオンと陽極で発生する水素イオンの発生量は等量であ
り、陽極で発生した水素イオン(H+)は、(1)式で生成
した水酸イオン(OH-)の中和反応に使用されるため、
陰極室に速やかに移動させなければならない。
Embedded image Electrode Reaction (Anode) 5H 2 O → 5 / 2O 2 + 10H + + 10e (2) In the electrolysis of water, theoretically, hydroxyl ions generated at the cathode and hydrogen ions generated at the anode are generated. The amount of generation is equal, and the hydrogen ion (H + ) generated at the anode is used for the neutralization reaction of the hydroxyl ion (OH ) generated by the formula (1).
It must be quickly moved to the cathode compartment.

【0036】一方で、同時に発生する酸素は水素酸化脱
窒菌の脱窒反応を阻害する。このため、陰極と陽極との
間に酸素を通過させずに水素イオンを透過する機能を有
する水素イオン通過膜12を配置して酸素を陽極水22
と共に陽極室14から排出し、陰極室15への酸素の侵
入を最小限にとどめる。
On the other hand, simultaneously generated oxygen inhibits the denitrification reaction of the hydrogen oxidizing denitrifying bacterium. For this reason, a hydrogen ion permeable membrane 12 having a function of permeating hydrogen ions without passing oxygen between the cathode and the anode is arranged to transfer oxygen to the anode water 22.
At the same time, the gas is exhausted from the anode chamber 14 and the intrusion of oxygen into the cathode chamber 15 is minimized.

【0037】陰極室15内に存在する水素利用脱窒菌
は、陰極11の表面で発生する水素を利用して硝酸態窒
素や亜硝酸態窒素の酸化態窒素を窒素に還元する。水素
酸化脱窒菌による硝酸態窒素の脱窒反応は下記(3)式
により表される。
The hydrogen-using denitrifying bacterium present in the cathode chamber 15 uses the hydrogen generated on the surface of the cathode 11 to reduce oxidized nitrogen such as nitrate nitrogen or nitrite nitrogen to nitrogen. The denitrification reaction of nitrate nitrogen by the hydrogen oxidizing denitrifying bacterium is represented by the following equation (3).

【0038】[0038]

【化3】 脱窒反応(微生物層)2NO3 -+5H2→N2+4H2O+2OH- …(3) 水素酸化脱窒菌の能力の範囲内であれば、脱窒量は電解
電流量に比例する。
Embedded image Denitrification reaction (microbial layer) 2NO 3 + 5H 2 → N 2 + 4H 2 O + 2OH (3) The denitrification amount is proportional to the amount of electrolytic current within the range of the capacity of the hydrogen oxidizing and denitrifying bacteria. .

【0039】(1)(3)式より、1モルの硝酸イオン
を脱窒するのに2.5 モルの水素が必要であり、この水
素を電気分解で生成するのに要する電気量は理論上約48
0000クーロンである。電気分解で発生させた水素量に対
応して脱窒反応が行われ、被処理水中に溶解していた酸
化態窒素が窒素に還元され、ガスとして分離除去され
る。水素酸化脱窒菌により酸化態窒素が除去された被処
理水は処理水50として陰極室15から排出される。
From equations (1) and (3), 2.5 moles of hydrogen are required to denitrify 1 mole of nitrate ions, and the amount of electricity required to generate this hydrogen by electrolysis is theoretically About 48
0000 coulombs. A denitrification reaction is performed in accordance with the amount of hydrogen generated by the electrolysis, and oxidized nitrogen dissolved in the water to be treated is reduced to nitrogen, and separated and removed as a gas. The water to be treated from which the oxidized nitrogen has been removed by the hydrogen oxidizing and denitrifying bacteria is discharged from the cathode chamber 15 as treated water 50.

【0040】[0040]

【表1】 [Table 1]

【0041】本実施例の装置を用いて本発明の効果を表
1に示す。被処理水1としては、窒素濃度として20pp
m になるよう硝酸カリウムを添加した脱塩素水道水を使
用した。被処理水を300ml/hの一定流速で供給し、
3日ごとに電解電流を5mAずつ段階的に増加させて脱
窒速度を徐々に向上させた。処理水を採取し、硝酸態窒
素及び亜硝酸態窒素の濃度を定量し、非処理水に対する
減少量から窒素除去速度を求めた。
Table 1 shows the effects of the present invention using the apparatus of this embodiment. The water to be treated 1 has a nitrogen concentration of 20 pp
Dechlorinated tap water to which potassium nitrate was added so as to obtain m was used. The water to be treated is supplied at a constant flow rate of 300 ml / h,
The electrolytic current was increased stepwise by 5 mA every three days to gradually increase the denitrification rate. Treated water was sampled, the concentrations of nitrate nitrogen and nitrite nitrogen were quantified, and the nitrogen removal rate was determined from the amount reduced relative to non-treated water.

【0042】電解電流を15mAに増加させたときの3
日間の平均の窒素除去速度は1.1mg−N/hであっ
た。処理水中の硝酸態窒素及び亜硝酸態窒素の濃度は、
それぞれ7.4mg/L、及び8.8mg/Lであった。その
後、その結果、電解電流を20mAに増加させたとこ
ろ、窒素除去速度は低下した。よって、本実施例の脱窒
性能は最大1.1mg−N/h であることが分かる。陰極
面に設けた突起物によって混合が良好に行われるように
なったことから、下記の比較例の脱窒性能に比較して脱
窒性能向上の効果が得られた。
When the electrolysis current was increased to 15 mA, 3
The average daily nitrogen removal rate was 1.1 mg-N / h. The concentrations of nitrate nitrogen and nitrite nitrogen in the treated water are:
They were 7.4 mg / L and 8.8 mg / L, respectively. Thereafter, as a result, when the electrolytic current was increased to 20 mA, the nitrogen removal rate decreased. Therefore, it can be seen that the denitrification performance of this example is 1.1 mg-N / h at the maximum. Since the mixing was favorably performed by the projections provided on the cathode surface, an effect of improving the denitrification performance was obtained as compared with the denitrification performance of the comparative example described below.

【0043】比較例として、図2に示す酸化態窒素除去
装置において突起物8を撤去した陰極を用いた装置を用
いて上記と同様の実験を行ったときの脱窒性能を表1に
合わせて示した。本比較例の窒素除去速度は1.0mg−
N/hであった。
As a comparative example, Table 1 shows the denitrification performance when the same experiment as above was performed using an apparatus using the cathode from which the projections 8 were removed in the oxidized nitrogen removing apparatus shown in FIG. Indicated. The nitrogen removal rate of this comparative example was 1.0 mg-
N / h.

【0044】図4は、本発明になる酸化態窒素除去装置
の他の実施例における突起物8を設けた陰極11の形状
を示す。本実施例では、幅15mm,厚さ2mm,高さ10
mmのプラスチック製板を突起物8として用いた。本実施
例になる陰極を図2に示す脱窒装置の陰極として使用し
たときの脱窒性能を表1に合わせて示した。図3に示す
円柱状突起物に比較して図4に示す板状突起物の方がよ
り混合能力が大きく、脱窒性能が向上している。
FIG. 4 shows the shape of a cathode 11 provided with a projection 8 in another embodiment of the apparatus for removing oxidized nitrogen according to the present invention. In this embodiment, the width is 15 mm, the thickness is 2 mm, and the height is 10 mm.
A mm plastic plate was used as the projection 8. Table 1 shows the denitrification performance when the cathode according to the present example was used as the cathode of the denitrification apparatus shown in FIG. Compared to the columnar projections shown in FIG. 3, the plate-like projections shown in FIG. 4 have higher mixing capacity and improved denitrification performance.

【0045】図5は、本発明になる酸化態窒素除去装置
の他の実施例における突起物8を設けた陰極11の形状
を示す。本実施例では、幅100mm,厚さ2mm,高さ1
0mmのプラスチック製板を突起物8として用いた。本実
施例になる陰極を図2に示す脱窒装置の陰極として使用
したときの脱窒性能を表1に合わせて示した。図3に示
す円柱状突起物に同等の脱窒性能が得られている。
FIG. 5 shows the shape of a cathode 11 provided with a projection 8 in another embodiment of the apparatus for removing oxidized nitrogen according to the present invention. In this embodiment, width 100 mm, thickness 2 mm, height 1
A 0 mm plastic plate was used as the projection 8. Table 1 shows the denitrification performance when the cathode according to the present example was used as the cathode of the denitrification apparatus shown in FIG. The denitrification performance equivalent to that of the columnar projection shown in FIG. 3 is obtained.

【0046】図6は、本発明になる酸化態窒素除去装置
の他の実施例における陰極11と突起物8a及び8b、
及び水素イオン透過膜12の配置と形状を示す。本実施
例では、幅100mm,厚さ2mm,高さ10mmのプラスチ
ック製板を突起物8a及び8bとして用いた。突起物8
aはその一端が陰極11に接し、他の一端は水素イオン
透過膜12に5mmの間隔で相対している。突起物8bは
その一端が水素イオン透過膜12に接し、他の一端は陰
極11に5mmの間隔で相対している。突起物8aと突起
物8bは、それぞれ等間隔で交互に配置されており、陰
極室15に注入された被処理水はイオン交換膜12と陰
極11に交互に接触しながら溶解している窒素酸化物が
除去される。
FIG. 6 shows a cathode 11 and protrusions 8a and 8b in another embodiment of the apparatus for removing nitrogen oxides according to the present invention.
And the arrangement and shape of the hydrogen ion permeable membrane 12. In this embodiment, a plastic plate having a width of 100 mm, a thickness of 2 mm and a height of 10 mm was used as the projections 8a and 8b. Projection 8
“a” has one end in contact with the cathode 11 and the other end facing the hydrogen ion permeable membrane 12 at intervals of 5 mm. One end of the projection 8b is in contact with the hydrogen ion permeable membrane 12, and the other end is opposed to the cathode 11 at an interval of 5 mm. The protrusions 8a and the protrusions 8b are alternately arranged at equal intervals, and the water to be treated injected into the cathode chamber 15 is dissolved while being in contact with the ion exchange membrane 12 and the cathode 11 alternately. Things are removed.

【0047】本実施例になる図6に示す陰極と突起物を
図2に示す脱窒装置の陰極として使用したときの脱窒性
能を表1に合わせて示す。図5に示す板状突起物に比較
して本実施例の方が大きな脱窒性能が得られており、図
6に示す板状突起物を用いた方がより混合能力が大きい
ことがわかる。
Table 1 shows the denitrification performance when the cathode and the projection shown in FIG. 6 according to the present embodiment are used as the cathode of the denitrification apparatus shown in FIG. Compared with the plate-like projections shown in FIG. 5, the present example has higher denitrification performance, and it can be seen that the mixing ability is greater when the plate-like projections shown in FIG. 6 are used.

【0048】図7は、本発明になる酸化態窒素除去装置
の他の実施例における陰極11と突起物7及び8の形状
と配置を示す。本実施例では、陰極11として直径1mm
の穴を設けた穴あきステンレス板を使用した。幅100
mm,厚さ2mm,高さ7mmのプラスチック製板を突起物7
及び8として用いた。突起物7はその一端が陰極11に
接し、他の一端は電解脱窒槽6の内壁に接している。突
起物8はその一端が陰極11に接し、他の一端は水素イ
オン透過膜12に接している。
FIG. 7 shows the shape and arrangement of the cathode 11 and the projections 7 and 8 in another embodiment of the apparatus for removing nitrogen oxides according to the present invention. In this embodiment, the cathode 11 has a diameter of 1 mm.
A perforated stainless steel plate provided with holes was used. Width 100
mm, 2 mm thick, 7 mm high plastic plate
And 8 were used. One end of the protrusion 7 is in contact with the cathode 11, and the other end is in contact with the inner wall of the electrolytic denitrification tank 6. One end of the projection 8 contacts the cathode 11, and the other end contacts the hydrogen ion permeable membrane 12.

【0049】突起物7と突起物8は、それぞれ等間隔で
交互に配置されており、陰極室15に注入された被処理
水はイオン交換膜12と陰極11に交互に接触しながら
溶解している窒素酸化物が除去される。本実施例になる
図7に示す陰極を図2に示す脱窒装置の陰極として使用
したときの脱窒性能を表1に合わせて示す。図6に示す
板状突起物に比較して本実施例の方がさらに大きな脱窒
性能が得られており、図6に示す板状突起物を用いた方
がより混合能力が大きいことがわかる。
The projections 7 and the projections 8 are alternately arranged at equal intervals, and the water to be treated injected into the cathode chamber 15 is dissolved while alternately contacting the ion exchange membrane 12 and the cathode 11. Nitrogen oxides are removed. Table 1 shows the denitrification performance when the cathode shown in FIG. 7 according to the present embodiment is used as the cathode of the denitrification apparatus shown in FIG. Compared to the plate-like projections shown in FIG. 6, the present example has a higher denitrification performance, and it can be seen that the mixing ability is greater when the plate-like projections shown in FIG. 6 are used. .

【0050】図1は、本発明になる酸化態窒素除去装置
の他の実施例を示す。硝酸態窒素や亜硝酸態窒素等の酸
化態窒素を溶解した被処理水1は炭酸ガス溶解塔2に供
給され、該溶解塔2内で炭酸ガスを含有する気泡3と接
触することにより炭酸ガスを溶解する。被処理水1中へ
の炭酸ガス溶解量は、pH電極41の検出信号をもとに
pH調節器45によって流量制御弁36を調節すること
により制御される。また、炭酸ガス溶解量の設定値は、
後述する脱窒処理水のpHにもとづいて決定される。炭
酸ガス溶解被処理水は、ポンプ31により電解脱窒槽6
に供給される。電解脱窒槽8は、内容積1000mlのプ
ラスチック製であり、陽極板10と陰極板11を収容し
ている。
FIG. 1 shows another embodiment of the oxidized nitrogen removing apparatus according to the present invention. Water to be treated 1 in which oxidized nitrogen such as nitrate nitrogen or nitrite nitrogen is dissolved is supplied to a carbon dioxide gas dissolving tower 2, and in contact with bubbles 3 containing carbon dioxide in the dissolving tower 2, carbon dioxide is dissolved. Dissolve. The amount of dissolved carbon dioxide in the water to be treated 1 is controlled by adjusting the flow control valve 36 by the pH controller 45 based on the detection signal of the pH electrode 41. The set value of the dissolved amount of carbon dioxide is
It is determined based on the pH of the denitrification treatment water described later. The water to be treated with dissolving carbon dioxide gas is supplied to the electrolytic denitrification tank
Supplied to The electrolytic denitrification tank 8 is made of plastic having an internal volume of 1000 ml and contains an anode plate 10 and a cathode plate 11.

【0051】陽極板10と陰極板11は直流電源40に
接続されており、直流電圧が印加されている。それぞれ
の電極面積は200cm2 である。電解脱窒槽8は、両極
の間に設置された水素イオンが通過できる隔膜12によ
り、陰極室15と陽極室14とに区画されている。陰極
室15は被処理水を通過させる30メッシュのステンレ
ス網で構成された陰極11によって水素イオン通過膜1
2に面する陰極反応室15aとその背面の水素酸化脱窒
菌を固定した脱窒菌固定層13を収容する脱窒室15b
とに区画されている。
The anode plate 10 and the cathode plate 11 are connected to a DC power supply 40, and a DC voltage is applied. The area of each electrode is 200 cm 2 . The electrolytic denitrification tank 8 is partitioned into a cathode chamber 15 and an anode chamber 14 by a diaphragm 12 provided between both electrodes and through which hydrogen ions can pass. The cathode chamber 15 is formed of a 30 mesh stainless steel mesh through which water to be treated is passed.
2 and a denitrification chamber 15b containing a denitrifying bacteria fixed layer 13 on which hydrogen oxidizing denitrifying bacteria are fixed, on the rear side thereof.
It is divided into and.

【0052】陰極反応室15aと脱窒室15bのそれぞ
れに交互に配置された板状の突起物8及び7が設けられ
ている。突起物8及び7は、陰極11に接し、それぞれ
水素イオン通過膜12又は脱窒室15b壁面に接してい
る。なお、脱窒菌固定層13もまた、被処理水が通過す
るのに支障がないように多孔性のプラスチック材で構成
されている。なお、水素酸化脱窒菌を固定する方法とし
ては、本例に限定するものではなく、セラミックスや合
成樹脂製の多孔質担体表面に生物膜を形成させる方法,
ゲル状物質中に包埋する方法,物質透過性を有する物質
のマイクロカプセル中に封入する方法のいずれかを用い
てもよい。
Plate-like projections 8 and 7 are provided alternately in the cathode reaction chamber 15a and the denitrification chamber 15b, respectively. The protrusions 8 and 7 are in contact with the cathode 11 and are in contact with the hydrogen ion passage membrane 12 or the wall surface of the denitrification chamber 15b, respectively. The denitrifying bacteria fixed layer 13 is also made of a porous plastic material so that the water to be treated does not hinder passage. The method for fixing the hydrogen oxidizing and denitrifying bacteria is not limited to this example, but may be a method for forming a biofilm on the surface of a ceramic or synthetic resin porous carrier.
Either a method of embedding in a gel substance or a method of encapsulating a substance having substance permeability in microcapsules may be used.

【0053】炭酸ガス溶解被処理水は、陰極反応室15
aに注入される。注入された炭酸ガス溶解被処理水は、
水素イオン通過膜12を透過してくる水素イオンを溶解
し、酸性化する。次いで陰極板11に接触し、その表面
で電極反応により発生した水素と水酸イオンの供給を受
ける。水の電気分解においては、理論上、陰極で発生す
る水酸イオンと陽極で発生する水素イオンの発生量は等
量であり、両者を混合すればpHの変化は起こらないは
ずである。
The water to be treated with dissolving carbon dioxide gas is supplied to the cathode reaction chamber 15.
a. The injected carbon dioxide dissolved water is
Hydrogen ions permeating through the hydrogen ion passage membrane 12 are dissolved and acidified. Next, it comes into contact with the cathode plate 11 and receives supply of hydrogen and hydroxyl ions generated by the electrode reaction on the surface thereof. In water electrolysis, theoretically, the amount of hydroxyl ions generated at the cathode and the amount of hydrogen ions generated at the anode are equal, and if both are mixed, the pH should not change.

【0054】しかし、水素イオン交換膜の透過抵抗や、
他の陽イオンが混在していることにより、実際に水素イ
オン交換膜を透過して陰極室に流入する水素イオン量は
減少する。したがって、陰極板の近傍では、水酸イオン
濃度が増加してpHがアルカリ性側に変化しようとす
る。水素酸化脱窒菌の脱窒反応に好適なpHは7〜8.5
であり、この範囲を外れると脱窒活性が大きく低下す
る。
However, the permeation resistance of the hydrogen ion exchange membrane,
When other cations are mixed, the amount of hydrogen ions actually permeating through the hydrogen ion exchange membrane and flowing into the cathode chamber is reduced. Therefore, in the vicinity of the cathode plate, the concentration of the hydroxide ion increases and the pH tends to change to the alkaline side. The pH suitable for the denitrification reaction of hydrogen oxidizing and denitrifying bacteria is 7 to 8.5.
If it is out of this range, the denitrification activity is greatly reduced.

【0055】したがって、本発明では被処理水中に炭酸
ガスを予め溶解させ、炭酸ガスが下記(4)式のように
解離して水素イオンと重炭酸イオン(HCO3 -)を生成
することを利用してpHの変化を緩衝する。
Therefore, the present invention utilizes the fact that carbon dioxide is dissolved in the water to be treated in advance, and the carbon dioxide is dissociated as shown in the following formula (4) to generate hydrogen ions and bicarbonate ions (HCO 3 ). To buffer changes in pH.

【0056】[0056]

【化4】 炭酸ガス解離反応 CO2+H2O→H++HCO3 - …(4) 陰極11を通過する際に電気分解で発生した水素の供給
を受けた炭酸ガス溶解被処理水は、次いで脱窒菌固定層
13を通過する間に水素酸化脱窒菌に接触し、水素を利
用せしめて溶解している硝酸態窒素や亜硝酸態窒素の酸
化態窒素を窒素に還元する。水素酸化脱窒菌の能力の範
囲内であれば、脱窒量は電解電流量に比例し、電気分解
で発生させた水素量に対応して被処理水中に溶解してい
た酸化態窒素が窒素に還元され、ガスとして分離除去さ
れる。
Embedded image Carbon dioxide gas dissociation reaction CO 2 + H 2 O → H + + HCO 3 (4) The water to be treated for dissolving carbon dioxide gas supplied with hydrogen generated by electrolysis when passing through the cathode 11 is then While passing through the denitrifying bacteria fixed layer 13, it comes into contact with the hydrogen oxidizing denitrifying bacteria and reduces the dissolved nitrate nitrogen and oxidized nitrogen such as nitrite nitrogen to nitrogen using hydrogen. Within the range of the capacity of hydrogen oxidizing and denitrifying bacteria, the amount of denitrification is proportional to the amount of electrolytic current, and the oxidized nitrogen dissolved in the water to be treated is converted to nitrogen in accordance with the amount of hydrogen generated by electrolysis. It is reduced and separated and removed as a gas.

【0057】ところで、(3)式から、脱窒反応によっ
ても水酸イオンが生成し、反応液をアルカリ性にするこ
とがわかる。したがって、前記の被処理水中への炭酸ガ
ス溶解量は、イオン交換膜12による水素イオンの不足
量に加えて脱窒反応に伴うアルカリ化を中和するに足る
量とすることが望ましい。
By the way, from the equation (3), it can be seen that hydroxyl ions are also generated by the denitrification reaction, and the reaction solution is made alkaline. Therefore, the amount of dissolved carbon dioxide in the water to be treated is desirably set to an amount sufficient to neutralize the alkalinization caused by the denitrification reaction in addition to the shortage of hydrogen ions by the ion exchange membrane 12.

【0058】電解脱窒槽6で酸化態窒素を除去された陰
極水17は、脱窒室15b上部に設けられた排出口より
排出される。排出された陰極水17の少なくとも一部は
脱窒槽25に導入される。脱窒槽25には、水素酸化脱
窒菌を固定した脱窒菌固定層26が設けられており、排
出された処理水に残留している未反応の水素を利用して
陰極水中の酸化態窒素を窒素に還元する。水素酸化脱窒
菌を固定する方法としては、セラミックスや合成樹脂製
の多孔質担体表面に生物膜を形成させる方法,ゲル状物
質中に包埋する方法,物質透過性を有する物質のマイク
ロカプセル中に封入する方法のいずれかを用いることが
好ましい。
The cathode water 17 from which the oxidized nitrogen has been removed in the electrolytic denitrification tank 6 is discharged from a discharge port provided above the denitrification chamber 15b. At least a part of the discharged cathode water 17 is introduced into the denitrification tank 25. The denitrification tank 25 is provided with a denitrifying bacteria fixed layer 26 in which the hydrogen oxidizing denitrifying bacteria are fixed, and the unreacted hydrogen remaining in the discharged treated water is used to convert oxidized nitrogen in the cathode water into nitrogen. To be reduced to The method of fixing the hydrogen oxidizing and denitrifying bacteria includes a method of forming a biofilm on the surface of a porous carrier made of ceramics or synthetic resin, a method of embedding in a gel-like substance, and a method of encapsulating a substance having a material permeability in microcapsules. It is preferable to use any of the encapsulation methods.

【0059】脱窒槽25において脱窒素が行われた後の
脱窒処理水の一部は、前記炭酸ガス溶解槽2に返送され
る。返送用流路には、pH電極42が設けられており、
pH調節器46に接続されている。pH調節器46はp
H電極42の計測信号をもとに、脱窒処理液のpHが所
定の制御範囲内にあるかどうかを判断し、フィードバッ
ク制御により返送用ポンプ33を調節して返送量を制御
する。なお、返送量の制御には、流量制御バルブやポン
プ稼働時間を制御する方法を用いても良い。被処理水供
給量及び電気分解用電流量が一定の場合、脱窒処理水返
送量を多くすると電解脱窒槽6及び脱窒槽25への流入
量が増加し、その分、電気分解及び脱窒反応に伴って生
成する水素イオン及び水酸イオンの液中濃度が低下し
て、pH変化量を小さくできる。従って、pH変化の抑
制に必要な炭酸ガス溶解量を削減することができる。
A part of the denitrification treatment water after the denitrification in the denitrification tank 25 is returned to the carbon dioxide gas dissolving tank 2. A pH electrode 42 is provided in the return channel,
It is connected to a pH controller 46. pH controller 46 is p
Based on the measurement signal of the H electrode 42, it is determined whether or not the pH of the denitrification treatment liquid is within a predetermined control range, and the return pump 33 is adjusted by feedback control to control the return amount. Note that a method of controlling the flow control valve or the pump operating time may be used for controlling the return amount. When the supply amount of the water to be treated and the amount of current for electrolysis are constant, if the amount of the denitrified water returned is increased, the inflow into the electrolytic denitrification tank 6 and the denitrification tank 25 increases, and the electrolysis and denitrification reactions are correspondingly increased. , The concentration of hydrogen ions and hydroxyl ions in the liquid decreases, and the amount of change in pH can be reduced. Therefore, it is possible to reduce the amount of dissolved carbon dioxide necessary for suppressing the pH change.

【0060】特に、電極面積当たりの電解用電流密度が
大きい場合や、被処理水中の酸化態窒素濃度が高い場合
には、脱窒処理水返送量を多くすることが有効である。
また、炭酸ガス溶解量を固定した場合には、pHの制御
を返送用ポンプ33の調節によって行うことも可能であ
る。通常は、被処理水中の酸化態窒素濃度等の水質や電
気分解用電流量を勘案して、炭酸ガス溶解量制御及び脱
窒処理水返送量制御の両者を併用してpHを制御する。
In particular, when the current density for electrolysis per electrode area is large, or when the concentration of oxidized nitrogen in the water to be treated is high, it is effective to increase the amount of denitrified water returned.
When the amount of dissolved carbon dioxide is fixed, the pH can be controlled by adjusting the return pump 33. Usually, in consideration of the water quality such as the concentration of oxidized nitrogen in the water to be treated and the amount of current for electrolysis, the pH is controlled by using both the control of the amount of dissolved carbon dioxide and the control of the amount of returned denitrified water.

【0061】被処理水1の一部は、ポンプ32により陽
極室下部に設けた注入口より陽極室に供給される。陽極
室には、白金でコーティングしたチタン板の陽極10が
設置されており、水の電気分解反応により酸素と水素イ
オンが発生する。脱窒反応を阻害する酸素は、水素イオ
ン通過膜12によって陰極室への浸透を阻止され、陽極
室に留まる。水素イオンの大部分は電位勾配により水素
イオン通過膜12を通過して陰極室に移動するが、一部
は陽極水にとどまる。このため、陽極水の水素イオン濃
度が高まってpHが2.5〜4 程度の酸性となる。陽極
室14上部には、排出口が設けられており、酸素を含む
酸性の陽極水22が排出される。
A part of the water to be treated 1 is supplied to the anode chamber by a pump 32 from an inlet provided at the lower part of the anode chamber. In the anode chamber, an anode 10 of a titanium plate coated with platinum is installed, and oxygen and hydrogen ions are generated by an electrolysis reaction of water. Oxygen that inhibits the denitrification reaction is prevented from penetrating into the cathode compartment by the hydrogen ion permeable membrane 12, and stays in the anode compartment. Most of the hydrogen ions pass through the hydrogen ion passage membrane 12 due to the potential gradient and move to the cathode chamber, but a part of the hydrogen ions stays in the anode water. For this reason, the hydrogen ion concentration of the anode water increases and the pH becomes about 2.5 to 4 acidic. A discharge port is provided in the upper part of the anode chamber 14, and the acidic anode water 22 containing oxygen is discharged.

【0062】前記脱窒槽25から排出された脱窒処理水
の一部と前記陽極水22の一部は、酸素溶解槽51に導
かれて混合される。酸素溶解槽51には空気が注入され
ており、散気管53で発生させた気泡52と接触させる
ことによって脱窒処理水中に溶解している水素と炭酸ガ
スが気泡内に拡放し、気泡内の酸素が脱窒処理水中に溶
解するガス交換が行われる。脱窒処理水中には重炭酸イ
オンが溶解しており、炭酸ガスが除去されることによっ
てアルカリ化する。
A part of the denitrification treatment water discharged from the denitrification tank 25 and a part of the anode water 22 are guided to an oxygen dissolution tank 51 and mixed. Air is injected into the oxygen dissolving tank 51, and hydrogen and carbon dioxide dissolved in the denitrification-treated water are released into the bubbles by being brought into contact with the bubbles 52 generated in the diffuser 53, and Gas exchange is performed in which oxygen is dissolved in the denitrification water. Bicarbonate ions are dissolved in the denitrification water, and the water is alkalized by removing carbon dioxide gas.

【0063】一方、陽極水22は酸性であり、これを脱
窒処理水に混合することにより、中和された処理水50
を得る。処理水50のpHは、空気流量制御弁37を調
節することにより制御される空気注入量と、酸素溶解槽
51に設けられたpH電極43の検出信号をもとにpH
調節器47によって調節されるポンプ34とによって制
御される。処理水50は中性、好ましくはpHを6.5
〜7.5に調節することが望ましい。
On the other hand, the anodic water 22 is acidic, and is mixed with denitrification-treated water to produce neutralized treated water 50.
Get. The pH of the treated water 50 is adjusted based on the air injection amount controlled by adjusting the air flow control valve 37 and the detection signal of the pH electrode 43 provided in the oxygen dissolving tank 51.
It is controlled by a pump 34 which is regulated by a regulator 47. The treated water 50 is neutral, preferably at a pH of 6.5.
Adjusting to ~ 7.5 is desirable.

【0064】本実施例の装置を用いて本発明の効果を図
8に示す。被処理水としては、窒素濃度として20ppm
になるよう硝酸カリウムを添加した脱塩素水道水を使用
した。被処理水を300ml/hの一定流速で供給し、電
解電流を段階的に増加させて脱窒速度を徐々に向上させ
た。なお、脱窒処理水の炭酸ガス溶解塔への返送量は3
00〜400ml/hに調節した。その結果、運転開始3
0日目頃より安定した水質の処理液が得られた。処理水
中の亜硝酸態窒素濃度は2mg/L以下であり、硝酸態窒
素濃度も5mg/L以下であった。本実施例により、処理
水中の亜硝酸濃度の低い良好な処理水を得ることが可能
となった。
FIG. 8 shows the effect of the present invention using the apparatus of this embodiment. As the water to be treated, the nitrogen concentration is 20 ppm
Dechlorinated tap water to which potassium nitrate was added was used. The water to be treated was supplied at a constant flow rate of 300 ml / h, and the electrolytic current was increased stepwise to gradually increase the denitrification rate. The amount of denitrified water returned to the carbon dioxide gas dissolving tower is 3
It was adjusted to 00 to 400 ml / h. As a result, operation start 3
From around the 0th day, a treatment liquid of stable water quality was obtained. The nitrite nitrogen concentration in the treated water was 2 mg / L or less, and the nitrate nitrogen concentration was 5 mg / L or less. According to this example, it was possible to obtain good treated water having a low nitrous acid concentration in the treated water.

【0065】[0065]

【発明の効果】本発明によれば、亜硝酸濃度の低い酸化
態窒素除去液を得ることが可能となった。又、中和用薬
剤としての炭酸ガス使用量を低減し、かつ水素酸化脱窒
菌の脱窒反応に好適な環境を維持することが可能とな
り、より効率よく硝酸態窒素及び/又は亜硝酸態窒素を
除去することができる。
According to the present invention, it has become possible to obtain an oxidized nitrogen removing solution having a low nitrous acid concentration. In addition, it is possible to reduce the amount of carbon dioxide used as a neutralizing agent and to maintain an environment suitable for the denitrification reaction of the hydrogen oxidizing and denitrifying bacterium, so that nitrate nitrogen and / or nitrite nitrogen can be more efficiently used. Can be removed.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明になる硝酸態窒素除去装置の一実施例を
示す図。
FIG. 1 is a diagram showing one embodiment of a nitrate nitrogen removal apparatus according to the present invention.

【図2】本発明になる硝酸態窒素除去装置の一実施例を
示す図。
FIG. 2 is a diagram showing one embodiment of a nitrate nitrogen removal apparatus according to the present invention.

【図3】本発明になる硝酸態窒素除去装置の一実施例の
陰極及び突起物の概要を示す斜視図。
FIG. 3 is a perspective view showing an outline of a cathode and projections of an embodiment of a nitrate nitrogen removal apparatus according to the present invention.

【図4】本発明になる硝酸態窒素除去装置の一実施例の
陰極及び突起物の概要を示す斜視図。
FIG. 4 is a perspective view showing an outline of a cathode and a projection of one embodiment of the nitrate nitrogen removal apparatus according to the present invention.

【図5】本発明になる硝酸態窒素除去装置の一実施例の
陰極及び突起物の概要を示す斜視図。
FIG. 5 is a perspective view showing an outline of a cathode and projections of one embodiment of the nitrate nitrogen removal apparatus according to the present invention.

【図6】本発明になる硝酸態窒素除去装置の一実施例の
陰極及び突起物の概要を示す斜視図。
FIG. 6 is a perspective view showing an outline of a cathode and a projection of one embodiment of the nitrate nitrogen removal apparatus according to the present invention.

【図7】本発明になる硝酸態窒素除去装置の一実施例の
陰極及び突起物の概要を示す斜視図。
FIG. 7 is a perspective view showing an outline of a cathode and projections of one embodiment of the nitrate nitrogen removal apparatus according to the present invention.

【図8】本発明になる硝酸態窒素除去装置の一実施例の
脱窒実験の結果を示す特性図。
FIG. 8 is a characteristic diagram showing a result of a denitrification experiment of one embodiment of the nitrate nitrogen removal apparatus according to the present invention.

【符号の説明】[Explanation of symbols]

1…被処理水、2…炭酸ガス溶解槽、3…炭酸ガス含有
気泡、4,53…散気管、6…電解脱窒槽、7,8…突
起物、10…陽極、11…陰極、12…水素イオン透過
膜、13,26…脱窒菌固定層、14…陽極室、15…
陰極室、15a…陰極反応室、15b…脱窒室、17…
陰極水、22…陽極水、25…脱窒槽、51…酸素溶解
槽、52…空気気泡、40…直流電源、31〜34…ポ
ンプ、36,37…流量制御弁、41,42,43…p
H電極、45,46,47…pH調節器。
DESCRIPTION OF SYMBOLS 1 ... Water to be treated, 2 ... Carbon dioxide gas dissolution tank, 3 ... Carbon dioxide gas containing bubble, 4, 53 ... Aeration tube, 6 ... Electrolytic denitrification tank, 7, 8 ... Protrusion, 10 ... Anode, 11 ... Cathode, 12 ... Hydrogen ion permeable membrane, 13, 26 ... fixed layer of denitrifying bacteria, 14 ... anode chamber, 15 ...
Cathode chamber, 15a: Cathode reaction chamber, 15b: Denitrification chamber, 17 ...
Cathode water, 22 anode water, 25 denitrification tank, 51 oxygen dissolution tank, 52 air bubbles, 40 DC power supply, 31-34 pump, 36, 37 flow control valve, 41, 42, 43 p
H electrode, 45, 46, 47 ... pH controller.

Claims (12)

【特許請求の範囲】[Claims] 【請求項1】陰極板と陽極板と水素酸化脱窒菌を収容す
る電気分解槽を用いて被処理水の電気分解を行わせて陰
極面で水素を発生させ、該水素を利用して被処理水中に
溶解する酸化態窒素を窒素に生物的に還元して除去する
装置において、前記陰極板面に被処理水の混合手段を設
けたことを特徴とする酸化態窒素の除去装置。
1. An electrolysis tank containing a cathode plate, an anode plate, and a hydrogen oxidizing and denitrifying bacterium is used to electrolyze water to be treated to generate hydrogen on the cathode surface, and the hydrogen is used for the treatment. An apparatus for removing nitrogen oxides dissolved in water by biological reduction to nitrogen, wherein mixing means for water to be treated is provided on the surface of the cathode plate.
【請求項2】請求項1記載装置において、前記混合手段
が電極板面に設けた突起物であることを特徴とする酸化
態窒素の除去装置。
2. The apparatus according to claim 1, wherein said mixing means is a projection provided on an electrode plate surface.
【請求項3】請求項2記載の装置において、前記突起物
が非導電体で構成されていることを特徴とする酸化態窒
素の除去装置。
3. An apparatus according to claim 2, wherein said projection is made of a non-conductive material.
【請求項4】請求項2又は3記載の装置において、陰極
板面に設けた突起物と陰極板に相対する面に設けられた
突起物が交互に配置されていることを特徴とする酸化態
窒素の除去装置。
4. The oxidizing device according to claim 2, wherein the projections provided on the surface of the cathode plate and the projections provided on the surface facing the cathode plate are alternately arranged. Nitrogen removal equipment.
【請求項5】請求項4記載の装置において、前記電気分
解槽が陰極板と陽極板の間に配置された酸素を透過せず
水素イオンを透過する隔膜によって陰極板と水素酸化脱
窒菌を収容する陰極室と陽極板を収容する陽極室とに区
画されたものであり、前記陰極板に相対する面が隔膜面
であり、被処理水を前記陰極室に供給することを特徴と
する酸化態窒素の除去装置。
5. The cathode according to claim 4, wherein said electrolysis tank contains a cathode plate and a hydrogen oxidizing denitrifying bacterium by a diaphragm disposed between a cathode plate and an anode plate and not permeable to oxygen but permeable to hydrogen ions. Chamber and an anode chamber for accommodating the anode plate, wherein a surface facing the cathode plate is a diaphragm surface, and water to be treated is supplied to the cathode room. Removal device.
【請求項6】請求項1ないし3のいずれか1項記載の装
置において、前記電気分解槽が陰極板と陽極板の間に配
置された酸素を透過せず水素イオンを透過する隔膜によ
って陰極板と水素酸化脱窒菌を収容する陰極室と陽極板
を収容する陽極室とに区画され、なおかつ前記陰極室が
水及びイオンが通過できる空隙部を設けた陰極板によっ
て陰極反応室と水素酸化脱窒菌を収容する脱窒室とに区
画されたものであり、該陰極板の隔膜に面する面とその
背面の脱窒室に面する面のそれぞれに交互に配置された
板状の前記突起物を設け、被処理水を陰極反応室に供給
し、次いで該被処理水を前記陰極反応室と前記脱窒室を
陰極板を通過して交互に流通せしめることを特徴とする
水中に溶解した酸化態窒素の除去装置。
6. The apparatus according to claim 1, wherein the electrolytic cell is provided between the cathode plate and the anode plate by a diaphragm which does not transmit oxygen but transmits hydrogen ions. A cathode chamber containing oxidative denitrifying bacteria and an anode chamber containing an anode plate, and the cathode chamber accommodates a cathode reaction chamber and hydrogen oxidizing denitrifying bacteria by a cathode plate provided with a space through which water and ions can pass. The cathode plate is provided with the plate-shaped projections alternately arranged on the surface of the cathode plate facing the diaphragm and the surface of the cathode plate facing the denitrification chamber, respectively. The water to be treated is supplied to the cathode reaction chamber, and then the water to be treated is passed through the cathode reaction chamber and the denitrification chamber alternately through the cathode plate, whereby the water to be treated is dissolved in the water. Removal device.
【請求項7】請求項6記載の装置において、前記突起物
をそれぞれ相対する面に接触せしめて実質的に前記陰極
反応室と前記脱窒室をそれぞれ少なくとも2個以上に区
画したことを特徴とする酸化態窒素の除去装置。
7. The apparatus according to claim 6, wherein said projections are respectively brought into contact with opposing surfaces to substantially divide the cathode reaction chamber and the denitrification chamber into at least two or more, respectively. Oxidized nitrogen removal equipment.
【請求項8】請求項6又は7項記載の装置において、被
処理水に炭酸ガスを溶解させる炭酸ガス溶解槽を付加
し、前記脱窒室の陰極板の近傍に表面に前記水素酸化脱
窒菌を固定してなる水が通過できる空隙を有する脱窒菌
固定層を設け、前記陰極反応室に炭酸ガスを溶解せしめ
た前記被処理水を導入し、該被処理水を前記陰極反応室
と前記脱窒室の間を陰極板及び脱窒菌固定層を通過して
交互に流通せしめることを特徴とする酸化態窒素の除去
装置。
8. The apparatus according to claim 6, further comprising a carbon dioxide dissolving tank for dissolving carbon dioxide in the water to be treated, wherein said hydrogen oxidizing and denitrifying bacterium is provided on a surface near a cathode plate of said denitrification chamber. Is provided with a denitrifying bacteria fixed layer having a gap through which water can pass, and the treated water in which carbon dioxide gas is dissolved is introduced into the cathode reaction chamber, and the treated water is separated from the cathode reaction chamber by the cathode reaction chamber. A device for removing oxidized nitrogen, wherein the device is alternately circulated between a nitrogen chamber through a cathode plate and a fixed layer of denitrifying bacteria.
【請求項9】請求項6ないし8のいずれか1項記載の装
置において、前記脱窒室から流出する陰極水を前記炭酸
ガス溶解槽に返送する流路を設け、陰極水の少なくとも
一部を炭酸ガス溶解槽に戻すことを特徴とする酸化態窒
素の除去装置。
9. The apparatus according to claim 6, wherein a flow path for returning the cathode water flowing out of the denitrification chamber to the carbon dioxide gas dissolving tank is provided, and at least a part of the cathode water is provided. An apparatus for removing oxidized nitrogen, which is returned to a carbon dioxide gas dissolving tank.
【請求項10】請求項6ないし9のいずれか1項記載の
装置において、炭酸ガス溶解工程より流出する炭酸ガス
溶解被処理水のpHを炭酸ガス供給量及び/又は陰極水
返送量の制御によって調節することを特徴とする酸化態
窒素の除去装置。
10. The apparatus according to claim 6, wherein the pH of the water to be treated for dissolving carbon dioxide gas flowing out of the carbon dioxide dissolving step is controlled by controlling the supply amount of carbon dioxide gas and / or the amount of cathode water returned. An apparatus for removing oxidized nitrogen, wherein the apparatus is adjusted.
【請求項11】請求項6ないし10のいずれか1項記載
の装置において、内部に水素酸化脱窒菌を固定した脱窒
槽を付加し、該脱窒槽に前記脱窒室から流出するガス及
び陰極水の少なくとも一部を通じて未利用の水素を利用
して陰極水中の酸化態窒素を窒素に還元することを特徴
とする酸化態窒素の除去装置。
11. The apparatus according to claim 6, further comprising a denitrification tank in which hydrogen oxidizing and denitrifying bacteria are fixed, wherein gas and cathode water flowing out of said denitrification chamber are added to said denitrification tank. Characterized by reducing unused nitrogen in the cathode water to nitrogen by utilizing unused hydrogen through at least a part of the apparatus.
【請求項12】請求項6ないし11のいずれか1項記載
の装置において、脱窒処理水と前記陽極室より流出する
陽極水の一部を通気下で混合し、処理水をpH5.8〜
8.5、好ましくは6.5〜7.5に調整する処理水調整
槽を備えたことを特徴とする酸化態窒素の除去装置。
12. The apparatus according to claim 6, wherein the denitrification-treated water and a part of the anodic water flowing out of the anode chamber are mixed under aeration, and the treated water is adjusted to pH 5.8 to 5.8.
An apparatus for removing oxidized nitrogen, comprising a treated water adjusting tank for adjusting the pH to 8.5, preferably 6.5 to 7.5.
JP2297098A 1998-02-04 1998-02-04 Device for removing oxidized nitrogen Pending JPH11216496A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2297098A JPH11216496A (en) 1998-02-04 1998-02-04 Device for removing oxidized nitrogen

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2297098A JPH11216496A (en) 1998-02-04 1998-02-04 Device for removing oxidized nitrogen

Publications (1)

Publication Number Publication Date
JPH11216496A true JPH11216496A (en) 1999-08-10

Family

ID=12097439

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2297098A Pending JPH11216496A (en) 1998-02-04 1998-02-04 Device for removing oxidized nitrogen

Country Status (1)

Country Link
JP (1) JPH11216496A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015033693A (en) * 2009-06-16 2015-02-19 カンブリアン イノベーションズ インコーポレイデッド Systems and devices for treating and monitoring water, wastewater and other biodegradable matter
US9551685B2 (en) 2009-12-08 2017-01-24 Cambrian Innovation Inc. Microbially-based sensors for environmental monitoring
US9963790B2 (en) 2010-10-19 2018-05-08 Matthew Silver Bio-electrochemical systems
US10099950B2 (en) 2010-07-21 2018-10-16 Cambrian Innovation Llc Bio-electrochemical system for treating wastewater
US10851003B2 (en) 2010-07-21 2020-12-01 Matthew Silver Denitrification and pH control using bio-electrochemical systems
CN112250163A (en) * 2020-10-09 2021-01-22 哈尔滨工业大学 Heterotopic electron compensation hydrogen autotrophic denitrification device
US11150213B2 (en) 2011-06-14 2021-10-19 Cambrian Innovation Inc. Biological oxygen demand sensors

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015033693A (en) * 2009-06-16 2015-02-19 カンブリアン イノベーションズ インコーポレイデッド Systems and devices for treating and monitoring water, wastewater and other biodegradable matter
US9776897B2 (en) 2009-06-16 2017-10-03 Matthew Silver Systems and devices for treating water, wastewater and other biodegradable matter
US11708284B2 (en) 2009-06-16 2023-07-25 Cambrian Innovation, Inc. Systems and devices for treating and monitoring water, wastewater and other biodegradable matter
US9551685B2 (en) 2009-12-08 2017-01-24 Cambrian Innovation Inc. Microbially-based sensors for environmental monitoring
US10099950B2 (en) 2010-07-21 2018-10-16 Cambrian Innovation Llc Bio-electrochemical system for treating wastewater
US10851003B2 (en) 2010-07-21 2020-12-01 Matthew Silver Denitrification and pH control using bio-electrochemical systems
US9963790B2 (en) 2010-10-19 2018-05-08 Matthew Silver Bio-electrochemical systems
US11150213B2 (en) 2011-06-14 2021-10-19 Cambrian Innovation Inc. Biological oxygen demand sensors
CN112250163A (en) * 2020-10-09 2021-01-22 哈尔滨工业大学 Heterotopic electron compensation hydrogen autotrophic denitrification device
CN112250163B (en) * 2020-10-09 2022-11-25 哈尔滨工业大学 Heterotopic electron compensated hydrogen autotrophic denitrification device

Similar Documents

Publication Publication Date Title
JP3716042B2 (en) Acid water production method and electrolytic cell
JP4671743B2 (en) Electrolytic treatment method and apparatus for wastewater containing ammonia nitrogen
JP4392354B2 (en) High electrolysis cell
JP2001502229A (en) How to reduce or prevent scale
JP2002336856A (en) Electrolytic water making apparatus and method of making electrolytic water
JPH11104648A (en) Seawater electrolyzing apparatus
JPH11216496A (en) Device for removing oxidized nitrogen
KR100319022B1 (en) Wastewater Treatment System Using Electrolytic Injury Method
JP4865651B2 (en) Wastewater treatment method and apparatus
KR20060007369A (en) High electric field electrolysis cell
CN212374965U (en) Electrocatalytic oxidation device
JP2002346566A (en) Apparatus and method for water treatment
JPH11267688A (en) Removing device and removing method of oxide nitrogen
JP4616594B2 (en) Water treatment method and water treatment apparatus
WO2005038091A2 (en) Use of electrochemical cell to produce hydrogen peroxide and dissolved oxygen
CN112028187A (en) Electrocatalytic oxidation device and method
JP2001300538A (en) Decomposition treating method of waste water containing ammonium salt or ammonia
CN112028186A (en) Device and method for electrochemical synchronous carbon and ammonia nitrogen removal
JPH10230291A (en) Biological denitrification method of water and device therefor
JPH10235394A (en) Apparatus for removing oxide-form nitrogen dissolved in water
KR100616134B1 (en) An electrolyzer with a self-ph adjustment and an electrolytic process for ammonia decomposition by suing the said electrolyzer
JP3615814B2 (en) Method and apparatus for removing nitrate and / or nitrite nitrogen
JP3056511B2 (en) Treatment water treatment equipment
JP3117067B2 (en) Method and apparatus for treating oxidized nitrogen-containing water
JP2020163327A (en) Biological treatment device for organic wastewater