JPH056796B2 - - Google Patents
Info
- Publication number
- JPH056796B2 JPH056796B2 JP61137596A JP13759686A JPH056796B2 JP H056796 B2 JPH056796 B2 JP H056796B2 JP 61137596 A JP61137596 A JP 61137596A JP 13759686 A JP13759686 A JP 13759686A JP H056796 B2 JPH056796 B2 JP H056796B2
- Authority
- JP
- Japan
- Prior art keywords
- discharge
- type surge
- element according
- plate
- discharge type
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
- 238000010521 absorption reaction Methods 0.000 claims description 12
- 239000003989 dielectric material Substances 0.000 claims description 9
- 239000004020 conductor Substances 0.000 claims description 6
- 230000002265 prevention Effects 0.000 claims description 4
- 239000006096 absorbing agent Substances 0.000 claims 1
- 230000000694 effects Effects 0.000 description 7
- 239000007789 gas Substances 0.000 description 7
- 238000010891 electric arc Methods 0.000 description 5
- 230000004044 response Effects 0.000 description 5
- PXHVJJICTQNCMI-UHFFFAOYSA-N Nickel Chemical compound [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 description 4
- 239000011521 glass Substances 0.000 description 3
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 2
- 229910052782 aluminium Inorganic materials 0.000 description 2
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 2
- 229910052802 copper Inorganic materials 0.000 description 2
- 239000010949 copper Substances 0.000 description 2
- 150000002500 ions Chemical class 0.000 description 2
- 239000000463 material Substances 0.000 description 2
- 229910052759 nickel Inorganic materials 0.000 description 2
- 230000002195 synergetic effect Effects 0.000 description 2
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 1
- ZOKXTWBITQBERF-UHFFFAOYSA-N Molybdenum Chemical compound [Mo] ZOKXTWBITQBERF-UHFFFAOYSA-N 0.000 description 1
- 229910018503 SF6 Inorganic materials 0.000 description 1
- BQCADISMDOOEFD-UHFFFAOYSA-N Silver Chemical compound [Ag] BQCADISMDOOEFD-UHFFFAOYSA-N 0.000 description 1
- 230000002159 abnormal effect Effects 0.000 description 1
- 239000000956 alloy Substances 0.000 description 1
- 229910045601 alloy Inorganic materials 0.000 description 1
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 description 1
- JRPBQTZRNDNNOP-UHFFFAOYSA-N barium titanate Chemical compound [Ba+2].[Ba+2].[O-][Ti]([O-])([O-])[O-] JRPBQTZRNDNNOP-UHFFFAOYSA-N 0.000 description 1
- 229910002113 barium titanate Inorganic materials 0.000 description 1
- 239000000919 ceramic Substances 0.000 description 1
- 238000000151 deposition Methods 0.000 description 1
- 229910001873 dinitrogen Inorganic materials 0.000 description 1
- 235000012489 doughnuts Nutrition 0.000 description 1
- 239000007772 electrode material Substances 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 238000010304 firing Methods 0.000 description 1
- 229910052839 forsterite Inorganic materials 0.000 description 1
- 238000009499 grossing Methods 0.000 description 1
- 239000011261 inert gas Substances 0.000 description 1
- HCWCAKKEBCNQJP-UHFFFAOYSA-N magnesium orthosilicate Chemical compound [Mg+2].[Mg+2].[O-][Si]([O-])([O-])[O-] HCWCAKKEBCNQJP-UHFFFAOYSA-N 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 229910052751 metal Inorganic materials 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- 239000007769 metal material Substances 0.000 description 1
- 238000000034 method Methods 0.000 description 1
- 229910052750 molybdenum Inorganic materials 0.000 description 1
- 239000011733 molybdenum Substances 0.000 description 1
- 230000002093 peripheral effect Effects 0.000 description 1
- 230000037452 priming Effects 0.000 description 1
- 238000007639 printing Methods 0.000 description 1
- 229910052709 silver Inorganic materials 0.000 description 1
- 239000004332 silver Substances 0.000 description 1
- 238000004544 sputter deposition Methods 0.000 description 1
- SFZCNBIFKDRMGX-UHFFFAOYSA-N sulfur hexafluoride Chemical compound FS(F)(F)(F)(F)F SFZCNBIFKDRMGX-UHFFFAOYSA-N 0.000 description 1
- 229960000909 sulfur hexafluoride Drugs 0.000 description 1
- 230000001052 transient effect Effects 0.000 description 1
Landscapes
- Circuit Arrangements For Discharge Lamps (AREA)
- Details Of Television Scanning (AREA)
- Emergency Protection Circuit Devices (AREA)
- Thermistors And Varistors (AREA)
Description
【発明の詳細な説明】
[産業上の利用分野]
本発明は、気密容器に封入した放電電極間の放
電現象を利用した放電型サージ吸収素子に係り、
特に、沿面放電と間〓放電との両放電現象を併用
することにより、応答特性の向上を図つた放電型
サージ吸収素子に関する。[Detailed Description of the Invention] [Industrial Application Field] The present invention relates to a discharge type surge absorption element that utilizes a discharge phenomenon between discharge electrodes sealed in an airtight container.
In particular, the present invention relates to a discharge-type surge absorption element that improves response characteristics by using both creeping discharge and intermittent discharge phenomena in combination.
[従来の技術]
従来、電子機器に加わる過渡的な異常電圧や誘
導雷等のサージから電子回路素子を保護するた
め、電圧非直線抵抗体よりなるバリスタや気密容
器中に封入した放電間〓の放電現象を利用するア
レスタ等、種々のサージ吸収素子が用いられてい
る。[Prior Art] Conventionally, in order to protect electronic circuit elements from transient abnormal voltages applied to electronic equipment and surges such as induced lightning, varistors made of voltage non-linear resistors and discharge voltages sealed in airtight containers have been used. Various surge absorbing elements are used, such as arresters that utilize discharge phenomena.
上記サージ吸収素子のうち、放電現象を利用し
たサージ吸収素子1であるアレスタは、第6図に
示す如く、ニツケルやアルミニウム等よりなる放
電電極2,2を対向させて放電間〓3を形成し、
これに外部端子6,6を接続してガラス等よりな
る気密容器5に収納し、放電ガスを封入した構造
となされている。 Among the above surge absorbing elements, the arrester, which is the surge absorbing element 1 that utilizes a discharge phenomenon, has discharge electrodes 2, 2 made of nickel, aluminum, etc. facing each other to form a discharge gap 3, as shown in FIG. ,
External terminals 6, 6 are connected to this, and it is housed in an airtight container 5 made of glass or the like, and a discharge gas is sealed therein.
[発明が解決しようとする問題点]
ところで、この種サージ吸収素子は、放電ガス
中における放電電極間のグロー放電及びアーク放
電によつてサージを吸収するものであるため、電
流耐量は大きいものの、放電開始には初期電子や
イオンを必要とする。このため、サージが印加さ
れた場合における放電遅れ時間が大きく、急峻な
立ち上がり特性を有するインパルス性のサージに
対しては、残留サージが発生してサージ防護を十
分に行い得ないという問題がある。[Problems to be Solved by the Invention] Incidentally, this type of surge absorbing element absorbs surges by glow discharge and arc discharge between discharge electrodes in discharge gas, and therefore has a large current withstand capacity; Initial electrons and ions are required to start the discharge. Therefore, when a surge is applied, a discharge delay time is long and an impulsive surge having a steep rise characteristic causes a problem in that a residual surge is generated and it is not possible to provide sufficient surge protection.
本発明は、上述の点に鑑み案出されたもので、
放電現象を利用したサージ吸収素子の長所を生か
し、且つ欠点を改良することにより、電流対量が
大きく、しかも放電遅れ時間が小さくて急峻なサ
ージに対しても十分な防護機能を発揮し得る放電
型サージ吸収素子を実現することを目的とする。 The present invention was devised in view of the above points, and
By taking advantage of the advantages of the surge absorption element that utilizes the discharge phenomenon and improving the shortcomings, we have created a discharge device that has a large amount of current, has a short discharge delay time, and can provide sufficient protection against steep surges. The purpose is to realize a type surge absorption element.
[問題点を解決するための手段]
上述の目的を達成するため種々検討の結果、沿
面放電が、電流耐量は小さいものの放電遅れ時間
が極めて小さい放電現象であることに着目し、こ
れをトリガーとして用い、さらに放電がグロー放
電を経てアーク放電へと移行する構成とすること
によつて本発明の完成に至つたものである。[Means for solving the problem] As a result of various studies to achieve the above-mentioned purpose, we focused on the fact that creeping discharge is a discharge phenomenon with a small current capacity but an extremely short discharge delay time, and using this as a trigger. The present invention has been completed by using a structure in which the discharge changes from glow discharge to arc discharge.
従つて、本発明に係る放電型サージ吸収素子
は、放電間〓を隔てて略平行に相対向させた複数
の棒状あるいは板状の放電電極と、少なくとも一
面が誘電体層よりなる板状体とを、該板状体に形
成された複数の孔部に各放電電極を圧入して接続
し、もつて各放電電極間に上記誘電体層を介在さ
せ、これを放電ガスと共に気密容器に封入してな
る放電型サージ吸収素子であつて、上記板状体に
おける誘電体層の表面が、異なる種類の複数の誘
電体によつて構成され、これら異種の誘電体の境
界部が、上記複数の放電電極と接する段部あるい
は溝部となされていることを特徴とするものであ
る。 Therefore, the discharge type surge absorbing element according to the present invention includes a plurality of bar-shaped or plate-shaped discharge electrodes that are opposed to each other in substantially parallel manner with a discharge gap in between, and a plate-shaped body whose at least one surface is made of a dielectric layer. are connected by press-fitting each discharge electrode into a plurality of holes formed in the plate-like body, the dielectric layer is interposed between each discharge electrode, and this is sealed in an airtight container together with a discharge gas. The surface of the dielectric layer of the plate-like body is composed of a plurality of dielectrics of different types, and the boundary between these different types of dielectrics is a discharge type surge absorbing element. It is characterized by having a stepped portion or a groove portion in contact with the electrode.
[作用]
本発明は、上述の如き構成であるので、本発明
の放電型サージ吸収素子にサージが印加される
と、直ちに、誘電体層の表面において、上記放電
電極間に沿面放電が生じてサージ吸収が開始され
る。さらに、この放電によつて生じたイオン及び
電子のプライミング効果によつて、瞬時に、放電
間〓に放電が転移して放電電極間にグロー放電、
さらには大電流を通ずるアーク放電が生成し、上
記沿面放電と間〓放電との両放電現象によつてサ
ージが吸収される。[Function] Since the present invention has the above-described configuration, when a surge is applied to the discharge type surge absorbing element of the present invention, creeping discharge immediately occurs between the discharge electrodes on the surface of the dielectric layer. Surge absorption begins. Furthermore, due to the priming effect of ions and electrons caused by this discharge, the discharge instantly transfers between the discharge electrodes, causing a glow discharge between the discharge electrodes.
Further, an arc discharge is generated through which a large current flows, and the surge is absorbed by both the creeping discharge and intermittent discharge phenomena.
沿面放電は、誘電体層の表面が異種の誘電体で
構成されている場合に、その境界部に沿つて発生
しやすく、また誘電体の表面に段部や溝部がある
場合には、これに沿つての伸びが良好なものとな
る傾向がある。したがつて、本発明の場合には、
異種の誘電体の境界部と段部あるいは溝部とを一
致させているので、相乗効果が得られる。 Creeping discharge tends to occur along the boundaries when the surface of the dielectric layer is composed of different types of dielectric materials, and it also occurs when there are steps or grooves on the surface of the dielectric layer. There is a tendency for good elongation along the length. Therefore, in the case of the present invention,
Since the boundary between different types of dielectrics and the step or groove are aligned, a synergistic effect can be obtained.
[実施例]
以下、図面に基づいて本発明の実施例を説明す
る。[Example] Hereinafter, an example of the present invention will be described based on the drawings.
実施例 1
第1図は、本発明の一実施例に係る放電型サー
ジ吸収素子を示す斜視図である。図において放電
型サージ吸収素子1は、ニツケル、銅あるいはア
ルミニウム等の金属材料を棒状や板状(本例の場
合には、直径0.8mm、長さ10mmの棒状)に加工し
て、その表面にBaCO3等のエミツター材を被着
した一対の放電電極2,2を、略平行に対向配置
して上記放電電極2,2間に0.6mmの放電間〓3
を形成し、さらに、上記放電電極2,2の略中央
部に直径4.7mm、厚さ1.2mmの円板形状を有する沿
面放電用の板状体4を接続して、これを外径6mm
のガラス管より形成した気密容器5に封入した構
造となされている。また、上記気密容器5中に
は、所望される放電開始電圧に応じて希ガス
(He、Ne、Ar等)や窒素ガス等の不活性ガスあ
るいは六弗化硫黄ガス等により適宜選定された放
電ガスが封入され、放電電極2,2の一端にそれ
ぞれ接続されたデユメツト線や42−6合金線より
なる外部端子6,6が、上記気密容器5外へ導出
されている。Example 1 FIG. 1 is a perspective view showing a discharge type surge absorbing element according to an example of the present invention. In the figure, the discharge type surge absorbing element 1 is made by processing a metal material such as nickel, copper, or aluminum into a rod or plate shape (in this example, a rod shape with a diameter of 0.8 mm and a length of 10 mm). A pair of discharge electrodes 2, 2 coated with an emitter material such as BaCO 3 are arranged substantially parallel to each other, and a discharge distance of 0.6 mm is set between the discharge electrodes 2, 2.
Further, a creeping discharge plate 4 having a disk shape of 4.7 mm in diameter and 1.2 mm in thickness is connected to the approximate center of the discharge electrodes 2, 2, and this
It has a structure in which it is sealed in an airtight container 5 formed from a glass tube. In addition, in the airtight container 5, an appropriately selected discharge gas such as rare gas (He, Ne, Ar, etc.), inert gas such as nitrogen gas, sulfur hexafluoride gas, etc. is provided in accordance with the desired discharge starting voltage. External terminals 6, 6 made of dumet wires or 42-6 alloy wires are filled with gas and connected to one ends of the discharge electrodes 2, 2, respectively, and are led out of the airtight container 5.
上記沿面放電用の板状体4は、第2図及び第3
図に示す如く、上下両面にそれぞれ誘電体層7,
7が形成され、該誘電体層7,7間に、それぞれ
放電電極2,2に接続される導電体層8,8が形
成されており、厚さ方向の中央を通る面に対して
略対称な構成を有している。また、上記誘電体層
7,7及び誘電体層8,8を貫いて、放電電極
2,2を圧入するための貫通孔4a,4aが形成
されており、該貫通孔4a,4a内において、放
電電極2,2と導電体層8,8とが接続される。 The plate-shaped body 4 for creeping discharge is shown in FIGS. 2 and 3.
As shown in the figure, dielectric layers 7,
7 is formed, and between the dielectric layers 7, 7, conductor layers 8, 8 connected to the discharge electrodes 2, 2, respectively, are formed, and are approximately symmetrical with respect to a plane passing through the center in the thickness direction. It has a unique structure. Further, through holes 4a, 4a for press-fitting the discharge electrodes 2, 2 are formed through the dielectric layers 7, 7 and the dielectric layers 8, 8, and in the through holes 4a, 4a, Discharge electrodes 2, 2 and conductor layers 8, 8 are connected.
上記誘電体層7,7は、一方の面に導電体層
8,8が形成された第1の層7a,7a、該第1
の層7a,7aの他方の面略全域に20μmの厚さ
で形成された第2の層7b,7b及び該第2の層
7b,7bの周縁部に放電電極圧入用の貫通孔4
a,4aに接してドーナツ形状に形成された厚さ
10〜50μmの第3の層7c,7cよりなり、上記
第2の層7b,7bと第3の層7c,7cとの境
界部が段部4b,4bとなされている。上記第1
の層7a,7aは、アルミナやフオルステライト
等、機械的強度が大きいセラミツクよりなる。ま
た、上記第2の層7b,7b及び第3の層7c,
7cは、誘電体用ガラスペーストやチタン酸バリ
ウムペースト等の厚膜用誘電体ペーストの中か
ら、誘電率が異なる異種類のものを選定してそれ
ぞれ被着・焼成したものであり、表面が平滑状態
に仕上がるので沿面放電の伸びが良好となる。な
お、上記第2の層7b,7bは省略することが可
能であるが、この場合には第1の層7a,7aの
表面をラツピング処理する等の手段で平滑状態に
することによつて同様の効果が得られるものであ
る。 The dielectric layers 7, 7 include first layers 7a, 7a on which conductive layers 8, 8 are formed, and
A second layer 7b, 7b is formed with a thickness of 20 μm over substantially the entire surface of the other layer 7a, 7a, and a through hole 4 for press-fitting a discharge electrode is formed at the peripheral edge of the second layer 7b, 7b.
Thickness formed in a donut shape in contact with a, 4a
The third layer 7c, 7c has a thickness of 10 to 50 μm, and the boundary between the second layer 7b, 7b and the third layer 7c, 7c is a stepped portion 4b, 4b. 1st above
The layers 7a, 7a are made of ceramic having high mechanical strength, such as alumina or forsterite. Further, the second layers 7b, 7b and the third layer 7c,
7c is made by selecting different types of dielectric pastes with different dielectric constants from among dielectric glass pastes, barium titanate pastes, etc., and depositing and firing them to create a smooth surface. Since it is finished in a good condition, the creeping discharge can be extended well. Note that the second layers 7b, 7b can be omitted, but in this case, the same can be achieved by smoothing the surfaces of the first layers 7a, 7a by wrapping or other means. The following effects can be obtained.
また、上記誘電体層7,7における貫通孔4
a,4aの中心を結ぶ直線の略中央部には、該直
線と略垂直方向に延在する短絡防止用溝4c,4
cが設けられている。これは、サージ吸収による
グロー放電及びアーク放電によつて放電電極材料
がスパツタし、これが放電電極2,2間に被着し
て短絡を生じる現象を防止するためのものであ
る。 In addition, the through holes 4 in the dielectric layers 7, 7
A short-circuit prevention groove 4c, 4 extending substantially perpendicular to the straight line is provided approximately in the center of the straight line connecting the centers of the lines 4c, 4a.
c is provided. This is to prevent the discharge electrode material from sputtering due to glow discharge and arc discharge due to surge absorption, and from adhering between the discharge electrodes 2 and causing a short circuit.
沿面放電は、誘電体層の表面が異種の誘電体で
構成されている場合に、その境界部に沿つて発生
しやすく、また誘電体の表面に段部や溝部がある
場合には、これに沿つての伸びが良好なものとな
る。本実施例の場合には、異種の誘電体の境界部
と段部とを一致させているので、相乗効果が得ら
れる。なお、本実施例の段部を溝部としても同様
の効果が得られることは言うまでもない。 Creeping discharge tends to occur along the boundaries when the surface of the dielectric layer is composed of different types of dielectric materials, and it also occurs when there are steps or grooves on the surface of the dielectric layer. Good elongation along the length. In the case of this embodiment, since the boundary portions of different types of dielectric materials and the stepped portions are made to coincide with each other, a synergistic effect can be obtained. Note that it goes without saying that the same effect can be obtained even if the step portion of this embodiment is replaced with a groove portion.
一方、導電体層8,8は第4図に示す如く、モ
リブデン、銀、銅等の金属ペーストを厚膜印刷技
術を用いて誘電体層7,7間に1〜20μmの厚さ
に被着して形成したものであり、誘電体層7,7
との間に形成される分布静電容量を増大させて、
沿面放電におけるフラツシユオーバー電圧を低下
させる作用を有するものである。この場合、誘電
体層7,7の誘電率が大きいほど、また誘電体層
7,7の厚さが薄いほど上記電圧低下作用は強く
現れることとなる。また、上記誘電体層8,8は
曲玉状の略同一の平面形状を有し、貫通孔4a,
4aの中心を結ぶ直線の中点に関して点対称に配
置されている。これは、負極性の場合に進展速度
が速いという沿面放電の特性に鑑み、放電電極の
極性にかかわらず同一放電特性を得ようとするた
めである。 On the other hand, as shown in FIG. 4, the conductor layers 8, 8 are formed by applying a metal paste of molybdenum, silver, copper, etc. to a thickness of 1 to 20 μm between the dielectric layers 7, 7 using thick film printing technology. dielectric layers 7, 7.
By increasing the distributed capacitance formed between
This has the effect of reducing flashover voltage in creeping discharge. In this case, the higher the dielectric constant of the dielectric layers 7, 7, and the thinner the thickness of the dielectric layers 7, 7, the stronger the voltage reduction effect appears. Further, the dielectric layers 8, 8 have substantially the same planar shape in the shape of a curved ball, and the through holes 4a,
They are arranged symmetrically with respect to the midpoint of a straight line connecting the centers of 4a. This is because, in view of the characteristic of creeping discharge that the propagation speed is faster in the case of negative polarity, the same discharge characteristics are to be obtained regardless of the polarity of the discharge electrode.
上述の如く、本実施例の場合は、沿面放電用の
板状体4が上下略対称の構成を有し、これが放電
電極2,2の略中央部に接続されて、上記板状体
4によつて上下に分割された放電空間の容積及び
形状を略同一なものとしているので、板状体4の
上下面における放電特性が略同一となり、板状体
4の一面のみを用いる場合にくらべ、2倍以上の
寿命が得られるものである。なお、板状体4の構
成を上下略同一としても同様の効果が得られるも
のである。また、本実施例の場合、その応答速度
は3.5×10-9〜3.5×10-6sec程度となり、沿面放電
用の板状体がない以外は本実施例と同一の構成を
有するアレスタにおける、初期電子が十分に存在
する条件下での応答速度5×10-6〜20×10-6sec
にくらべて速くなつている。 As described above, in the case of this embodiment, the plate-like body 4 for creeping discharge has a vertically approximately symmetrical configuration, and is connected to the substantially central part of the discharge electrodes 2, 2, and is connected to the plate-like body 4. Therefore, since the volumes and shapes of the discharge spaces divided into the upper and lower parts are approximately the same, the discharge characteristics on the upper and lower surfaces of the plate-shaped body 4 are approximately the same, and compared to the case where only one surface of the plate-shaped body 4 is used, The lifespan is more than twice as long. Note that the same effect can be obtained even if the configuration of the plate-like body 4 is substantially the same on the upper and lower sides. In addition, in the case of this example, the response speed is about 3.5 × 10 -9 to 3.5 × 10 -6 sec, and the arrester has the same configuration as this example except that there is no plate-shaped body for creeping discharge. Response speed under conditions where there are sufficient initial electrons: 5×10 -6 to 20×10 -6 sec
It's getting faster compared to.
実施例 2
第5図は、本発明の他の実施例を示す斜視図で
ある。本実施例は、3本の放電電極2,2,2に
沿面放電用の板状体4を接続し、気密容器5の一
端から2本の外部端子6,6を、他端から一本の
外部端子6を導出したものであり、他の構成は実
施例1と同様である。この場合、3個のサージ吸
収素子がデルタ接続された構成とるため、2線式
回路の線間及び線・アース間用並びに3線式回路
の線間用のサージ吸収素子として適しており、ま
た、3個の素子が同一空間内に配されているの
で、連続サージに対して良好な応答特性を示すも
のである。Embodiment 2 FIG. 5 is a perspective view showing another embodiment of the present invention. In this embodiment, a plate-shaped body 4 for creeping discharge is connected to three discharge electrodes 2, 2, 2, two external terminals 6, 6 are connected from one end of an airtight container 5, and one external terminal is connected from the other end. The external terminal 6 is derived from the external terminal 6, and the other configurations are the same as in the first embodiment. In this case, since the three surge absorbing elements are connected in delta, it is suitable as a surge absorbing element between the lines of a two-wire circuit and between the line and ground, and between the lines of a three-wire circuit. , three elements are arranged in the same space, so it exhibits good response characteristics against continuous surges.
[発明の効果]
以上詳述の如く、本発明の放電型サージ吸収素
子は、複数の放電電極を誘電体層を備えた板状体
に接続し、各放電電極間に誘電体層を介在させて
いるため、これにサージが印加された場合、直ち
に、誘電体層の表面において沿面放電が発生し、
これがトリガーとなつて、放電はさらに放電間〓
におけるグロー放電を経てアーク放電へと移行さ
れる。従つて、本発明の放電型サージ吸収素子の
サージ吸収特性は、沿面放電の速応性と間〓放電
の電流耐量性とを合わせもつものとなり、急峻な
大電流サージに対し、十分な防護機能を発揮し得
るものとなる。[Effects of the Invention] As detailed above, the discharge type surge absorbing element of the present invention connects a plurality of discharge electrodes to a plate-like body provided with a dielectric layer, and interposes the dielectric layer between each discharge electrode. Therefore, if a surge is applied to this, creeping discharge will immediately occur on the surface of the dielectric layer.
This acts as a trigger, and the discharge continues even further between discharges.
The process progresses from glow discharge to arc discharge. Therefore, the surge absorption characteristics of the discharge type surge absorption element of the present invention combine the rapid response of creeping discharge and the current withstand capability of intermittent discharge, and provide sufficient protection against steep large current surges. It becomes something that can be demonstrated.
また、誘電体層の表面が異種の誘電体で構成さ
れ、その境界部が段部あるいは溝部となされてい
るため、沿面放電がより発生し易くなると共に、
その伸びが良好なものとなる。 In addition, since the surface of the dielectric layer is composed of different types of dielectric materials, and the boundaries between them are stepped or grooved, creeping discharge is more likely to occur, and
The elongation becomes good.
さらに、その製造に際しても、従来のサージ吸
収素子の放電電極に沿面放電用の板状体を接続す
るだけであるため、さほど材料費や加工費を要す
ることなく、安価に実現できるものである。 Furthermore, when manufacturing the device, since the plate-shaped body for creeping discharge is simply connected to the discharge electrode of a conventional surge absorbing element, it can be realized at low cost without requiring much material or processing cost.
第1図乃至第4図は、本発明の一実施例を示
し、第1図は斜視図、第2図は板状体の斜視図、
第3図は板状体の拡大縦断面図、第4図は板状体
の横断面図、第5図は本発明の他の実施例を示す
斜視図であり、第6図は従来例の斜視図である。
1……放電型サージ吸収素子、2……放電電
極、3……放電間〓、4……板状体、4a……貫
通孔、4b……段部、4c……短絡防止用溝、5
……気密容器、7……誘電体層、7a……第1の
層、7b……第2の層、7c……第3の層、8…
…導電体層。
1 to 4 show an embodiment of the present invention, FIG. 1 is a perspective view, FIG. 2 is a perspective view of a plate-like body,
FIG. 3 is an enlarged vertical sectional view of the plate-like body, FIG. 4 is a cross-sectional view of the plate-like body, FIG. 5 is a perspective view showing another embodiment of the present invention, and FIG. 6 is a conventional example. FIG. DESCRIPTION OF SYMBOLS 1...Discharge type surge absorption element, 2...Discharge electrode, 3...Discharge gap, 4...Plate-shaped body, 4a...Through hole, 4b...Step part, 4c...Short circuit prevention groove, 5
...Hermetic container, 7...Dielectric layer, 7a...First layer, 7b...Second layer, 7c...Third layer, 8...
...Conductor layer.
Claims (1)
の棒状あるいは板状の放電電極と、少なくとも一
面が誘電体層よりなる板状体とを、該板状体に形
成された複数の孔部に各放電電極を圧入して接続
し、もつて各放電電極間に上記誘電体層を介在さ
せ、これを放電ガスと共に気密容器内に封入して
なる放電型サージ吸収素子であつて、上記板状体
における誘電体層の表面が、異なる種類の複数の
誘電体によつて構成され、これら異種の誘電体の
境界部が、上記複数の放電電極と接する段部にあ
るいは溝部となされていることを特徴とする放電
型サージ吸収素子。 2 上記誘電体層の表面が、平滑状態であること
を特徴とする特許請求の範囲第1項に記載の放電
型サージ吸収素子。 3 上記誘電体層が、3層構造を有することを特
徴とする特許請求の範囲第1項または第2項に記
載の放電型サージ吸収素子。 4 上記誘電体層が、2層構造を有することを特
徴とする特許請求の範囲第1項または第2項に記
載の放電型サージ吸収素子。 5 上記放電電極間に位置する誘電体層に、短絡
防止用溝が形成されていることを特徴とする特許
請求の範囲第1項乃至第4項の何れかに記載の放
電型サージ吸収素子。 6 上記短絡防止用溝が、放電電極の中心を結ぶ
直線と略垂直方向に延在していることを特徴とす
る特許請求の範囲第5項に記載の放電型サージ吸
収素子。 7 上記誘電体層の裏面に、上記複数の放電電極
それぞれに接続された複数の導電体層が形成され
ていることを特徴とする特許請求の範囲第1項乃
至第6項の何れかに記載の放電型サージ吸収素
子。 8 上記複数の導電体層の平面形状が、略同一で
あることを特徴とする特許請求の範囲第7項に記
載の放電型サージ吸収素子。 9 上記板状体の両面が、それぞれ誘電体層より
なることを特徴とする特許請求の範囲第1項乃至
第8項の何れかに記載の放電型サージ吸収素子。 10 上記板状体の一方の側と他方の側の構成
が、上記一方の側と他方の側の中央を通る面に対
して略対称又は略同一であることを特徴とする特
許請求の範囲第9項に記載の放電型サージ吸収素
子。 11 上記板状体が、放電電極の延在方向の略中
央部に配されていることを特徴とする特許請求の
範囲第9項又は第10項に記載の放電型サージ吸
収素子。 12 上記板状体によつて分割された気密容器内
の空間が、略同一容積、同一形状であることを特
徴とする特許請求の範囲第11項に記載の放電型
サージ吸収素子。 13 上記板状体に形成された複数の孔部が貫通
孔であり、上記放電電極が該板状体を貫通してい
ることを特徴とする特許請求の範囲第1項乃至第
12項の何れかに記載の放電型サージ吸収素子。 14 上記板状体の平面形状が、円形であること
を特徴とする特許請求の範囲第1項乃至第13項
の何れかに記載の放電型サージ吸収素子。 15 上記放電電極数が、2本であることを特徴
とする特許請求の範囲第1項乃至第14項の何れ
かに記載する放電型サージ吸収素子。 16 上記放電電極数が、3本であることを特徴
とする特許請求の範囲第1項乃至第14項の何れ
かに記載の放電型サージ吸収素子。[Claims] 1. A plurality of bar-shaped or plate-shaped discharge electrodes facing each other in substantially parallel with a discharge gap in between, and a plate-shaped body having at least one surface made of a dielectric layer, on the plate-shaped body. The discharge type surge absorber is made by press-fitting and connecting each discharge electrode into the plurality of holes formed, interposing the above-mentioned dielectric layer between each discharge electrode, and enclosing this together with discharge gas in an airtight container. In the element, the surface of the dielectric layer in the plate-like body is composed of a plurality of dielectrics of different types, and a boundary between these dielectrics of different types is a stepped portion in contact with the plurality of discharge electrodes. Alternatively, a discharge type surge absorption element characterized by having a groove portion. 2. The discharge type surge absorbing element according to claim 1, wherein the surface of the dielectric layer is smooth. 3. The discharge type surge absorbing element according to claim 1 or 2, wherein the dielectric layer has a three-layer structure. 4. The discharge type surge absorbing element according to claim 1 or 2, wherein the dielectric layer has a two-layer structure. 5. The discharge type surge absorbing element according to any one of claims 1 to 4, wherein a short circuit prevention groove is formed in the dielectric layer located between the discharge electrodes. 6. The discharge type surge absorbing element according to claim 5, wherein the short circuit prevention groove extends substantially perpendicularly to a straight line connecting the centers of the discharge electrodes. 7. According to any one of claims 1 to 6, a plurality of conductor layers connected to each of the plurality of discharge electrodes are formed on the back surface of the dielectric layer. discharge type surge absorption element. 8. The discharge type surge absorbing element according to claim 7, wherein the plurality of conductor layers have substantially the same planar shape. 9. The discharge type surge absorbing element according to any one of claims 1 to 8, wherein both surfaces of the plate-like body are each made of a dielectric layer. 10 Claim No. 1, characterized in that the configurations of one side and the other side of the plate-shaped body are substantially symmetrical or substantially the same with respect to a plane passing through the center of the one side and the other side. 9. The discharge type surge absorption element according to item 9. 11. The discharge type surge absorbing element according to claim 9 or 10, wherein the plate-like body is disposed approximately in the center of the discharge electrode in the extending direction. 12. The discharge type surge absorbing element according to claim 11, wherein the spaces in the airtight container divided by the plate-like bodies have substantially the same volume and the same shape. 13. Any one of claims 1 to 12, characterized in that the plurality of holes formed in the plate-shaped body are through holes, and the discharge electrode passes through the plate-shaped body. The discharge type surge absorbing element according to claim 1. 14. The discharge type surge absorbing element according to any one of claims 1 to 13, wherein the planar shape of the plate-like body is circular. 15. The discharge type surge absorbing element according to any one of claims 1 to 14, wherein the number of discharge electrodes is two. 16. The discharge type surge absorbing element according to any one of claims 1 to 14, wherein the number of discharge electrodes is three.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP13759686A JPS62295376A (en) | 1986-06-13 | 1986-06-13 | Discharge type surge absorber |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP13759686A JPS62295376A (en) | 1986-06-13 | 1986-06-13 | Discharge type surge absorber |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS62295376A JPS62295376A (en) | 1987-12-22 |
JPH056796B2 true JPH056796B2 (en) | 1993-01-27 |
Family
ID=15202398
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP13759686A Granted JPS62295376A (en) | 1986-06-13 | 1986-06-13 | Discharge type surge absorber |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS62295376A (en) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH01311585A (en) * | 1988-06-09 | 1989-12-15 | Okaya Electric Ind Co Ltd | Discharge type surge absorbing element |
Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS54108255A (en) * | 1978-02-13 | 1979-08-24 | Kyoto Ceramic | Surge absorbing element |
-
1986
- 1986-06-13 JP JP13759686A patent/JPS62295376A/en active Granted
Patent Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS54108255A (en) * | 1978-02-13 | 1979-08-24 | Kyoto Ceramic | Surge absorbing element |
Also Published As
Publication number | Publication date |
---|---|
JPS62295376A (en) | 1987-12-22 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP2004014466A (en) | Chip type surge absorber and its manufacturing method | |
JP4140173B2 (en) | Chip-type surge absorber and manufacturing method thereof | |
JPH056797B2 (en) | ||
US6606230B2 (en) | Chip-type surge absorber and method for producing the same | |
JPH056796B2 (en) | ||
JP2001267037A (en) | Surge absorbing element and manufacturing method therefor | |
US3366831A (en) | Overvoltage arrester having stacked arrays of arc gap and grading resistor units | |
JP2004014437A (en) | Chip type surge absorber and its manufacturing method | |
JP3536592B2 (en) | Discharge tube type surge absorber | |
JPS62232881A (en) | Surge absorber | |
KR100257585B1 (en) | Surge absorber | |
US3673459A (en) | Two-wire preionizer for surge voltage arresters | |
JPH054232Y2 (en) | ||
US6477033B2 (en) | Nonlinear dielectric element | |
JPH067506B2 (en) | Chip type surge absorber | |
JP2615221B2 (en) | Gas input / discharge arrester | |
KR950034946A (en) | Surge absorber | |
JPH0454716Y2 (en) | ||
JP3745242B2 (en) | Discharge type surge absorber | |
JPH10106713A (en) | Multiple terminal discharge tube | |
JPH0443987Y2 (en) | ||
JPH03230488A (en) | Discharge type surge absorbing element | |
JP2900505B2 (en) | Surge absorbing element | |
JP3686013B2 (en) | Chip type surge absorber | |
JP2927680B2 (en) | Discharge type surge absorbing element |