JPH0568195B2 - - Google Patents

Info

Publication number
JPH0568195B2
JPH0568195B2 JP59012554A JP1255484A JPH0568195B2 JP H0568195 B2 JPH0568195 B2 JP H0568195B2 JP 59012554 A JP59012554 A JP 59012554A JP 1255484 A JP1255484 A JP 1255484A JP H0568195 B2 JPH0568195 B2 JP H0568195B2
Authority
JP
Japan
Prior art keywords
laminated
ring body
displacement element
electrostrictive
laminated displacement
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP59012554A
Other languages
Japanese (ja)
Other versions
JPS60156283A (en
Inventor
Mitsuo Tamura
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokin Corp
Original Assignee
Tokin Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokin Corp filed Critical Tokin Corp
Priority to JP59012554A priority Critical patent/JPS60156283A/en
Publication of JPS60156283A publication Critical patent/JPS60156283A/en
Publication of JPH0568195B2 publication Critical patent/JPH0568195B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02NELECTRIC MACHINES NOT OTHERWISE PROVIDED FOR
    • H02N2/00Electric machines in general using piezoelectric effect, electrostriction or magnetostriction
    • H02N2/10Electric machines in general using piezoelectric effect, electrostriction or magnetostriction producing rotary motion, e.g. rotary motors
    • H02N2/105Cycloid or wobble motors; Harmonic traction motors

Landscapes

  • General Electrical Machinery Utilizing Piezoelectricity, Electrostriction Or Magnetostriction (AREA)

Description

【発明の詳細な説明】 本発明は、圧電または電歪効果による電気機械
エネルギ変換により駆動するようにした圧電モー
タに関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a piezoelectric motor driven by electromechanical energy conversion using piezoelectric or electrostrictive effects.

従来、この種の電気エネルギを機械エネルギに
変換して回転駆動する方式として最も一般的なも
のは、電磁力の応用であり、各種のモータが実用
化されていることは周知である。しかしながら、
これは電磁力を動力源としており、巻線に流れる
電流が発生する磁界同士、電流が発生する磁界と
永久磁石の磁界との間に作用する磁気的な力等を
利用しており、通電中発生するジユール熱、界磁
の磁化に際してのヒスリシス損、又は渦電流損を
本質的に伴なうものである。更に構造、原理上電
気的磁気的ノイズを発生し易く、従つて、用途が
制限されている。
Conventionally, the most common method for converting this type of electrical energy into mechanical energy for rotational driving is the application of electromagnetic force, and it is well known that various motors have been put into practical use. however,
This uses electromagnetic force as its power source, and utilizes the magnetic force that acts between the magnetic fields generated by the current flowing through the windings, and between the magnetic field generated by the current and the magnetic field of the permanent magnet. This is essentially accompanied by Joule heat generated, hysteresis loss during magnetization of the field, or eddy current loss. Furthermore, due to its structure and principle, it tends to generate electrical and magnetic noise, and therefore its applications are limited.

ところで、近年超音波振動子を駆動源とする新
しい原理にもとずくモータが考えられているが、
これは、前記電磁力を利用した構造に比べてエネ
ルギ損失が原理的に少なくかつ軽量であり、ノイ
ズの発生もなく、極めて有利な長所を有してい
る。
By the way, in recent years, motors based on a new principle using ultrasonic vibrators as a driving source have been considered.
Compared to the structure using electromagnetic force, this has extremely advantageous advantages in that it has less energy loss in principle, is lighter in weight, and does not generate noise.

しかし、数十kHzでかつ位相の異なるモータ専
用の駆動電源を必要とし、またこの電源装置のた
めに装置全体として小型化の方向のあい路となつ
ている。
However, it requires a dedicated drive power source for the motor with a frequency of several tens of kHz and a different phase, and this power supply device has become a roadblock to downsizing the entire device.

本発明はかかる点に鑑み、電歪・圧電効果を利
用して回転体を回転駆動するように構成すると共
に、電歪・圧電素子の駆動に際して三相電源を利
用し得るように構成することにより、エネルギ損
失が少なく、かつノイズの少ないこの種のモータ
を提案することを主たる目的とする。
In view of these points, the present invention is configured to rotate a rotating body using electrostrictive and piezoelectric effects, and is configured to use a three-phase power source when driving the electrostrictive and piezoelectric elements. The main objective is to propose this type of motor with low energy loss and low noise.

以下本発明の一実施例について図面を参照しな
がら詳細に説明する。
An embodiment of the present invention will be described in detail below with reference to the drawings.

第1図は回転駆動源となる積層圧電電歪変位素
子の一例を示す図である。1は圧電セラミツクス
又は電歪セラミツクスの矩形板を示し、この圧電
セラミツクス又は電歪セラミツクスの矩形板1を
複数枚積層し、各板1,1,1……の間に電極2
を施し、結線3を施したものである。尚、圧電セ
ラミツクスはジルコンチタン酸鉛系の磁器を採用
して好適であり、電歪セラミツクスにはPb
(Mg12Nb12)O3系磁器を用いて好適である。
FIG. 1 is a diagram showing an example of a laminated piezo-electrostrictive displacement element serving as a rotational drive source. Reference numeral 1 indicates a rectangular plate made of piezoelectric ceramics or electrostrictive ceramics, and a plurality of rectangular plates 1 made of piezoelectric ceramics or electrostrictive ceramics are laminated, and electrodes 2 are placed between each plate 1, 1, 1...
and connection 3. It is preferable to use lead zirconate titanate porcelain for piezoelectric ceramics, and Pb for electrostrictive ceramics.
(Mg 1/2 Nb 1/2 ) O 3 based porcelain is preferably used.

この場合、圧電セラミツクスを採用した場合に
は、端子3a,3b間に電圧Vを印加することに
より、並列接続されている各圧電セラミツクス板
の厚み方向の伸びが生ずることになる。この伸び
dlは次式で表わされる。
In this case, if piezoelectric ceramics are used, by applying a voltage V between the terminals 3a and 3b, each piezoelectric ceramic plate connected in parallel will elongate in the thickness direction. This growth
dl is expressed by the following formula.

dl=t・d33V/t=d33V …(1) (但し、d33:材料の圧電定数) このように、機械的に直列結合している各圧電
セラミツクス板1の伸びは加算されるので、積層
数がnの場合は、全体の伸びΔlは、 Δl=nd33V …(2) で与えられる。
dl=t・d33V /t= d33V ...(1) (however, d33 : piezoelectric constant of the material) In this way, the elongation of each piezoelectric ceramic plate 1 mechanically connected in series is added. Therefore, when the number of laminated layers is n, the overall elongation Δl is given by Δl=nd 33 V (2).

尚、積層変位素子を圧電セラミツクスで構成さ
れている場合には、通常逆電圧に伴なう分極の劣
化を防ぐため直流のバイアス電圧を併用すること
が必要となる。
Note that when the laminated displacement element is constructed of piezoelectric ceramics, it is necessary to use a direct current bias voltage in order to prevent deterioration of polarization usually caused by reverse voltage.

また電歪セラミツクスを採用した場合には、第
2図に示すごとく、端子3a,3b間に交流電圧
Vを印加することにより、並列接続されている各
電歪セラミツクス板の厚み方向の伸びが生ずるこ
とになる。この伸びdlは次式で表わされる。
Furthermore, when electrostrictive ceramics are used, as shown in Fig. 2, by applying an alternating current voltage V between terminals 3a and 3b, each electrostrictive ceramic plate connected in parallel will elongate in the thickness direction. It turns out. This elongation dl is expressed by the following formula.

dl=t・P3(V/t)2=P3V2/t (但し、P3:材料の電歪定数、、t:材料の厚
み) 従つて、全体の伸びΔlは個々の和であるから、 Δl=ndl=nP3・V2/t となる。尚、第3図は、第2図に示す印加電圧に
よつて歪みSoの変化曲線を示す。
dl = t・P 3 (V/t) 2 = P 3 V 2 /t (where P 3 is the electrostrictive constant of the material, t is the thickness of the material) Therefore, the overall elongation Δl is the sum of the individual parts. Therefore, Δl=ndl=nP 3 ·V 2 /t. Incidentally, FIG. 3 shows a change curve of the strain So depending on the applied voltage shown in FIG. 2.

電歪素子を用いた場合には、残留分極を持たな
いため、印加される電界の2乗に比例した伸びを
生じ、交流駆動によつても性能の劣化はないが、
逆方向の電界でも伸びを示すため、第4図に示す
ごとく、交流電界Eiに対し、歪Soは1/2の周期で
長さが変化することになる。
When an electrostrictive element is used, it does not have residual polarization, so it stretches in proportion to the square of the applied electric field, and there is no deterioration in performance even with AC drive.
Since the electric field shows elongation even in the opposite direction, as shown in Fig. 4, the length of the strain So changes at a period of 1/2 with respect to the AC electric field Ei.

尚、電歪素子を用いた場合は、端子間に交流電
圧が印加されたときの伸びは、伸縮をするが、電
圧の値が材料の抗電界の値に比較して一定の割合
を超えると、交流の半周期で分極と逆向きの電圧
が加えられることにより、その分極が急激に減少
して性能が悪化する。そこで通常は、正方向に一
定の直流バイアス電圧を常に印加しておき、圧電
セラミツクスに逆電圧を加えないようにしてい
る。
When using an electrostrictive element, it expands and contracts when an alternating current voltage is applied between its terminals, but if the voltage value exceeds a certain percentage compared to the coercive electric field value of the material. , by applying a voltage in the opposite direction to the polarization during a half-cycle of AC, the polarization decreases rapidly and performance deteriorates. Therefore, normally, a constant DC bias voltage is always applied in the forward direction, and a reverse voltage is not applied to the piezoelectric ceramic.

第5図は本発明モータの略線図を示している。
11,12,13は積層変位素子を示し、120゜の
間隔にて3本放射状に配置され、一方が固定軸1
4に固定されている。そして他方は、環体15の
内周面に弾性体6を介して取り付けられている。
もつとも、積層変位素子は3の倍数とすることが
できる。16は、環体15に接して回転力を伝達
する円筒回転体を示す。
FIG. 5 shows a schematic diagram of the motor of the present invention.
Numerals 11, 12, and 13 indicate laminated displacement elements, three of which are arranged radially at an interval of 120°, one of which is connected to the fixed shaft 1.
It is fixed at 4. The other end is attached to the inner peripheral surface of the ring body 15 via the elastic body 6.
However, the number of laminated displacement elements can be a multiple of three. Reference numeral 16 indicates a cylindrical rotating body that is in contact with the ring body 15 and transmits rotational force.

第6図は、本発明モータの他の実施例を示す図
である。本例においては、3本の圧電又は電歪セ
ラミツクス11,12,13の外側の端部を固定
し、内側の端部に回転する環体17を保持するよ
うに構成したものである。18は環体17に接し
て回転力が伝達される円柱回転体を示す。従つ
て、本例においても、第5図例と同様の作用が得
られることは明らかである。
FIG. 6 is a diagram showing another embodiment of the motor of the present invention. In this example, the outer ends of three piezoelectric or electrostrictive ceramics 11, 12, 13 are fixed, and the rotating ring 17 is held at the inner end. Reference numeral 18 indicates a cylindrical rotating body that contacts the ring body 17 and transmits rotational force. Therefore, it is clear that the same effect as the example in FIG. 5 can be obtained in this example as well.

次に、第7図を参照して、印加した交流電界に
対する圧電・電歪セラミツクスの積層変位素子の
伸縮状況の時間的変化すなわち動作の原理につい
て説明する。
Next, with reference to FIG. 7, the temporal change in expansion and contraction of the piezoelectric/electrostrictive ceramic laminated displacement element in response to an applied alternating current electric field, that is, the principle of operation will be described.

まず、積層変位素子と環体との間に挟持されて
いる3組の弾性体に加わる一定の圧力により、予
めΔξの値だけ縮めて嵌着されており、このばね
定数をKとすると、KΔξの力で3方向から環体
を支えていることになる。
First, due to a constant pressure applied to the three sets of elastic bodies sandwiched between the laminated displacement element and the ring body, they are compressed in advance by a value of Δξ, and if this spring constant is K, then KΔξ This means that the ring is supported from three directions by the force of .

次に、第8図に示すごとく、個々の変位素子に
三相交流電源の相の異なる3つの端子をY結線し
て駆動する場合について説明すると、変位素子の
伸びをdliとし、伸縮軸の方向の環体の変位Δliと
した場合、素子が軸心方向に環体を押圧する力は
次式で与えられる。
Next, as shown in Figure 8, to explain the case where each displacement element is driven by Y-connecting three terminals of different phases of a three-phase AC power supply, the extension of the displacement element is dli, and the direction of the expansion/contraction axis is When the displacement of the ring body is Δli, the force with which the element presses the ring body in the axial direction is given by the following equation.

Fi=K(Δξ+dli−Δli) (但し、i=1,2,3,……、Δξ>|dli|、
Δli) 次に変位素子の伸縮軸をY軸とし、それと直交
な方向をX軸とする座標を考えてみると、変位素
子11,12,13に対しては V1=V0sinωt V2=V0sin(ωt−2/3π) V3=V0sin(ωt−4/3π) のごとき正弦曲線が得られる。尚、個々の伸縮
は、中心軸に向かう方向を正方向とする。
Fi=K(Δξ+dli−Δli) (where i=1, 2, 3,..., Δξ>|dli|,
Δli) Next, considering the coordinates where the expansion and contraction axis of the displacement element is the Y axis and the direction perpendicular to it is the X axis, for displacement elements 11, 12, and 13, V 1 =V 0 sinωt V 2 = A sine curve such as V 0 sin (ωt-2/3π) V 3 =V 0 sin (ωt-4/3π) is obtained. Note that the direction of each expansion and contraction toward the central axis is defined as the positive direction.

環体の中心は、電圧が印加されていない場合、
座標は中心点(0,0)にあるが、動作の状態に
おいては任意の点(x,y)にあり、この状態に
おいて3つの力F1,F2,F3の方向は不変である
から、第9図に示すごとく、各力の絶対値は相等
しいことになる。
The center of the toroid is, when no voltage is applied,
The coordinates are at the center point (0, 0), but in the state of motion they are at any point (x, y), and in this state the directions of the three forces F 1 , F 2 , F 3 remain unchanged. , as shown in FIG. 9, the absolute values of each force are equal.

すなわち |F→1|=|F→2|=|F→3| となる。 That is, |F→ 1 |=|F→ 2 |=|F→ 3 |.

中心点の移動量は、3つの力の方向Δl1、Δl2
Δl3に分解することができ、各ベクトル量は変位
素子の変位量と3つの力のバランスから決定され
る。すなわち3つの力|F→1|,|F→2|,|F→3

は、 |F→1|=F1=K[Δξ+nd33V0sinωt−(−y)] |F→2|=F2=K[Δξ+nd33V0sin(ωt−2/3π)
−(√3/2x+y/2)] |F→3|=F3=K[Δξ+nd33V0sin(ωt−4/3π)
−(√3/2x+y/2)] |F→1|=|F→2|より、 nd33V0(3/2sinωt+√3/2cosωt)=−√3/2x−
3/2y…(6) |F→1|=|F→|より、 nd33V0(3/2sinωt−√3/2cosωt)=√3/2x−3
/2y…(7) (6)、(7)より、 x=−nd33V0cosωt y=−nd33V0sinωt x2=(nd33V02cos2ωt y2=(nd33V02sin2ωt ∴x2+y2=(nd33V02cos2ωt +(nd33V02 sinωt =(nd33V02(cos2ωt+sin2ωt) ∴x2+y2=(nd33V02 …(9) すなわち環体の中心点は、半径nd33V0の円軌
道を描くことになる。またこのときの回転速度は
電源周波数に等しくなり、50Hzの場合50ターン/
秒となる。
The amount of movement of the center point is determined by the directions of the three forces Δl 1 , Δl 2 ,
It can be decomposed into Δl 3 , and each vector quantity is determined from the displacement amount of the displacement element and the balance of the three forces. That is, the three forces |F→ 1 |, |F→ 2 |, |F→ 3

is |F→ 1 |=F 1 =K[Δξ+nd 33 V 0 sinωt−(−y)] |F→ 2 |=F 2 =K[Δξ+nd 33 V 0 sin(ωt−2/3π)
−(√3/2x+y/2)] |F→ 3 |=F 3 =K[Δξ+nd 33 V 0 sin(ωt−4/3π)
−(√3/2x+y/2)] |F→ 1 |=|F→ 2 |, nd 33 V 0 (3/2sinωt+√3/2cosωt)=−√3/2x−
3/2y…(6) |F→ 1 |=|F→|, nd 33 V 0 (3/2sinωt−√3/2cosωt)=√3/2x−3
/2y...(7) From (6) and (7), x=-nd 33 V 0 cosωt y=-nd 33 V 0 sinωt x 2 = (nd 33 V 0 ) 2 cos 2 ωt y 2 = (nd 33 V 0 ) 2 sin 2 ωt ∴x 2 +y 2 = (nd 33 V 0 ) 2 cos 2 ωt + (nd 33 V 0 ) 2 sinωt = (nd 33 V 0 ) 2 (cos 2 ωt+sin 2 ωt) ∴x 2 +y 2 = (nd 33 V 0 ) 2 …(9) In other words, the center point of the ring body will draw a circular orbit with radius nd 33 V 0 . Also, the rotation speed at this time is equal to the power supply frequency, and in the case of 50Hz, 50 turns/
seconds.

したがつて、環体に内接する中心軸は、第7図
に示すごとく、環体の中心点の回転につれて順次
回転の方向に周囲を環体にこすられているため、
回転トルクを発生することになる。尚、第8図
は、各状態に対する電源の位相を示している。
Therefore, as shown in Fig. 7, the central axis inscribed in the ring body is rubbed around the ring body in the direction of rotation as the center point of the ring body rotates.
This will generate rotational torque. Incidentally, FIG. 8 shows the phase of the power supply for each state.

次に、積層変位素子を電歪セラミツクスで構成
した場合について説明する。3方向から環体を支
える3つの力|F→1|,|F→2|,|F→|は、 |F→1|K[Δξ+nP3/tV0 2sin2ωt−(−y)] |F→2|=K[Δξ+nP3/tV0 2sin2(ωt−2/3π
)−(√3/2x+y/2)] |F→|=K]Δξ+nP3/tV0sin2(ωt−4/3π)
−(−√3/2x+y/2)] F1=F2より、 nP3V0 2/t(−3cos2ωt+√3sin2ωt)=2√3x−6
y…(11) F1=F3により、 nP3V0 2/t(−3cos2ωt−√3sin2ωt)=−2√3x
−6y…(12) (11)、(12)により、 x=nP3V0 2/2tsin2ωt y=nP3V0 2/2tcos2ωt x2+y2=nP3V0 2/2t(sin22ωt+cos22ωt) x2+y2=(nP3V0 2/2t) すなわち環体の中心点は半径nP3V0 2/2tの円
軌道を描くことになる。またこのときの回転速度
は電源周波数の2倍となる。いずれにしても内接
する環体より第5図及び第6図に示すごとく、駆
動力を得ることは圧電セラミツクスで構成する場
合と同様に行ない得る。但し、電歪セラミツクス
の場合は、逆電圧に対する分極の劣化の欠点は原
理上発生することがなく、従つて、バイアス電圧
なしでも駆動することができる。
Next, a case will be described in which the laminated displacement element is constructed of electrostrictive ceramics. The three forces supporting the ring from three directions |F→ 1 |, |F→ 2 |, |F→| are |F→ 1 |K[Δξ+nP 3 /tV 0 2 sin 2 ωt−(−y)] |F→ 2 |=K[Δξ+nP 3 /tV 0 2 sin 2 (ωt−2/3π
)−(√3/2x+y/2)] |F→|=K]Δξ+nP 3 /tV 0 sin 2 (ωt−4/3π)
−(−√3/2x+y/2)] From F 1 = F 2 , nP 3 V 0 2 /t(−3cos2ωt+√3sin2ωt)=2√3x−6
y…(11) Due to F 1 = F 3 , nP 3 V 0 2 /t(−3cos2ωt−√3sin2ωt)=−2√3x
−6y…(12) From (11) and (12), x=nP 3 V 0 2 /2tsin2ωt y=nP 3 V 0 2 /2tcos2ωt x 2 +y 2 =nP 3 V 0 2 /2t(sin 2 2ωt+cos 2 2ωt) x 2 +y 2 = (nP 3 V 0 2 /2t) In other words, the center point of the ring will draw a circular orbit with a radius of nP 3 V 0 2 /2t. Further, the rotational speed at this time is twice the power supply frequency. In any case, as shown in FIGS. 5 and 6, the driving force can be obtained from the inscribed ring body in the same way as in the case of a structure made of piezoelectric ceramics. However, in the case of electrostrictive ceramics, the disadvantage of deterioration of polarization due to reverse voltage does not occur in principle, and therefore it can be driven without a bias voltage.

以上述べたごとく本発明によれば、圧電セラミ
ツクスまたは電歪セラミツクスの板を複数積層し
た積層変位素子を少なくとも3個軸方向が120゜の
角度をなすように配置し、上記積層変位素子の一
端を環体の内周に弾性体を介して密着すると共に
他端を固定して上記環体を支持し、又は上記積層
変位素子の一端を固定し、他端を弾性体を介して
環体の外周面に密着し、上記環体に接して回転力
を伝達する回転体を設け、上記積層変位素子を三
相交流電源で駆動するように構成したので、 従来のような磁界を発生する方式に比べてジユ
ール熱、ヒスリシス損、渦電流損、磁気的ノイズ
が少ないこの種のモータを提供することができ
る。しかも超音波振動子を駆動源とした場合に必
要な専用の電源装置を設ける必要がなく、全体と
して小型・軽量・商用電源を容易に利用すること
ができる効果を有する。
As described above, according to the present invention, at least three laminated displacement elements each having a plurality of laminated piezoelectric ceramic or electrostrictive ceramic plates are arranged so that their axial directions form an angle of 120 degrees, and one end of the laminated displacement element is The ring body is supported by being tightly attached to the inner circumference of the ring body via an elastic body and the other end is fixed, or one end of the laminated displacement element is fixed and the other end is attached to the outer circumference of the ring body via an elastic body. A rotating body is provided that is in close contact with the surface and transmits rotational force in contact with the ring body, and the laminated displacement element is configured to be driven by a three-phase AC power source, which is more effective than the conventional method of generating a magnetic field. Therefore, it is possible to provide a motor of this type that has less joule heat, hysteresis loss, eddy current loss, and magnetic noise. Furthermore, there is no need to provide a dedicated power supply which is required when an ultrasonic transducer is used as a drive source, and the overall effect is that it is small, lightweight, and can easily utilize a commercial power source.

従つて、本発明の応用分野は広く、例えば精密
機械、光学測定器械、レーザ応用機器の駆動用モ
ータに適用して極めて好適である。
Therefore, the present invention can be applied to a wide range of fields, and is extremely suitable for application to, for example, drive motors for precision machines, optical measuring instruments, and laser-applied equipment.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は積層変位素子の一例を示す略線的斜視
図、第2図は印加電圧の波形図、第3図は圧電セ
ラミツクスを採用したときの歪みの変化図、第4
図は電歪セラミツクスを採用したときの歪みの変
化図、第5図及び第6図は本発明の一実施例及び
他の実施例を示す略線的断面図、第7図、第8
図、第9図は夫々本発明の動作の説明に供する動
作図である。 11,12,13…積層変位素子、14…固定
軸、15,17…環体、16…円筒回転体、18
…円柱回転体。
Figure 1 is a schematic perspective view showing an example of a laminated displacement element, Figure 2 is a waveform diagram of applied voltage, Figure 3 is a diagram of changes in strain when piezoelectric ceramics are used, and Figure 4 is a diagram of changes in strain when piezoelectric ceramics are used.
The figure is a change in strain when electrostrictive ceramics are used, Figures 5 and 6 are schematic sectional views showing one embodiment and another embodiment of the present invention, and Figures 7 and 8.
9 and 9 are operation diagrams for explaining the operation of the present invention, respectively. 11, 12, 13... Laminated displacement element, 14... Fixed shaft, 15, 17... Annular body, 16... Cylindrical rotating body, 18
...Cylindrical rotating body.

Claims (1)

【特許請求の範囲】 1 圧電セラミツクスの板を複数積層した積層変
位素子を少なくとも3個軸方向が120゜の角度をな
すように配置し、上記積層変位素子の一端を環体
の内周に弾性体を介して密着すると共に他端を固
定して上記環体を支持し、又は上記積層変位素子
の一端を固定すると共に他端を弾性体を介して環
体の外周面に密着し、上記環体に接して回転力を
伝達する回転体を設け、上記積層変位素子を三相
交流電源で駆動するように構成したことを特徴と
する圧電モータ。 2 電歪セラミツクスの板を複数積層した積層変
位素子を少なくとも3個軸方向が120゜の角度をな
すように配置し、上記積層変位素子の一端を環体
の内周に弾性体を介して密着すると共に他端を固
定して上記環体を支持し、又は上記積層変位素子
の一端を固定すると共に他端を弾性体を介して環
体の外周面に密着し、上記環体に接して回転力を
伝達する回転体を設け、上記積層変位素子を三相
交流電源で駆動するように構成したことを特徴と
する電歪モータ。
[Claims] 1. At least three laminated displacement elements each made of a plurality of laminated piezoelectric ceramic plates are arranged so that their axial directions form an angle of 120°, and one end of the laminated displacement element is attached to the inner periphery of an annular body. The ring body is supported by being in close contact with the ring body through the body and the other end is fixed, or the ring body is supported by fixing one end of the laminated displacement element and having the other end in close contact with the outer peripheral surface of the ring body through an elastic body. 1. A piezoelectric motor, comprising: a rotating body that is in contact with a body and transmits rotational force; and the laminated displacement element is driven by a three-phase AC power source. 2 At least three laminated displacement elements each made of a plurality of laminated electrostrictive ceramic plates are arranged so that their axial directions form an angle of 120°, and one end of the laminated displacement element is tightly attached to the inner periphery of the ring body via an elastic body. and the other end is fixed to support the ring body, or one end of the laminated displacement element is fixed and the other end is tightly attached to the outer peripheral surface of the ring body via an elastic body, and rotates in contact with the ring body. 1. An electrostrictive motor, comprising a rotating body for transmitting force, and configured to drive the laminated displacement element with a three-phase AC power source.
JP59012554A 1984-01-25 1984-01-25 Piezoelectric electrostrictive motor Granted JPS60156283A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59012554A JPS60156283A (en) 1984-01-25 1984-01-25 Piezoelectric electrostrictive motor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59012554A JPS60156283A (en) 1984-01-25 1984-01-25 Piezoelectric electrostrictive motor

Publications (2)

Publication Number Publication Date
JPS60156283A JPS60156283A (en) 1985-08-16
JPH0568195B2 true JPH0568195B2 (en) 1993-09-28

Family

ID=11808554

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59012554A Granted JPS60156283A (en) 1984-01-25 1984-01-25 Piezoelectric electrostrictive motor

Country Status (1)

Country Link
JP (1) JPS60156283A (en)

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2534692B2 (en) * 1987-01-22 1996-09-18 日立マクセル株式会社 Center of gravity rotation type ultrasonic motor
JPH0232769A (en) * 1988-07-18 1990-02-02 Hitachi Constr Mach Co Ltd Inching mechanism
DE68923687T2 (en) * 1988-11-25 1996-04-18 Casio Computer Co Ltd Ultrasonic drive.
US5199701A (en) * 1988-11-25 1993-04-06 Casio Computer Co., Ltd. Carrier apparatus using ultrasonic actuator
US5216313A (en) * 1988-12-16 1993-06-01 Alps Electric Co., Ltd. Ultrasonic wave linear motor
US5136200A (en) * 1989-07-27 1992-08-04 Olympus Optical Co., Ltd. Ultransonic motor
US5087852A (en) * 1990-03-13 1992-02-11 Rockwell International Corporation Direct current traveling wave motor
FR2709213B1 (en) * 1993-08-18 1995-10-27 Figest Bv Electric motor with vibrating elements and elastic coupler.
FR2750543B1 (en) * 1996-06-27 1998-08-21 Cedrat Rech PIEZOACTIVE MOTOR BASED ON INDEPENDENT STATOR MODULES
US6313566B1 (en) * 1997-07-08 2001-11-06 John Cunningham Piezoelectric motor
JP3792864B2 (en) * 1997-10-23 2006-07-05 セイコーインスツル株式会社 Ultrasonic motor and electronic equipment with ultrasonic motor
DE19952946A1 (en) * 1999-11-03 2001-05-17 Siemens Ag Electromechanical motor

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58148682A (en) * 1982-02-25 1983-09-03 Toshio Sashita Motor device using supersonic vibration

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58148682A (en) * 1982-02-25 1983-09-03 Toshio Sashita Motor device using supersonic vibration

Also Published As

Publication number Publication date
JPS60156283A (en) 1985-08-16

Similar Documents

Publication Publication Date Title
US5747915A (en) Bent shaft motor
KR100954529B1 (en) A ring type piezoelectric ultrasonic resonator and a piezoelectric ultrasonic rotary motor using thereof
Flynn et al. Piezoelectric micromotors for microrobots
US4786836A (en) Piezoelectric motor
EP0460387B1 (en) Electric traction motor
EP0395298B1 (en) Standing-wave type ultrasonic motor
JPH0568195B2 (en)
JPH05949B2 (en)
JP3059031B2 (en) Vibration wave drive device and device provided with vibration wave drive device
JPH04190684A (en) Device and method for driving ultrasonic wave
US9407173B2 (en) Piezo actuator having an electrode structure for a torsional vibration mode, and rotation-type ultrasonic motor including same
SE456059B (en) PIEZOELECTRIC ENGINE
US6417601B1 (en) Piezoelectric torsional vibration driven motor
JPH0653563A (en) Magnetic actuator
US5001382A (en) Stepping motor and a method of driving the same
CN107306097B (en) Using the micro machine of multi-layer annular piezoelectric ceramics
JPS62152381A (en) Rotating power device
JPH03253267A (en) Ultrasonic motor
JPH0332377A (en) Ultrasonic motor
Fearing Micro-actuators for micro-robots: Electric and magnetic
JPH0681523B2 (en) Vibration wave motor
JP2537874B2 (en) Ultrasonic motor
JPH0453193Y2 (en)
JP2506859B2 (en) Ultrasonic motor
JP2523634B2 (en) Ultrasonic motor