JPH0568959B2 - - Google Patents
Info
- Publication number
- JPH0568959B2 JPH0568959B2 JP60222811A JP22281185A JPH0568959B2 JP H0568959 B2 JPH0568959 B2 JP H0568959B2 JP 60222811 A JP60222811 A JP 60222811A JP 22281185 A JP22281185 A JP 22281185A JP H0568959 B2 JPH0568959 B2 JP H0568959B2
- Authority
- JP
- Japan
- Prior art keywords
- speed
- induction machine
- rotational speed
- cycloconverter
- motor
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
- 230000006698 induction Effects 0.000 claims description 21
- 230000005284 excitation Effects 0.000 claims description 19
- 230000001133 acceleration Effects 0.000 claims description 17
- 230000003068 static effect Effects 0.000 claims description 12
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims description 9
- 238000010248 power generation Methods 0.000 claims description 7
- 230000001360 synchronised effect Effects 0.000 description 10
- 238000010586 diagram Methods 0.000 description 5
- 238000004804 winding Methods 0.000 description 4
- 238000000034 method Methods 0.000 description 3
- 238000005086 pumping Methods 0.000 description 3
- 230000000694 effects Effects 0.000 description 2
- 230000005611 electricity Effects 0.000 description 2
- 230000009897 systematic effect Effects 0.000 description 1
Landscapes
- Control Of Eletrric Generators (AREA)
- Control Of Ac Motors In General (AREA)
Description
【発明の詳細な説明】
〔発明の利用分野〕
本発明は可変速ポンプ水車発電電動機の制御装
置に係り、特に発電電動機として巻線形誘導機を
用い、その二次巻線を交流励磁することより可変
速制御する場合の制御装置に関する。[Detailed Description of the Invention] [Field of Application of the Invention] The present invention relates to a control device for a variable-speed pump-turbine generator-motor, and in particular, the present invention relates to a control device for a variable-speed pump-turbine generator-motor, and particularly to a control device that uses a wound-type induction machine as the generator-motor and excite the secondary winding with alternating current. The present invention relates to a control device for variable speed control.
可変速揚水発電システムは、系統要求電力及び
静落差の値に応じて、揚水発電を行うポンプ水車
発電電動機の回転数を効率よく制御する(周波数
制御)ことを目的としてその開発がすすめられて
いる。大容量の可変速ポンプ水車発電電動機とし
ては、従来同期電動機が用いられ、これをサイリ
スタで制御するサイリスタモータがあつた(江
藤、伊藤他「大容量同期電動機の可変速運転特
性」、電気学会全国大会昭59、553参照)。一方、
最近巻線形の大容量誘導発電電動機を用いたもの
が開発されている。
Variable-speed pumped storage power generation systems are being developed with the aim of efficiently controlling the rotation speed of pump-turbine generator motors that generate pumped storage power generation (frequency control) according to the required power of the system and static head values. . Conventionally, a synchronous motor was used as a large-capacity variable-speed pump-turbine generator-motor, and there was a thyristor motor that controlled it with a thyristor (Eto, Ito et al., "Variable-speed operation characteristics of large-capacity synchronous motors", National Institute of Electrical Engineers of Japan) (See 1981, 553). on the other hand,
Recently, a motor using a wound type large-capacity induction generator motor has been developed.
第8図は巻線誘導発電電動機を2次励磁した方
式による可変速制御のトルク発生原理を電動機動
作を例として示すものである。固定子1内にはエ
アギヤツプ2を介して回転子3があり、この回転
子3の速度をω2とする。今回転子速度ω2が1次
電流により生成される回転磁界Φの速度ω1より
遅い、すなわち同期速度以下ですべりS=(ω1−
ω2)/ω1が正(ω1>ω2)であるとすると、2次
巻線には回転磁界Φの速度ω1と回転子3の速度
ω2と差速度の周波数をもちかつ図の小円で示し
た極性の誘起電圧4を生じ、これと同じ極性の電
流5が流れ、矢印の方向にトルクTが発生する。
この時
ω1−ω2=ω1−(1−S)ω1=Sω1=2πS1……(1)
であるから、誘起電圧4の周波数、つまりすべり
周波数はS1となる。次に、回転子3が同期速度
S=0(ω2=ω1)なる場合を考える。同期速度で
は、誘起電圧4が零となる為、このままでは2次
電流5が流れないのでトルクを発生しない。しか
し、サイクロコンバータを用いて2次励磁を加
え、第8図の電流5の極性と同一の電流を流すこ
とによりトルクTを発生し、同期速度での運転が
可能となる。この時の励磁周波数は、S=0より
S1=0であり、直流励磁となるが、これはサイ
クロコンバータの電流容量との関係で後述するよ
うな問題が生じる。次に同期状態において、2次
巻線に流す電流の量を第1図と同一極性方向に増
加すると同期速度ω1以上の速度ω2で回転子3が
回転することができる。そのときは誘起電圧4が
反転し、第9図のような極性となる。この時すべ
り周波数はS<0だからS1<0となり、回転子
速度ω2と反対方向に励磁周波数を持つ。すなわ
ち、系統周波数1において、回転子の周波数は
(1−S)1、例示すべり周波数はS1となり、
1=(1−S)1+S1 ……(2)
が成立している。このように同期速度以下及び同
期速度以上で2次励磁電圧を変えることにより、
誘導機の2次誘起電圧と2次巻線の励磁電圧の差
電圧で2次電流が流れトルクが発生し、可変速制
御が行える。 FIG. 8 shows, as an example of motor operation, the principle of torque generation in variable speed control using a method in which a wound induction generator-motor is secondarily excited. A rotor 3 is located within the stator 1 via an air gap 2, and the speed of this rotor 3 is assumed to be ω 2 . Now, when the rotor speed ω 2 is slower than the speed ω 1 of the rotating magnetic field Φ generated by the primary current, that is, below the synchronous speed, the slip S = (ω 1 −
Assuming that ω 2 )/ω 1 is positive (ω 1 > ω 2 ), the secondary winding has a frequency that is the difference between the speed ω 1 of the rotating magnetic field Φ and the speed ω 2 of the rotor 3, and An induced voltage 4 of the polarity shown by the small circle is generated, a current 5 of the same polarity flows, and a torque T is generated in the direction of the arrow.
At this time, ω 1 −ω 2 =ω 1 −(1−S)ω 1 =Sω 1 =2πS 1 (1) Therefore, the frequency of the induced voltage 4, that is, the slip frequency, becomes S 1 . Next, consider a case where the rotor 3 has a synchronous speed S=0 (ω 2 =ω 1 ). At synchronous speed, the induced voltage 4 becomes zero, so if this continues, the secondary current 5 will not flow and no torque will be generated. However, by applying secondary excitation using a cycloconverter and passing a current with the same polarity as the current 5 in FIG. 8, torque T is generated and operation at synchronous speed becomes possible. The excitation frequency at this time is from S=0.
S 1 =0, resulting in DC excitation, but this causes problems as described later in relation to the current capacity of the cycloconverter. Next, in the synchronous state, if the amount of current flowing through the secondary winding is increased in the same polar direction as in FIG. 1, the rotor 3 can rotate at a speed ω 2 greater than the synchronous speed ω 1 . At that time, the induced voltage 4 is reversed and has a polarity as shown in FIG. At this time, since the slip frequency is S<0, S 1 <0, and the excitation frequency is in the opposite direction to the rotor speed ω 2 . That is, at system frequency 1 , the rotor frequency is (1-S) 1 , the example slip frequency is S 1 , and 1 = (1-S) 1 +S 1 ...(2) holds true. By changing the secondary excitation voltage below the synchronous speed and above the synchronous speed,
A secondary current flows due to the voltage difference between the secondary induced voltage of the induction machine and the excitation voltage of the secondary winding, and torque is generated, allowing variable speed control.
以上が、誘導機の電動機動作におけるトルク発
生原理である。誘導機を発電機動作させる場合に
は、サイクロコンバータを用い2次励磁を回転子
へ印加してトルクを発生させ、このトルクに逆ら
つて水力により回転子を回転させることで、電気
を発生させる。従つて、この発電機動作において
も、電動機動作のときと同様に、すべりSが零付
近で直流励磁で問題が生じる。 The above is the principle of torque generation in the operation of the electric motor of an induction machine. When operating an induction machine as a generator, a cycloconverter is used to apply secondary excitation to the rotor to generate torque, and the rotor is rotated by hydraulic power against this torque to generate electricity. . Therefore, in this generator operation, as well as in the electric motor operation, a problem occurs with DC excitation when the slip S is near zero.
ところで、2次励磁がすべりSがほぼ0で直流
となつた時の問題点を説明する。サイクロコンバ
ータの交流側は三相交流であるとすると、サイク
ロコンバータを構成している1アームのサイリス
タに流れる電流は第10図及び第11図の斜線部
のようになる。第10図はサイクロコンバータの
出力電流の周波数が或る程度大きい場合で、1ア
ームのサイリスタ平均オン電流IAVは
IAV=1/3×1/T∫T/2 0√2IGsinS
ω0tdt=0.15IG……(3)
となる。しかし、第11図のように低周波になつ
た場合はほぼ直流とみなせ、この直流になつた場
合の平均オン電流IAVdは、
IAVd=1/3×√2IG=0.47IG ……(4)
となる。この式(4)の電流を1アームに流せるだけ
の許容平均電流容量のサイリスタを用いてサイク
ロコンバータを構成すれば、前述のように2次励
起周波数、つまりすべり周波数が0でも運転が可
能であるが、これでは大容量の可変速揚水発電シ
ステムになるほどサイクロコンバータの設備容量
も膨大なものとなつてしまう。このため、サイク
ロコンバータの出力電流周波数、つまり誘導機の
すべり周波数に制約を設けて、過渡的に通過する
ことだげが許される周波数範囲(これを禁止帯と
呼んでいる)を設ける。この禁止帯では定常運転
は行われず、従つてサイクロコンバータは式(3)の
電流を流せるサイリスタで構成すればよいことに
なる。ところが、この禁止帯を考慮した誘導発電
電動機の運転方法は確立されていなかつた。 By the way, the problem when the secondary excitation becomes direct current with the slip S being almost 0 will be explained. Assuming that the alternating current side of the cycloconverter is three-phase alternating current, the current flowing through the thyristor of one arm forming the cycloconverter is as shown in the shaded area in FIGS. 10 and 11. Figure 10 shows the case where the frequency of the output current of the cycloconverter is relatively large, and the average on-current of the thyristor in one arm I AV is I AV = 1/3×1/T∫ T/2 0 √2I G sinS
ω 0 tdt=0.15I G ……(3). However, when the frequency becomes low as shown in Figure 11, it can be regarded as almost direct current, and the average on-current I AVd when this becomes direct current is I AVd = 1/3 × √2 I G = 0.47 I G ... (4) becomes. If a cycloconverter is configured using a thyristor with a permissible average current capacity that allows the current expressed by equation (4) to flow through one arm, operation is possible even when the secondary excitation frequency, that is, the slip frequency, is 0 as described above. However, the larger the variable speed pumped storage power generation system becomes, the larger the installed capacity of the cycloconverter becomes. For this reason, restrictions are placed on the output current frequency of the cycloconverter, that is, the slip frequency of the induction machine, and a frequency range (this is called a forbidden band) that is only allowed to pass transiently is provided. Steady operation is not performed in this forbidden band, and therefore the cycloconverter can be configured with a thyristor that can flow the current of equation (3). However, a method of operating an induction generator motor that takes this prohibited zone into account has not been established.
本発明の目的は、上記した従来技術の問題点を
解決し、発電及び揚水時の各種自動周波数制御運
転において、サイクロコンバータを、安定にしか
も安全に運転できる可変速ポンプ水車発電電動機
の制御装置を提供するものである。
An object of the present invention is to solve the problems of the prior art described above, and to provide a control device for a variable speed pump-turbine generator-motor that can operate a cycloconverter stably and safely in various automatic frequency control operations during power generation and water pumping. This is what we provide.
本発明は、発電時及び揚水時の自動周波数制御
運転において入力電圧の上げ、下げ指令に伴い速
度指令値が禁止帯を通過して定常運転に達する場
合、あるいは系統事故等により禁止帯に速度が達
した場合に、この禁止帯を誘導機がすみやかに脱
出するように誘導機の加速又は減速制御を行うこ
とを特徴とするものである。
In automatic frequency control operation during power generation and pumping, the speed command value passes through the prohibited zone and reaches steady operation due to input voltage increase or decrease commands, or when the speed exceeds the prohibited zone due to a system accident, etc. When the forbidden zone is reached, acceleration or deceleration control of the induction machine is performed so that the induction machine quickly escapes from this forbidden zone.
第1図は本発明の方法を用いた可変速ポンプ水
車発電電動機システムを示すもので、巻線形の誘
導発電電動機6の2次側はサイクロコンバータ7
により励磁される。可変速ポンプ水車8の回転
数、つまり誘導機6の回転数Nrは速度検出器1
4で検出され、誘導器6の2次誘起電圧は位置検
出器15で検出される。電力系統16の電力Pは
電力変換器18により検出される。指令値演算部
17は与えられた系統要求電力指令P0(この指令
は、発電機動作では、例えば、出力電力を何MW
にせよという指令であり、電動機動作では、例え
ば、揚水のため余剰電力何MWを用いよという指
令となる。)と水位差の検出値Hとからポンプ水
車8が最高効率となる速度指令値N0を算出し、
励磁量演算部9はこのN0と速度検出器14によ
り検出速度Nrとの偏差よりガバナ19のガイド
ベン開度指令を出力し、また、電力変換器18に
より検出した電力Pと系統要求電力指令P0との
偏差より励磁量を算出し加算器12を介して自動
移相器13を制御する。
FIG. 1 shows a variable speed pump-turbine generator-motor system using the method of the present invention.
It is excited by The rotation speed of the variable speed pump turbine 8, that is, the rotation speed Nr of the induction machine 6, is determined by the speed detector 1.
The secondary induced voltage of the inductor 6 is detected by the position detector 15. Power P of power system 16 is detected by power converter 18 . The command value calculation unit 17 receives a given system required power command P 0 (this command is used to determine how many MW the output power should be during generator operation, for example).
In the case of electric motor operation, for example, it is a command that tells how many MW of surplus electricity to use for pumping water. ) and the detected value H of the water level difference, calculate the speed command value N 0 at which the pump turbine 8 has the highest efficiency,
The excitation amount calculation unit 9 outputs a guide ben opening command for the governor 19 based on the deviation between this N 0 and the speed N r detected by the speed detector 14, and also outputs a guide ben opening command for the governor 19 based on the difference between this N 0 and the speed N r detected by the speed detector 14. The amount of excitation is calculated from the deviation from the command P 0 and the automatic phase shifter 13 is controlled via the adder 12 .
本発明の特徴とする加減速補償部10は、速度
指令N0が前述の禁止帯を通過して変化する場合
等に加速補償又は減速補償を与える演算部であ
り、その動作フローチヤートを第2図に示す。同
図に於て、ステツプ100では速度指令値N0と速度
検出値Nrと水位差Hとをとり込む。今誘導機6
の可変速度範囲は、第3図に示したように水位差
の検出値、即ち静落差Hと系統電力Pに対して斜
線部のような範囲であり、サイクロコンバータ7
の容量制限から決められる禁止帯N+〜N-は同図
のように静落差Hとともに変化する。そこでステ
ツプ101では今入力した速度Nrが静落差Hに対応
した禁止帯の中にあるかどうかを判定し、禁止帯
内であれば静落差Hに応じた補償値を第4図に例
示したROMテーブル(加減速補償部10内に格
納)より読み出す。またステツプ103では読込ん
だ速度指令N0と検出速度Nrとを比較し、N0>Nr
の場合は加速補償、N0<Nrの場合は減速補償と
なるように補償値ΔSの符号を決める。そしてス
テツプ107で補償値ΔSを出力する。ステツプ101
で速度Nrが禁止帯外の場合は、ステツプ104で速
度指令値N0が禁止帯を通過するかどうかを判定
し、もし通過するなら禁止帯外で与える補償値
ΔSを第5図に例示したROMテーブル(やはり補
償部10に格納)より読み出し、ステツプ106で
ステツプ103と同様な符号の判定を行い、その御
補償ΔSをステツプ107で出力する。速度指令が禁
止帯を通過しない時はステツプ108でΔS=0と
し、何の補償も行わない。こうして出力された補
償値ΔSは、第1図の加算器12で励磁量演算部
9の出力に加算されて移相器13へ印加される。 The acceleration/deceleration compensation unit 10, which is a feature of the present invention, is a calculation unit that provides acceleration compensation or deceleration compensation when the speed command N 0 changes by passing through the above-mentioned forbidden zone, and its operation flowchart is shown in the second section. As shown in the figure. In the figure, in step 100, a speed command value N0 , a detected speed value Nr , and a water level difference H are taken in. Now induction machine 6
As shown in FIG. 3, the variable speed range of the cycloconverter 7 is the shaded range with respect to the detected value of the water level difference, that is, the static head H and the grid power P.
The forbidden zone N + to N - determined from the capacity limit changes with the static head difference H as shown in the figure. Therefore, in step 101, it is determined whether the speed Nr just input is within the prohibited zone corresponding to the static head difference H, and if it is within the prohibited zone, the compensation value according to the static head difference H is exemplified in Fig. 4. Read from the ROM table (stored in the acceleration/deceleration compensator 10). Also, in step 103, the read speed command N 0 and the detected speed N r are compared, and N 0 > N r
The sign of the compensation value ΔS is determined so that acceleration compensation is performed when N 0 <N r , and deceleration compensation is performed when N 0 <N r. Then, in step 107, the compensation value ΔS is output. step 101
If the speed N r is outside the prohibited zone, it is determined in step 104 whether the speed command value N 0 passes through the prohibited zone, and if it does, the compensation value ΔS to be given outside the prohibited zone is illustrated in FIG. In step 106, the same sign as in step 103 is determined, and in step 107, the controlled compensation ΔS is output. When the speed command does not pass through the prohibited zone, ΔS is set to 0 in step 108, and no compensation is performed. The compensation value ΔS output in this way is added to the output of the excitation amount calculation section 9 by the adder 12 in FIG. 1, and is applied to the phase shifter 13.
以上のような加減速補償部10を備えた本発明
の実施例の動作は以下の通りである。今、例えば
第3図に示したように静落差H1の状態で系統電
力をPaからPdへ上げる指令が与えられたとする。
この時加減速補償制御を行わない場合には、第6
図に示したように電力は直線abcdに沿つて時間
tとともに増加させることになる。ここで時間
tadは、系統運用上から設定された電力変化時間
を示す。また時間tbcは加速補償なしでの禁止帯
通過時間であり、禁止帯の通過に許される最大時
間をΔtとすると、tbc>Δtならばサイクロコンバ
ータの許容範囲をこえる。そこで速度Nrが禁止
帯内にある時は加速補償制御を行い、禁止帯の通
過時間をtef(<Δt)とする。但し電力変化時間tad
を大きくはずれることは電力系統を乱すことにな
るため、禁止帯以外では減速補償を行う。従つて
時間tの経過につれて系統電力Pは第6図の折線
aefdの様に変化する。むろんこれらの加減速補償
量は、静落差Hの関数として第2図で説明したよ
うにROMからよみ出される。第7図は第6図に
対応するもので縦軸を速度Nであらわしている。
そして禁止帯内で加速、外で減速補償を行つてい
る様子を示している。 The operation of the embodiment of the present invention including the acceleration/deceleration compensator 10 as described above is as follows. For example, suppose that a command is given to increase the grid power from P a to P d in a state of static head H 1 as shown in FIG.
If acceleration/deceleration compensation control is not performed at this time, the sixth
As shown in the figure, the power will increase with time t along the straight line abcd. time here
t ad indicates the power change time set for system operation. Further, time t bc is the time for passing through the forbidden zone without acceleration compensation, and if the maximum time allowed for passing through the forbidden zone is Δt, then if t bc >Δt, it exceeds the allowable range of the cycloconverter. Therefore, when the speed N r is within the prohibited zone, acceleration compensation control is performed, and the time required to pass through the prohibited zone is set to t ef (<Δt). However, the power change time t ad
Since a large deviation from the range will disturb the power system, deceleration compensation is performed outside the prohibited zone. Therefore, as time t passes, the grid power P changes as shown by the broken line in Figure 6.
It changes like aefd. Of course, these acceleration/deceleration compensation amounts are read out from the ROM as a function of the static head difference H, as explained in FIG. FIG. 7 corresponds to FIG. 6, and the vertical axis represents the speed N.
It also shows how the vehicle accelerates within the prohibited zone and compensates for deceleration outside the prohibited zone.
本実施例によれば、励磁用のサイクロコンバー
タの電力容量を特に大きく設定しなくても、静落
差に応じた加減速補償を行うことによつて運用に
おける電力変化時間とも一致する自動周波数制御
運転を安全に行え、系統事故等のため負荷の急変
が生じて速度が禁止帯内に達した場合も同様に安
定な運転とすることができる。なお、以上の実施
例は可変速ポンプ運転の場合として説明したが、
可変速発電運転においても有効に動作できる。但
しその場合は加減速補償をガバナのガイドベーン
開度指令の補償値とする安定性と制御性が向上す
る。 According to this embodiment, automatic frequency control operation can be performed that matches the power change time during operation by performing acceleration/deceleration compensation according to the static head, without having to set the power capacity of the excitation cycloconverter particularly large. This can be done safely, and even if the speed reaches the prohibited zone due to a sudden change in load due to a system accident, etc., stable operation can be achieved as well. In addition, although the above embodiment was explained as a case of variable speed pump operation,
It can also operate effectively in variable speed power generation operation. However, in that case, stability and controllability are improved by using acceleration/deceleration compensation as a compensation value for the guide vane opening command of the governor.
以上のように、本発明によれば、加減速補償制
御を行うことにより、可変速ポンプ水車発電電動
機が大容量の場合でも、電力変換器の設備容量を
大形にすることなく、その容量に適合した範囲で
安定に電力系統を乱すことなく系統周波数号一定
制御運転が行えるので、経済性及び安全性の上か
ら大きな効果がある。
As described above, according to the present invention, by performing acceleration/deceleration compensation control, even when the variable speed pump turbine generator/motor has a large capacity, the capacity can be adjusted without increasing the installed capacity of the power converter. Since the grid frequency constant control operation can be performed stably within the compatible range without disturbing the power grid, it has great effects in terms of economy and safety.
第1図は本発明の一実施例を示す図、第2図は
加減速演算部の動作を示すフローチヤート、第3
図は可変速範囲の説明図、第4図及び第5図は静
落差対応の補償値を格納したROM特性の例を示
す図、第6図及び第7図は加減速補償の具体的な
説明図、第8図及び第9図は誘導機の動作説明
図、第10図及び第11図はサイリスタ平均電流
の説明図である。
6……誘導発電電動機、7……サイクロコンバ
ータ、8……可変速ポンプ水車、9……励磁量演
算部、10……加減速補償演算部、12……加算
器、13……移相器、14……速度検出器、18
……電力変換器、19……ガバナ。
FIG. 1 is a diagram showing an embodiment of the present invention, FIG. 2 is a flowchart showing the operation of the acceleration/deceleration calculating section, and FIG.
The figure is an explanatory diagram of the variable speed range, Figures 4 and 5 are diagrams showing examples of ROM characteristics that store compensation values for static head, and Figures 6 and 7 are concrete explanations of acceleration/deceleration compensation. 8 and 9 are explanatory diagrams of the operation of the induction machine, and FIGS. 10 and 11 are explanatory diagrams of the thyristor average current. 6...Induction generator motor, 7...Cycloconverter, 8...Variable speed pump water turbine, 9...Excitation amount calculation section, 10...Acceleration/deceleration compensation calculation section, 12...Adder, 13...Phase shifter , 14... speed detector, 18
...Power converter, 19...Governor.
Claims (1)
プ水車発電電動機として用いる巻線形の誘導機を
励磁するサイクロコンバータと、前記誘導機の実
回転速度を検出する速度検出器と、系統要素電力
指令及び静落差から前記誘導機の速度指令値を算
出する指令値演算部と、前記ポンプ水車のガバナ
に与えるガイドベン開度指令を前記速度指令値及
び前記実回転速度から算出すると共に実際の系統
電力と前記系統要求電力指令との偏差から求めら
れる励磁量を前記サイクロコンバータに与える励
磁量演算部とを備える可変速ポンプ水車発電電動
機の制御装置において、 前記サイクロコンバータの出力電流周波数のう
ち該サイクロコンバータが前記誘導機を直流状態
で励磁する周波数範囲を禁止帯とし、前記出力電
流周波数に対応する前記誘導機の回転速度が前記
禁止帯を通過する場合に、前記実回転速度が前記
禁止帯内にあるときは静落差の関数として得られ
る補償値であつて前記誘導機の回転速度を加速す
る補償値を求め、前記実回転速度が前記禁止帯の
外にあるときは静落差の関数として得られる補償
値であつて前記誘導機の回転速度を減速する補償
値を求め、求めた補償値を前記励磁量演算部が出
力する励磁量に加算して前記サイクロコンバータ
に与える加減速補償部 を設けたことを特徴とする可変速ポンプ水車発電
電動機の制御装置。[Scope of Claims] 1. A cycloconverter that excites a wound-type induction machine connected to a pump-turbine of pumped storage power generation and used as a variable-speed pump-turbine generator-motor, and a speed detector that detects the actual rotational speed of the induction machine. a command value calculation unit that calculates a speed command value of the induction machine from the system element power command and static head; and a command value calculation unit that calculates a guide ben opening command to be given to the governor of the pump water turbine from the speed command value and the actual rotation speed; In a control device for a variable speed pump-turbine generator-motor, the controller includes an excitation amount calculation unit that provides the cycloconverter with an excitation amount determined from a deviation between the actual grid power and the grid requested power command, The frequency range in which the cycloconverter excites the induction machine in a DC state is defined as a prohibited band, and when the rotational speed of the induction machine corresponding to the output current frequency passes through the prohibited band, the actual rotational speed is When the actual rotational speed is outside the forbidden zone, a compensation value that is obtained as a function of the static head and accelerates the rotational speed of the induction machine is obtained, and when the actual rotational speed is outside the forbidden zone, the compensation value is calculated as a function of the static head. Acceleration/deceleration compensation is provided to the cycloconverter by determining a compensation value that is obtained as a function and decelerating the rotational speed of the induction machine, and adding the determined compensation value to the excitation amount output by the excitation amount calculation section. 1. A control device for a variable speed pump water turbine generator/motor, characterized in that a control device for a variable speed pump water turbine generator motor is provided.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP60222811A JPS6285688A (en) | 1985-10-08 | 1985-10-08 | Operating method for variable-speed reversible pump turbine generator-motor |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP60222811A JPS6285688A (en) | 1985-10-08 | 1985-10-08 | Operating method for variable-speed reversible pump turbine generator-motor |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS6285688A JPS6285688A (en) | 1987-04-20 |
JPH0568959B2 true JPH0568959B2 (en) | 1993-09-30 |
Family
ID=16788269
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP60222811A Granted JPS6285688A (en) | 1985-10-08 | 1985-10-08 | Operating method for variable-speed reversible pump turbine generator-motor |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS6285688A (en) |
Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5619391A (en) * | 1979-07-20 | 1981-02-24 | Hitachi Ltd | Control device for secondary excitation thyristor motor |
-
1985
- 1985-10-08 JP JP60222811A patent/JPS6285688A/en active Granted
Patent Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5619391A (en) * | 1979-07-20 | 1981-02-24 | Hitachi Ltd | Control device for secondary excitation thyristor motor |
Also Published As
Publication number | Publication date |
---|---|
JPS6285688A (en) | 1987-04-20 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JPH08322298A (en) | Wind power generating apparatus | |
JPS62110499A (en) | Operation control for variable speed pumping-up power generation system | |
JP3053611B2 (en) | Pumped storage generator | |
JPH0568959B2 (en) | ||
JP2575629B2 (en) | Variable speed generator motor and control method | |
JPS6271497A (en) | Controller for variable-speed hydraulic turbine generator | |
JPH0326038B2 (en) | ||
JPH0576278B2 (en) | ||
JPH0326039B2 (en) | ||
JPS6359798A (en) | Water-wheel generator | |
JPH0225033B2 (en) | ||
JPH0634628B2 (en) | Variable speed pumped storage system operation controller | |
JP2652033B2 (en) | Operation control method of variable speed pumped storage power generation system | |
JPS63220723A (en) | Variable speed generator | |
JPH0669319B2 (en) | Variable speed pumped storage system | |
JP2644748B2 (en) | Variable speed pumped storage power generation system | |
JPH0576277B2 (en) | ||
JP2771474B2 (en) | Variable speed generator | |
JPS63140698A (en) | Operation controller for variable speed pumped-storage power generating system | |
JPH0634627B2 (en) | Variable speed pumped storage system operation controller | |
JPH0226710B2 (en) | ||
JPH0650959B2 (en) | Variable speed pumped storage system | |
JPH0634632B2 (en) | Variable speed pumped storage system | |
JPH0634631B2 (en) | Variable speed pumped storage system | |
Kumar et al. | MODELING AND SIMULATION OF AN INDUCTION MACHINE WITH A NOVEL CONCEPT OF A CONVERTER-FED ROTOR |