JPH0567732A - Semiconductor element manufacturing method - Google Patents

Semiconductor element manufacturing method

Info

Publication number
JPH0567732A
JPH0567732A JP3252882A JP25288291A JPH0567732A JP H0567732 A JPH0567732 A JP H0567732A JP 3252882 A JP3252882 A JP 3252882A JP 25288291 A JP25288291 A JP 25288291A JP H0567732 A JPH0567732 A JP H0567732A
Authority
JP
Japan
Prior art keywords
oxide film
capacitor
cvd method
film
normal pressure
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP3252882A
Other languages
Japanese (ja)
Inventor
Eizaburo Takahashi
英三郎 高橋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Oki Electric Industry Co Ltd
Original Assignee
Oki Electric Industry Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Oki Electric Industry Co Ltd filed Critical Oki Electric Industry Co Ltd
Priority to JP3252882A priority Critical patent/JPH0567732A/en
Publication of JPH0567732A publication Critical patent/JPH0567732A/en
Pending legal-status Critical Current

Links

Landscapes

  • Semiconductor Integrated Circuits (AREA)
  • Semiconductor Memories (AREA)

Abstract

PURPOSE:To provide a semiconductor element manufacturing method capable of enlarging a margin of capacitor capacitance. CONSTITUTION:After an oxide film 6 is formed by a normal pressure CVD method using silane on a word line 4, ozone and organic silane is acted each other by the normal pressure CVD method to accumulate an oxide film 7 having the coarse surface and open a cell contact hole. Thereafter, a polycrystalline silicon 8 is accumulated to form a capacitor storage node having a large surface area.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】この発明は、半導体素子における
キャパシタの表面積を増大させ、キャパシタ容量のマー
ジンの拡大を期する半導体素子を製造することができる
ようにした半導体素子製造方法に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a semiconductor element manufacturing method capable of increasing the surface area of a capacitor in a semiconductor element and manufacturing a semiconductor element aiming to increase the margin of the capacitance of the capacitor.

【0002】[0002]

【従来の技術】図3(a)〜図3(c)は従来の半導体
素子の製造方法の前段の工程断面図であり、図4(a)
〜図4(c)はその後段の工程断面図である。まず、図
3(a)はDRAM(Dynamic Random Access Memory)
の作成工程において、LDD(Lightly DopedDrain )
構造のトランジスタ形成後のメモリセル部の断面図であ
る。
2. Description of the Related Art FIGS. 3 (a) to 3 (c) are cross-sectional views of a prior stage of a conventional semiconductor device manufacturing method.
4C is a process sectional view of the subsequent stage. First, FIG. 3A shows a DRAM (Dynamic Random Access Memory).
LDD (Lightly DopedDrain) in the process of creating
FIG. 6 is a cross-sectional view of a memory cell portion after a transistor having a structure is formed.

【0003】この図3(a)における21はシリコン単
結晶基板であり、22は素子分離のための5000Å程
度の厚さのフィールド酸化膜である。23はドライ酸化
による200Å程度の厚さのゲート酸化膜である。この
ゲート酸化膜23上に不純物のリンを拡散した3000
Å程度の膜厚の多結晶シリコンによるワードライン24
が形成されている。25はLDD構造のトランジスタ作
成のためのサイドウォール酸化膜である。
In FIG. 3A, reference numeral 21 is a silicon single crystal substrate, and 22 is a field oxide film having a thickness of about 5000 Å for element isolation. Reference numeral 23 is a gate oxide film having a thickness of about 200Å formed by dry oxidation. 3000 in which phosphorus as an impurity is diffused on the gate oxide film 23.
Word line 24 made of polycrystalline silicon with a thickness of about Å
Are formed. Reference numeral 25 is a sidewall oxide film for forming a transistor having an LDD structure.

【0004】次に、図3(b)に示すように、約400
℃でシランと酸素を用いて常圧の化学気相成長法(Chem
ical Vapor Deposition :以下、CVDという)により
シリコン酸化膜26を3000Å堆積させる。次いで、
図3(c)に示すように、セルキャパシタ作成に当た
り、コンタクトホールを開孔する。
Next, as shown in FIG.
Atmospheric pressure chemical vapor deposition using silane and oxygen (Chem
The silicon oxide film 26 is deposited by 3000 Å by ical vapor deposition (hereinafter referred to as CVD). Then
As shown in FIG. 3C, a contact hole is opened when the cell capacitor is formed.

【0005】次に、図4(a)〜図4(c)の後段の工
程に入り、図4(a)に示すように、多結晶シリコンを
シランを用いた減圧CVD法にて2000Å堆積し、リ
ン拡散を行なった後にキャパシタストレージノード27
としてパターニングする。
Next, the subsequent steps of FIGS. 4 (a) to 4 (c) are entered, and as shown in FIG. 4 (a), polycrystalline silicon is deposited to 2000 liters by a low pressure CVD method using silane. , Capacitor storage node 27 after phosphorus diffusion
As patterning.

【0006】次に、図4(b)に示すように、誘電体膜
28のシリコン窒化膜を減圧CVD法にて100Å、続
いて多結晶シリコン29をその上に2500Å堆積し、
リン拡散を施す。その後パターニングをしてキャパシタ
を形成する。
Next, as shown in FIG. 4B, the silicon nitride film of the dielectric film 28 is deposited by 100 Å by the low pressure CVD method, and then the polycrystalline silicon 29 is deposited by 2500 Å thereon.
Apply phosphorus diffusion. Then, patterning is performed to form a capacitor.

【0007】次に、図4(c)に示すように、層間絶縁
膜BPSG30(Boron −Phospho−Silicate−Glass
)を常圧CVD法にて6000Å堆積し、950℃の
熱処理を加えるリフローで平坦化を行なう。
Next, as shown in FIG. 4C, an interlayer insulating film BPSG30 (Boron-Phospho-Silicate-Glass) is formed.
) Is deposited by the atmospheric pressure CVD method at 6000 Å, and heat treatment is performed at 950 ° C. to perform planarization by reflow.

【0008】次に、ビットラインコンタクトを開孔し
て、アルミ合金31で配線する。最後にパッシベーショ
ン膜であるシリコン窒化膜32をプラズマCVD法にて
8000Åの厚さに形成する。
Next, a bit line contact is opened and wiring is performed with an aluminum alloy 31. Finally, a silicon nitride film 32, which is a passivation film, is formed by plasma CVD to a thickness of 8000Å.

【0009】[0009]

【発明が解決しようとする課題】しかしながら、以上述
べたDRAMのスタックキャパシタの製造方法では、微
細化に伴なって必要なメモリキャパシタの容量確保が難
しくなってきた。キャパシタ容量を増すため誘電体であ
る窒化膜の薄膜化も行なわれているが、リーク電流の問
題もあり薄膜化による容量増加も限界に近い。
However, in the above-described method for manufacturing a DRAM stack capacitor, it has become difficult to secure the required capacity of the memory capacitor due to miniaturization. A thin film of a nitride film, which is a dielectric, has been thinned to increase the capacitance of the capacitor, but there is a problem of leak current, and the increase in capacitance due to the thinning is near the limit.

【0010】この発明は前記従来技術が持っている問題
点のうち、微細化にともなって、必要なメモリキャパシ
タの容量確保が難しいという点について解決した半導体
素子製造方法を提供するものである。
The present invention provides a method of manufacturing a semiconductor device, which solves the problem of the above-mentioned conventional technique that it is difficult to secure a necessary memory capacitor capacity due to miniaturization.

【0011】[0011]

【課題を解決するための手段】この発明は半導体素子製
造方法において、キャパシタストレージノードとなる多
結晶シリコン膜の下に常圧にてO3 とTEOS(tetrae
thlorthsilicate )をCVD法にて反応させて粗面の絶
縁膜を形成する工程を導入したものである。
According to the present invention, in a method of manufacturing a semiconductor device, O 3 and TEOS (tetrae) are formed under a normal pressure under a polycrystalline silicon film to be a capacitor storage node.
Thlorth silicate) is reacted by a CVD method to form a rough insulating film.

【0012】[0012]

【作用】この発明によれば、半導体素子製造方法におい
て、以上のような工程を導入したので、粗面の絶縁膜上
に堆積させる多結晶シリコンの表面積を増大させ、スト
レージノードのキャパシタ容量が大きくなり、したがっ
て、前記問題点を除去できる。
According to the present invention, since the steps as described above are introduced in the method of manufacturing a semiconductor device, the surface area of polycrystalline silicon deposited on the insulating film having a rough surface is increased, and the capacitance of the storage node is increased. Therefore, the above problems can be eliminated.

【0013】[0013]

【実施例】以下、この発明の半導体素子製造方法の実施
例について図面に基づき説明する。図1(a)〜図1
(c)はその一実施例の前段の工程断面図であり、図2
(a)〜図2(c)はその後段の工程断面図である。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENT An embodiment of a method for manufacturing a semiconductor device of the present invention will be described below with reference to the drawings. 1 (a) to 1
FIG. 2C is a process sectional view of the first stage of the embodiment, and FIG.
2A to 2C are process cross-sectional views of the subsequent stage.

【0014】まず、図1(a)はスタックキャパシタタ
イプのDRAM作成工程におけるLDDトランジスタ形
成後のメモリセル部の断面図である。この図1(a)の
1は半導体基板としてのシリコン単結晶基板であり、2
はこのシリコン単結晶基板1上に形成した素子分離のた
めの厚さ5000Å程度のフィールド酸化膜、3はドラ
イ酸化による厚さ200Å程度のゲート酸化膜、4はリ
ン拡散した厚さ3000Å程度の多結晶シリコン300
0Åのワードラインである。また、5はLDD構造のト
ランジスタ作成のためのゲートサイドウォール酸化膜で
ある。
First, FIG. 1A is a cross-sectional view of a memory cell portion after an LDD transistor is formed in a stack capacitor type DRAM fabrication process. 1 in FIG. 1A is a silicon single crystal substrate as a semiconductor substrate, and 2
Is a field oxide film with a thickness of about 5000 Å for element isolation formed on the silicon single crystal substrate 1, 3 is a gate oxide film with a thickness of about 200 Å by dry oxidation, and 4 is a phosphorus-diffused thickness of about 3000 Å. Crystalline silicon 300
It is a 0Å word line. Reference numeral 5 is a gate sidewall oxide film for forming a transistor having an LDD structure.

【0015】このような構造のメモリセル部に、次に図
1(b)に示すように、約400℃でシランと酸素を用
いて常圧CVD法で酸化膜6を2000Å堆積する。こ
こでシランによる常圧CVD酸化膜を用いるのは、次に
堆積する粗面酸化膜を形成する上で都合がよい下地絶縁
膜であるためである。
Next, as shown in FIG. 1 (b), an oxide film 6 of 2000 Å is deposited on the memory cell portion having such a structure by atmospheric pressure CVD method using silane and oxygen at about 400 ° C. The atmospheric pressure CVD oxide film made of silane is used here because it is a base insulating film that is convenient for forming a rough surface oxide film to be deposited next.

【0016】次に、図1(c)に示すように、オゾンと
TEOSを常圧CVD法で反応させて、粗面酸化膜7を
形成する。この粗面酸化膜7を形成するうえで、堆積温
度は約350℃〜450℃、オゾンはTEOSとの反応
に対して十分な量を供給する必要がある。
Next, as shown in FIG. 1C, ozone and TEOS are reacted by an atmospheric pressure CVD method to form a rough surface oxide film 7. In forming this rough surface oxide film 7, it is necessary to supply a deposition temperature of about 350 ° C. to 450 ° C. and supply ozone in a sufficient amount for the reaction with TEOS.

【0017】次に、図2(a)〜図2(c)に示す後段
の製造工程に入り、図2(a)に示すように、セルキャ
パシタのコンタクトホールを開孔後、全面に減圧CVD
法で多結晶シリコン8を2000Å堆積し、リン拡散を
施す。
Next, as shown in FIG. 2 (a), after the contact hole of the cell capacitor is opened, the low pressure CVD is performed on the entire surface as shown in FIG. 2 (a).
2000 liters of polycrystalline silicon 8 is deposited by the method, and phosphorus diffusion is performed.

【0018】次に、図2(b)に示すように、ストレー
ジノードのパターニング後に誘電体9となるシリコン窒
化膜を100Å程度の厚さに堆積する。次いで、上部電
極となる多結晶シリコン10を2500Å堆積し、リン
拡散してからパターニングをしてキャパシタを形成す
る。
Next, as shown in FIG. 2B, after patterning the storage node, a silicon nitride film to be the dielectric 9 is deposited to a thickness of about 100 Å. Then, 2500 Å of polycrystalline silicon 10 to be the upper electrode is deposited, phosphorus is diffused, and then patterned to form a capacitor.

【0019】次に、図2(c)に示すように、常圧CV
D法でBPSG膜11を堆積し、950℃でリフローを
行なって、平坦化する。続いて、ビットラインコンタク
トを開孔して、アルミ合金配線12を形成し、最後にプ
ラズマCVD法でパッシベーション膜であるシリコン窒
化膜13を8000Å堆積する。
Next, as shown in FIG. 2 (c), the normal pressure CV
The BPSG film 11 is deposited by the D method and reflowed at 950 ° C. to flatten it. Then, a bit line contact is opened to form an aluminum alloy wiring 12, and finally a silicon nitride film 13 which is a passivation film is deposited by 8000 Å by a plasma CVD method.

【0020】[0020]

【発明の効果】以上詳細に説明したように、この発明に
よれば、キャパシタのストレージノードの下部の絶縁膜
に常圧によるオゾンとTEOSのCVD法による粗面酸
化膜を用いるようにしたので、ストレージノードの表面
積が増大し、キャパシタ容量のマージンの拡大が期待で
きる。
As described above in detail, according to the present invention, the insulating film under the storage node of the capacitor is formed by using the ozone of normal pressure and the rough oxide film of TEOS by the CVD method. It is expected that the surface area of the storage node will increase and the capacity margin of the capacitor will increase.

【図面の簡単な説明】[Brief description of drawings]

【図1】この発明の半導体素子製造方法の一実施例を説
明するための前段の工程断面図。
FIG. 1 is a process sectional view of a preceding stage for explaining an embodiment of a method for manufacturing a semiconductor device of the present invention.

【図2】同上実施例の後段の工程断面図。FIG. 2 is a process sectional view of the latter stage of the embodiment.

【図3】従来の半導体素子製造方法の前段の工程断面
図。
FIG. 3 is a process sectional view of a former stage of a conventional semiconductor device manufacturing method.

【図4】従来の半導体素子製造方法の後段の工程断面
図。
FIG. 4 is a process sectional view of a latter stage of a conventional semiconductor element manufacturing method.

【符号の説明】[Explanation of symbols]

1 シリコン単結晶基板 2 フィールド酸化膜 3 ゲート酸化膜 4 ワードライン 5 ゲートサイドウォール酸化膜 6 酸化膜 7 粗面酸化膜 8 多結晶シリコン 9 誘電体 10 多結晶シリコン 11 BPSG膜 12 アルミ合金配線 13 シリコン窒化膜 1 Silicon Single Crystal Substrate 2 Field Oxide Film 3 Gate Oxide Film 4 Wordline 5 Gate Sidewall Oxide Film 6 Oxide Film 7 Rough Surface Oxide Film 8 Polycrystalline Silicon 9 Dielectric 10 Polycrystalline Silicon 11 BPSG Film 12 Aluminum Alloy Wiring 13 Silicon Nitride film

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 少なくとも表面の一部に導電層を有する
半導体基板上に、シランを用いた常圧CVD法による酸
化膜を堆積する工程と、 この酸化膜上に、オゾンと有機シランを常圧CVD法に
より反応させて粗面酸化膜を堆積する工程と、 前記導電層上の前記酸化膜と粗面酸化膜にセルコンタク
トホールを開孔後、上記セルコンタクトホール開孔部を
含む粗面酸化膜上に多結晶シリコンを堆積させてキャパ
シタストレージノードを形成する工程と、 よりなる半導体素子製造方法。
1. A step of depositing an oxide film by a normal pressure CVD method using silane on a semiconductor substrate having a conductive layer on at least a part of its surface, and ozone and organic silane on the oxide film under normal pressure. A step of reacting by a CVD method to deposit a rough surface oxide film; and after forming a cell contact hole in the oxide film and the rough surface oxide film on the conductive layer, a rough surface oxidation including the cell contact hole opening portion A method of manufacturing a semiconductor device, comprising the steps of depositing polycrystalline silicon on a film to form a capacitor storage node.
JP3252882A 1991-09-05 1991-09-05 Semiconductor element manufacturing method Pending JPH0567732A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3252882A JPH0567732A (en) 1991-09-05 1991-09-05 Semiconductor element manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3252882A JPH0567732A (en) 1991-09-05 1991-09-05 Semiconductor element manufacturing method

Publications (1)

Publication Number Publication Date
JPH0567732A true JPH0567732A (en) 1993-03-19

Family

ID=17243477

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3252882A Pending JPH0567732A (en) 1991-09-05 1991-09-05 Semiconductor element manufacturing method

Country Status (1)

Country Link
JP (1) JPH0567732A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100249917B1 (en) * 1996-06-14 2000-03-15 흥 치우 후 Manufacturing method of capacitor in dram cell

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100249917B1 (en) * 1996-06-14 2000-03-15 흥 치우 후 Manufacturing method of capacitor in dram cell

Similar Documents

Publication Publication Date Title
US8026542B2 (en) Low resistance peripheral local interconnect contacts with selective wet strip of titanium
US6187631B1 (en) Hemispherical grained silicon on conductive nitride
US6707088B2 (en) Method of forming integrated circuitry, method of forming a capacitor, method of forming DRAM integrated circuitry and DRAM integrated category
US5497016A (en) Stacked dram poly plate capacitor
JPH06244364A (en) Manufacture of semiconductor device
US5656529A (en) Method for manufacturing highly-integrated capacitor
US6511896B2 (en) Method of etching a substantially amorphous TA2O5 comprising layer
JP2741672B2 (en) Method of manufacturing capacitor for stacked DRAM cell
JPH07221201A (en) Manufacture of semiconductor device and equipment of manufacturing semiconductor device
JP2002124649A (en) Semiconductor integrated circuit device and the manufacturing method therefor
US5918123A (en) Method for fabricating capacitor of semiconductor device
KR0141950B1 (en) Manufacturing method of semiconductor device
JP3061946B2 (en) Method for manufacturing semiconductor device
JPH1022467A (en) Semiconductor device and manufacture thereof
US6090662A (en) Method of fabricating interconnect lines and plate electrodes of a storage capacitor in a semiconductor device
US6054360A (en) Method of manufacturing a semiconductor memory device with a stacked capacitor wherein an electrode of the capacitor is shaped using a high melting point metal film
JPH05251658A (en) Manufacture of semiconductor device
JPH0567732A (en) Semiconductor element manufacturing method
JP2001053250A (en) Semiconductor device and its manufacture
US6124182A (en) Method of forming stacked capacitor
JPH05190769A (en) Manufacture of semiconductor element
JPH0541459A (en) Manufacture of semiconductor device
JP3200593B2 (en) Semiconductor device
JPH05121692A (en) Manufacture of semiconductor storage device
KR20010106713A (en) Method for manufacturing capacitor