JPH0453193Y2 - - Google Patents

Info

Publication number
JPH0453193Y2
JPH0453193Y2 JP1983034398U JP3439883U JPH0453193Y2 JP H0453193 Y2 JPH0453193 Y2 JP H0453193Y2 JP 1983034398 U JP1983034398 U JP 1983034398U JP 3439883 U JP3439883 U JP 3439883U JP H0453193 Y2 JPH0453193 Y2 JP H0453193Y2
Authority
JP
Japan
Prior art keywords
laminated
piezoelectric
cylindrical body
elements
displacement
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP1983034398U
Other languages
Japanese (ja)
Other versions
JPS59141492U (en
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed filed Critical
Priority to JP3439883U priority Critical patent/JPS59141492U/en
Publication of JPS59141492U publication Critical patent/JPS59141492U/en
Application granted granted Critical
Publication of JPH0453193Y2 publication Critical patent/JPH0453193Y2/ja
Granted legal-status Critical Current

Links

Landscapes

  • General Electrical Machinery Utilizing Piezoelectricity, Electrostriction Or Magnetostriction (AREA)

Description

【考案の詳細な説明】 本考案は圧電変化を利用した微小回転装置に関
する。
[Detailed Description of the Invention] The present invention relates to a micro-rotation device that utilizes piezoelectric changes.

従来、この種の微小回転装置はほとんどが電磁
力を用いるいわゆるモーターを用いていたが、近
年圧電定数の大きな圧電磁器が開発されたためこ
れらの圧電変位をアクチユエーターに応用するこ
とが多方面において検討され、実用化されている
圧電作用を変位素子に用いる場合の最大の利益は
エネルギー効率の優秀性にある。すなわち電磁力
作用の場合は、コイルに電流を流すことによつて
発生する磁界の作用を駆動源としているため、ヒ
ステリシス損・うず電流損・ジユール熱による損
失等のエネルギー損失を伴う欠点を有するが、圧
電型の場合は、電極間に加わる電圧を介する逆電
圧効果を用いるため磁界の作用を用いる場合に比
べてエネルギー損失が本質的に少ないことによ
る。
In the past, most of this type of micro-rotating devices used so-called motors that used electromagnetic force, but in recent years, piezoelectric ceramics with large piezoelectric constants have been developed, and the application of these piezoelectric displacements to actuators has become popular in many fields. The greatest benefit of using the piezoelectric effect in a displacement element, which has been studied and put into practical use, is superior energy efficiency. In other words, in the case of electromagnetic force, the driving source is the action of the magnetic field generated by passing a current through a coil, so it has the drawback of energy losses such as hysteresis loss, eddy current loss, and loss due to Joule heat. This is because the piezoelectric type uses a reverse voltage effect via the voltage applied between the electrodes, so the energy loss is essentially smaller than when using the action of a magnetic field.

しかしながら圧電型の場合は発生する変位量が
極めて微量であり、従つて応用可能な用途が限定
されてくるが、近年レーザー光線を扱う機械及び
超精密加工機器等においては、ミクロン又はサブ
ミクロンの単位での変位制御の要求が増大してい
るため、圧電型変位素子は、この分野で脚光を浴
びることになつた。但し、圧電型変位素子は直線
的変位の制御は構成上容易である反面、回転変位
を得る場合は直線的変位を何らかの機構により回
転変位に変換する必要がある。
However, in the case of piezoelectric type, the amount of displacement generated is extremely small, which limits its applicable applications, but in recent years, in machines and ultra-precision processing equipment that handle laser beams, displacement is generated in micron or submicron units. Due to the increasing demand for displacement control, piezoelectric displacement elements have come into the spotlight in this field. However, although the piezoelectric displacement element can easily control linear displacement, in order to obtain rotational displacement, it is necessary to convert the linear displacement into rotational displacement by some mechanism.

本考案はかかる点に鑑み、分極方向の夫々異な
る圧電体を積層構成して円周方向の変位量を得る
ように構成することにより、圧電変位素子の直線
変位を回転変位に変換する微小回転装置を提案す
ることを主たる目的とする。
In view of this, the present invention is a micro-rotary device that converts linear displacement of a piezoelectric displacement element into rotational displacement by laminating piezoelectric bodies with different polarization directions to obtain circumferential displacement. The main purpose is to propose.

以下本考案の一実施例について図面を参照しな
がら詳細に説明する。
An embodiment of the present invention will be described in detail below with reference to the drawings.

第1図は本案装置の一例を示す略線的断面斜視
図である。1は軸を示し、この軸1の中央付近に
放射状に圧電積層素子2が6本固定されている。
圧電積層素子2は、第2図に示す如く、厚さ方向
に分極した圧電磁器板2aを複数積層した第1の
素子21及び厚さ方向と直交する方向に分極した
圧電磁器板2bを複数積層したすべり型の第2の
素子22を積層接着したものである。第1の素子
21は、第3図に示す如く各磁器板2aの電極に
電気端子E1,E2を結線し、E1に正、E2に負の方
向の直流電圧Vを印加することにより、各磁器板
2aの分極方向に電圧Vは加わり厚みが増大する
ため、第1の素子21全体の厚さは、第4図に示
す如く、個々の磁器板2aの厚みの増加量の積層
数倍となり、破線で示すように高さの変位を生ず
る。また第2の素子22は、第5図に示す如く、
各磁器板2bの電極に電気素子E1,E2を結線し、
E1に正、E2に負の方向の直流電圧Vを印加する
ことにより、各磁器板2bの分極方向に電圧が加
わり横方向に変位するため、第2の素子22全体
の変位は、第6図に示す如く、破線図示の状態に
すべり変位を生ずる。従つて、圧電積層素子2
は、第2図に示す如く、各素子21,22の電気
結線を施すことにより、第7図に示す如く、高さ
方向と横方向との合成した変位を得ることができ
る。
FIG. 1 is a schematic cross-sectional perspective view showing an example of the present device. 1 indicates a shaft, and six piezoelectric laminated elements 2 are fixed radially around the center of this shaft 1.
As shown in FIG. 2, the piezoelectric laminated element 2 includes a first element 21 in which a plurality of piezoelectric ceramic plates 2a are laminated, which are polarized in the thickness direction, and a plurality of piezoelectric ceramic plates 2b, which are polarized in the direction perpendicular to the thickness direction, are laminated. The sliding type second element 22 is laminated and bonded. The first element 21 connects electric terminals E 1 and E 2 to the electrodes of each ceramic plate 2a as shown in FIG. 3, and applies a DC voltage V in a positive direction to E 1 and in a negative direction to E 2 . As a result, the voltage V is applied to each ceramic plate 2a in the polarization direction and the thickness increases, so that the overall thickness of the first element 21 is equal to the increase in thickness of each ceramic plate 2a, as shown in FIG. The height increases several times, resulting in a height displacement as shown by the broken line. Further, the second element 22, as shown in FIG.
Electric elements E 1 and E 2 are connected to the electrodes of each ceramic plate 2b,
By applying a DC voltage V in the positive direction to E 1 and in the negative direction to E 2 , voltage is applied in the polarization direction of each ceramic plate 2b and it is displaced in the lateral direction, so that the displacement of the entire second element 22 is As shown in FIG. 6, a sliding displacement occurs in the state shown by the broken line. Therefore, piezoelectric laminated element 2
By electrically connecting the elements 21 and 22 as shown in FIG. 2, a combined displacement in the height direction and the lateral direction can be obtained as shown in FIG.

再び第1図において、放射状に形成した圧電積
層素子2は、その作用端に弾性体3例えば硬質ゴ
ムを貼付け、円筒体4の内面と微小間〓gの間〓
が形成される。円筒体4は軸1と同心状に設けら
れる。そして弾性体3と円筒体4の内面とは一定
値以上の摩擦係数を有する。尚、5は軸受を示
す。
Referring again to FIG. 1, the piezoelectric laminated element 2 formed radially has an elastic body 3, for example, hard rubber, attached to its active end, and is connected between the inner surface of the cylindrical body 4 and the minute gap 〓g〓.
is formed. The cylindrical body 4 is provided concentrically with the shaft 1. The elastic body 3 and the inner surface of the cylindrical body 4 have a coefficient of friction greater than a certain value. Note that 5 indicates a bearing.

今、中心軸1を固定し、円筒体4を自由回転可
能な状態に設定した場合、第8図に示す如き短形
波パルスを各電圧積層素子2に印加することによ
り、各素子2の作用端が円筒体4の内周面に接す
ると共に図中右方向へずれるため、円筒体4は矢
印A方向に微小角Δφだけ回転する。電圧零にす
ると、各素子2の作用端は円筒体4から離れて元
の位置に復帰する。以下同様の直流パルス信号を
印加することにより、断続的に回転駆動すること
ができる。
Now, when the central axis 1 is fixed and the cylindrical body 4 is set in a freely rotatable state, by applying a rectangular wave pulse as shown in FIG. Since the end contacts the inner circumferential surface of the cylinder 4 and shifts to the right in the figure, the cylinder 4 rotates by a small angle Δφ in the direction of arrow A. When the voltage is reduced to zero, the active end of each element 2 separates from the cylindrical body 4 and returns to its original position. Thereafter, by applying a similar DC pulse signal, rotational driving can be performed intermittently.

第9図は本考案装置の他の例を示す要部の断面
図である。本例においては、第1図例の構造にお
いて円筒体4に逆方向のトルクを生じていると
き、各電圧積層素子2の電圧零の際円筒体4が逆
方向に回転することを防ぐため。放射方向にのみ
変位する直線型圧電積層素子6を合成型圧電積層
素子2と交互び設けたものである。従つて、第1
0図に示す如く、短波形パルスP1を合成型素子
2を印加すると共に、パルスP2と半サイクル位
相をずらしたパルスP2を直線型素子6に印加す
ることにより、合成型素子2の駆動中は直線型素
子6は駆動されず、よつて直線型素子6の遊端は
円筒体4の内面に接触せず回転を阻止しない。合
成型素子2への電圧印加が零になると同時に、直
線型素子6が円筒体4の内面に接触して円筒体4
を制動する。従つて、円筒体4が外部からのトル
クが加わつても逆方向への回転を阻止することが
できる。
FIG. 9 is a sectional view of essential parts showing another example of the device of the present invention. In this example, in order to prevent the cylindrical body 4 from rotating in the opposite direction when the voltage of each voltage laminated element 2 is zero when torque is generated in the opposite direction in the cylindrical body 4 in the structure of the example shown in FIG. Linear piezoelectric laminated elements 6 that are displaced only in the radial direction are provided alternately with synthetic piezoelectric laminated elements 2. Therefore, the first
As shown in Figure 0, by applying a short waveform pulse P 1 to the composite element 2 and applying a pulse P 2 whose phase is shifted by half a cycle from the pulse P 2 to the linear element 6, the composite element 2 is During driving, the linear element 6 is not driven, so the free end of the linear element 6 does not contact the inner surface of the cylindrical body 4 and does not prevent rotation. At the same time that the voltage applied to the composite element 2 becomes zero, the linear element 6 contacts the inner surface of the cylindrical body 4 and the cylindrical body 4
brake. Therefore, even if external torque is applied to the cylindrical body 4, rotation in the opposite direction can be prevented.

第11図は本考案の更に他の例を示す要部の断
面図である。本例においては、円筒体4の回転方
向を正逆両方向に回転するように構成したもので
ある。7は圧電積層素子2の合成変位方向が逆方
向に設定された逆方向圧電積層素子である。この
逆方向素子7を積層素子2と交互になるように配
置される。従つて、積層素子2及び逆方向素子7
を夫々必要なパルスで駆動することにより、円筒
体4の正方向及び反対方向への微小回転が可能と
なる。また本例においては、第9図例に示す直線
型素子6を更に組込むことにより、制動機能を有
する正逆微小回転装置を得ることができる。
FIG. 11 is a sectional view of essential parts showing still another example of the present invention. In this example, the cylindrical body 4 is configured to rotate in both forward and reverse directions. Reference numeral 7 denotes a reverse piezoelectric laminated element in which the combined displacement direction of the piezoelectric laminated element 2 is set in the opposite direction. The reverse direction elements 7 and the laminated elements 2 are arranged alternately. Therefore, the laminated element 2 and the reverse direction element 7
By driving the cylindrical body 4 with necessary pulses, the cylindrical body 4 can be minutely rotated in the forward and reverse directions. Furthermore, in this example, by further incorporating the linear element 6 shown in the example in FIG. 9, a forward/reverse minute rotation device having a braking function can be obtained.

尚、上述例におては、いずれも軸1を固定し、
円筒体4と回転せしめる構造につき説明したが、
これに代えて円筒体4を固定状態として各積層素
子2,6,7を接着し、軸2を回転駆動するよう
に構成することも可能である。
In addition, in the above examples, the shaft 1 is fixed,
Although the cylindrical body 4 and its rotating structure have been explained,
Alternatively, it is also possible to configure the cylindrical body 4 to be in a fixed state, to adhere the laminated elements 2, 6, and 7, and to rotate the shaft 2.

以上述べた如く本考案によれば、厚み方向に分
極し、電極を施した圧電磁器板を複数個積層して
なる素子と、厚みと直角方向に分極し電極を施し
た圧電磁器板を複数個積層してなる素子とを結合
した積層素子を軸と円筒体との間に放射状に設け
たので、従来の電磁型回転装置(モータ)に比べ
て電気機械変換効率が高いことは勿論、僅かな電
圧で微小角の回転が可能となるので、微小回転駆
動を必要とする例えばレーザ先駆動装置に適用し
て好適である。
As described above, according to the present invention, there is an element formed by laminating a plurality of piezoelectric ceramic plates polarized in the thickness direction and provided with electrodes, and a plurality of piezoelectric ceramic plates polarized in the direction perpendicular to the thickness and provided with electrodes. Since the laminated elements combined with the laminated elements are installed radially between the shaft and the cylindrical body, the electromechanical conversion efficiency is higher than that of conventional electromagnetic rotating devices (motors). Since it is possible to rotate a minute angle with a voltage, it is suitable for application to, for example, a laser tip drive device that requires minute rotational drive.

また本考案によれば、上記積層素子と共に直線
型積層素子を放射状に設けたので、上記積層素子
に印加するパルス及び直線型積層素子に印加する
半サイクル位相のずれたパルスの交互印加によ
り、微小回転後の確実な制動効果を達成すること
ができる。
Further, according to the present invention, since the linear multilayer elements are provided radially together with the multilayer elements, microscopic A reliable braking effect after rotation can be achieved.

更に本考案によれば、上記積層素子の合成変位
方向と反対方向に作用する逆方向積層素子を放射
状に設けたので、一方向の微小回転のみならず反
対方向の微小回転を作ることができる。
Furthermore, according to the present invention, since the reverse laminated elements acting in the direction opposite to the direction of the combined displacement of the laminated elements are provided radially, it is possible to create not only minute rotation in one direction but also minute rotation in the opposite direction.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本案装置の一例を示す略線的断面斜視
図、第2図は圧電積層素子の一例を示す図、第3
図及び第4図は第2図例を構成する直線型素子の
構成及びその動作状態を示す図、第5図及び第6
図は同じくすべり型素子の構成及びその動作状態
を示す図、第7図は第2図例の動作の説明に供す
る図、第8図は第1図例の圧電積層素子に印加す
る電圧の説明図、第9図は本考案装置の他の例を
示す要部の断面図、第10図は第9図例の圧電積
層素子に印加する電圧の説明図、第11図は本考
案の更に他の例を示す要部の断面図である。 1……軸、2……圧電積層変位素子、4……円
筒体、6……直線型圧電積層素子、7……逆方向
圧電積層変位素子。
FIG. 1 is a schematic cross-sectional perspective view showing an example of the proposed device, FIG. 2 is a diagram showing an example of a piezoelectric laminated element, and FIG.
Figures 4 and 4 are diagrams showing the configuration and operating state of the linear element constituting the example in Figure 2, Figures 5 and 6.
The figure also shows the structure of the sliding type element and its operating state, FIG. 7 is a diagram for explaining the operation of the example in FIG. 2, and FIG. 8 is an explanation of the voltage applied to the piezoelectric multilayer element in the example in FIG. 9 is a sectional view of the essential parts showing another example of the device of the present invention, FIG. 10 is an explanatory diagram of the voltage applied to the piezoelectric laminated element of the example of FIG. 9, and FIG. 11 is a further example of the device of the present invention. It is a sectional view of the important part showing an example. 1... Axis, 2... Piezoelectric laminated displacement element, 4... Cylindrical body, 6... Linear piezoelectric laminated element, 7... Reverse direction piezoelectric laminated displacement element.

Claims (1)

【実用新案登録請求の範囲】 1 厚み方向に分極し、電極を施した圧電磁器板
を複数個積層してなる素子と、厚みと直角方向
に分極し電極を施した圧電磁器板を複数個積層
してなる素子とを結合した積層素子を軸と円筒
体との間に放射状に設けたことを特徴とする微
小回転装置。 2 上記積層素子を上記軸又は円筒体側に固定し
て、上記円筒体又は軸を回転駆動する実用新案
登録請求の範囲第1項記載の微小回転装置。 3 上記積層素子と共に直線型積層素子を放射状
に設けた実用新案登録請求の範囲第1項又は第
2項記載の微小回転装置。 4 上記積層素子の合成変位方向と反対方向に作
用する逆方向積層素子を放射状に設けた実用新
案登録請求の範囲第1項、第2項又は第3項記
載の微小回転装置。
[Claims for Utility Model Registration] 1. An element formed by laminating a plurality of piezoelectric ceramic plates polarized in the thickness direction and provided with electrodes, and a plurality of laminated piezoelectric ceramic plates polarized in the direction perpendicular to the thickness and provided with electrodes. 1. A micro-rotating device characterized in that a laminated element, which is a combination of elements made of 2. The micro-rotation device according to claim 1, which is a registered utility model, wherein the laminated element is fixed to the shaft or cylindrical body and the cylindrical body or shaft is rotationally driven. 3. The micro-rotation device according to claim 1 or 2 of the utility model registration claim, in which linear laminated elements are provided radially together with the laminated elements. 4. The micro-rotation device according to claim 1, 2, or 3 of the utility model registration claim, wherein reverse-direction laminated elements acting in a direction opposite to the combined displacement direction of the laminated elements are radially provided.
JP3439883U 1983-03-10 1983-03-10 Micro rotation device Granted JPS59141492U (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3439883U JPS59141492U (en) 1983-03-10 1983-03-10 Micro rotation device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3439883U JPS59141492U (en) 1983-03-10 1983-03-10 Micro rotation device

Publications (2)

Publication Number Publication Date
JPS59141492U JPS59141492U (en) 1984-09-21
JPH0453193Y2 true JPH0453193Y2 (en) 1992-12-14

Family

ID=30165164

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3439883U Granted JPS59141492U (en) 1983-03-10 1983-03-10 Micro rotation device

Country Status (1)

Country Link
JP (1) JPS59141492U (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5326911A (en) * 1976-08-25 1978-03-13 Yokogawa Hokushin Electric Corp Pulse motor

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5326911A (en) * 1976-08-25 1978-03-13 Yokogawa Hokushin Electric Corp Pulse motor

Also Published As

Publication number Publication date
JPS59141492U (en) 1984-09-21

Similar Documents

Publication Publication Date Title
EP0449048B1 (en) Piezoelectric motor
JPH0124033B2 (en)
CN110138264B (en) Piezoelectric inchworm rotating motor
JPS60156283A (en) Piezoelectric electrostrictive motor
JPH0453193Y2 (en)
CN107306097A (en) Using the micro machine of multi-layer annular piezoelectric ceramics
JPH0448148Y2 (en)
JP2532425B2 (en) Ultrasonic motor
JPH0824428B2 (en) Ultrasonic motor
JPS62247769A (en) Ultrasonic motor
JPS6122776A (en) Motor
CN102013834A (en) Electrode segmentation type single drive and two-way piezoelectric motor
JPH055838Y2 (en)
JPH0139120Y2 (en)
JPH0446574A (en) Piezoelectric actuator
JPH0132757Y2 (en)
JPH0747984Y2 (en) Rotary actuator
JPH04112687A (en) Excitation method for piezoelectric element and control method for actuator
JP2537848B2 (en) Ultrasonic motor
JPH056430B2 (en)
JPS62107688A (en) Small-sized actuator
JPH056428B2 (en)
JP5118795B2 (en) Stacked sandwich ultrasonic motor with improved torque
JP2975218B2 (en) Ultrasonic motor
JPS62236368A (en) Ultrasonic motor