JPH0567563B2 - - Google Patents

Info

Publication number
JPH0567563B2
JPH0567563B2 JP1997789A JP1997789A JPH0567563B2 JP H0567563 B2 JPH0567563 B2 JP H0567563B2 JP 1997789 A JP1997789 A JP 1997789A JP 1997789 A JP1997789 A JP 1997789A JP H0567563 B2 JPH0567563 B2 JP H0567563B2
Authority
JP
Japan
Prior art keywords
element selected
metal chalcogenide
general formula
composition
materials
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP1997789A
Other languages
Japanese (ja)
Other versions
JPH02199006A (en
Inventor
Yoshinao Oosawa
Yoshito Goto
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
Agency of Industrial Science and Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Agency of Industrial Science and Technology filed Critical Agency of Industrial Science and Technology
Priority to JP1997789A priority Critical patent/JPH02199006A/en
Priority to US07/446,548 priority patent/US5051204A/en
Priority to DE89312411T priority patent/DE68908108T2/en
Priority to EP89312411A priority patent/EP0371780B1/en
Publication of JPH02199006A publication Critical patent/JPH02199006A/en
Publication of JPH0567563B2 publication Critical patent/JPH0567563B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Inorganic Compounds Of Heavy Metals (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

[技術分野] 本発明は多元系金属カルコゲナイドに関するも
のである。 [従来技術] 金属カルコゲナイドは、酸素に較べてカルコゲ
ナイド(S、Se、Te)の電気陰性度が小さいた
め、金属オキサイドに較べてイオン性が小さく共
有結合性が大きい。それ故、本質的に結合の異方
性が大きく、低次元性(層状、鎖状、チヤンネル
構造等)の物質を形成し易い。また、物性的には
カルコゲンの電子の最高被占準位が酸素のそれよ
りも浅いために、オキサイドが、主として絶縁体
やバンドギヤツプの大きい半導体を形成するのに
対し、カルコゲナイドは、良電導体やバンドギヤ
ツプの小さい半導体を形成しやすい。金属カルコ
ゲナイドはこれらの構造的、物性的特徴を生かし
て、光学材料(太陽電池、非線型光学材料、発光
材料)、超電導材料(特にシエブレル化合物)、リ
チウム電池材料等への幅広い応用が期待され、既
に一部は実用化されている。 現在実用に供されているセラミツクス材料の大
半はオキサイドであるが、今後素材・材料に対す
る要求がますます多様化していく中にあつて、前
述したようにオキサイドにない特徴を持つ金属カ
ルコゲナイドを、素材・材料として開拓する必要
性は更に高まると予想される。その場合に重要な
ことは、物質群(化合物群)の数を多くそろえる
ことであるが、3元系(金属二種)以上の金属カ
ルコゲナイドは、チオスピネル、カルコパライ
ト、シエブレル等2〜3の物質群を形成すること
が知られているだけである。 [発明が解決しようとする問題点] 本発明は金属を多種含む新規な金属カルコゲナ
イドを提供する。 [問題点を解決するための手段] 本発明者らは、前記を解決すべく種々研究を重
ねた結果、本発明を完成するに至つた。 即ち、本発明によれば、下記一般式()〜
()で表される組成を有する新規な多元系金属
カルコゲナイドが提供される。これらのものはほ
とんど同一の結晶構造を有するものである。 一般式() AxByCz (但し、式中、AはBi、Sb及びAsの中から選ば
れる少なくとも1種の元素、BはTi、V、Nb及
びTaの中から選ばれる少なくとも1種の元素、
CはS、Se及びTeの中から選ばれる少なくとも
1種の元素を示し、xは0.8≦x≦1.2の数、yは
1.6≦y≦2.4の数及びzは4.0≦z≦6.0の数を示
すものである。) 一般式() AxByCz (但し、式中、AはPb、Sn及びGeの中から選ば
れる少なくとも1種の元素、BはTi、V、Nb及
びTaの中から選ばれる少なくとも1種の元素、
CはS、Se及びTeの中から選ばれる少なくとも
1種の元素を示し、xは0.8≦x≦1.2の数、yは
1.6≦y≦2.4の数及びzは4.0≦z≦6.0の数を示
すものである。) 一般式() A(1-a)xA′axByCz (但し、式中、AはBi、Sb及びAsの中から選ば
れる少なくとも1種の元素、A′はPb、Sn及びGe
の中から選ばれる少なくとも1種の元素、Bは
Ti、V、Nb及びTaの中から選ばれる少なくとも
1種の元素、CはS、Se及びTeの中から選ばれ
る少なくとも1種の元素を示し、aは0≦a≦1
の数、xは0.8≦x≦1.2の数、yは1.6≦y≦2.4
の数及びzは4.0≦z≦6.0の数を示すものであ
る。) 本発明の多元系金属カルコゲナイドは、前記組
成に対応する成分の元素粉末あるいは金属カルコ
ゲナイド粉末を、その組成割合に秤取して、石英
等の耐熱耐酸化性容器中に真空封入し、400〜
1200℃で加熱処理した後、室温まで冷却すること
によつて製造することができる。 このようにして得られたものは、褐色から黒色
の粉末で、粉末X線回折パターンがほとんど1つ
の面からの回折線をみを示す。また条件によつて
は薄片状結晶が得られ、それが容易に劈開するこ
ととあわせ、何らかの層状構造を持つと推定され
る。 [発明の効果] 本発明の多元系金属カルコゲナイドは、太陽電
池、非線型光学材料、発光材料等の光学材料や、
超電導材料、リチウム電池材料等として利用され
る。 [実施例] 次に本発明を実施例により、さらに詳細に説明
する。 実施例 1 前記一般式()の組成に対応する金属カルコ
ゲナイドを次のようにして合成した。 第1表の組成に対応する元素粉末をその組成割
合に採取し、石英容器中に真空封入した後、400
〜1200℃の温度に加熱し、次いで室温まで冷却し
た。このようにして得られた金属カルコゲナイド
の具体的組成と、その粉末X線回折パターンにお
ける主な回折線の面間隔(Å)を第1表に示す。 なお、本発明の金属カルコゲナイドにおいて
は、その成分AとBとCの組成は、通常、1:
2:5と表示されるが、C成分にはノンストイキ
オメトリーがあるので正確な5の値ではなく、
4.0〜6.0の範囲にある。また、成分A及びBも同
様に、その値は正確な1ではなくAは0.8〜1.2の
範囲に、Bは1.6〜2.4の範囲にあるものと考えら
れる。 実施例 2 前記一般式()の組成に対応する金属カルコ
ゲナイドを実施例1と同様にして合成し、その具
体的組成と、粉末X線回折パターンにおける主な
回折線の面間隔(Å)を第2表に示す。 実施例 3 前記一般式()の組成に対応する金属カルコ
ゲナイドを実施例1と同様にして合成し、その具
体的組成と、粉末X線回折パターンにおける主な
回折線の面間隔(Å)を第3表に示す。
[Technical Field] The present invention relates to multi-element metal chalcogenides. [Prior Art] Metal chalcogenides (S, Se, Te) have lower electronegativity than oxygen, and therefore have less ionicity and greater covalent bonding than metal oxides. Therefore, the anisotropy of bonding is essentially large, and it is easy to form a substance with low dimensionality (layered, chained, channel structure, etc.). In addition, in physical terms, the highest occupied level of chalcogen electrons is shallower than that of oxygen, so oxides mainly form insulators and semiconductors with large band gaps, whereas chalcogenides are good conductors and It is easy to form semiconductors with small band gaps. Taking advantage of these structural and physical characteristics, metal chalcogenides are expected to have a wide range of applications such as optical materials (solar cells, nonlinear optical materials, light-emitting materials), superconducting materials (particularly Siebrel compounds), and lithium battery materials. Some of them have already been put into practical use. The majority of ceramic materials currently in practical use are oxides, but as requirements for materials become more and more diverse in the future, metal chalcogenides, which have characteristics not found in oxides, are being developed as materials.・The need to develop it as a material is expected to further increase. In that case, the important thing is to have a large number of substance groups (compound groups), but metal chalcogenides of ternary system (two metals) or more are made of two or three substance groups such as thiospinel, chalcopalite, and siebrel. It is only known to form. [Problems to be Solved by the Invention] The present invention provides a novel metal chalcogenide containing various metals. [Means for Solving the Problems] The present inventors have conducted various studies to solve the above problems, and as a result, have completed the present invention. That is, according to the present invention, the following general formula () ~
A novel multi-component metal chalcogenide having a composition represented by () is provided. These substances have almost the same crystal structure. General formula () AxByCz (wherein, A is at least one element selected from Bi, Sb and As, B is at least one element selected from Ti, V, Nb and Ta,
C represents at least one element selected from S, Se, and Te, x is a number of 0.8≦x≦1.2, and y is
The number 1.6≦y≦2.4 and z indicate the number 4.0≦z≦6.0. ) General formula () AxByCz (However, in the formula, A is at least one element selected from Pb, Sn and Ge, B is at least one element selected from Ti, V, Nb and Ta,
C represents at least one element selected from S, Se, and Te, x is a number of 0.8≦x≦1.2, and y is
The number 1.6≦y≦2.4 and z indicate the number 4.0≦z≦6.0. ) General formula () A (1-a)x A′axByCz (However, in the formula, A is at least one element selected from Bi, Sb, and As, and A′ is Pb, Sn, and Ge.
At least one element selected from B is
At least one element selected from Ti, V, Nb and Ta; C represents at least one element selected from S, Se and Te; a is 0≦a≦1
The number of , x is the number of 0.8≦x≦1.2, y is the number of 1.6≦y≦2.4
The number and z indicate a number of 4.0≦z≦6.0. ) The multi-component metal chalcogenide of the present invention is produced by weighing elemental powders or metal chalcogenide powders having components corresponding to the above-mentioned composition in their composition ratios, vacuum-sealing them in a heat-resistant, oxidation-resistant container such as quartz, etc.
It can be produced by heating at 1200°C and then cooling to room temperature. The product thus obtained is a brown to black powder with a powder X-ray diffraction pattern showing mostly only diffraction lines from one plane. In addition, depending on the conditions, flaky crystals can be obtained, and since they are easily cleaved, it is assumed that they have some kind of layered structure. [Effects of the Invention] The multi-component metal chalcogenide of the present invention can be used in optical materials such as solar cells, nonlinear optical materials, and luminescent materials;
Used as superconducting material, lithium battery material, etc. [Example] Next, the present invention will be explained in more detail with reference to Examples. Example 1 A metal chalcogenide corresponding to the composition of the above general formula () was synthesized as follows. Elemental powders corresponding to the compositions in Table 1 were collected in the proportions, vacuum-sealed in a quartz container, and then
Heated to a temperature of ~1200°C and then cooled to room temperature. Table 1 shows the specific composition of the metal chalcogenide thus obtained and the interplanar spacing (Å) of the main diffraction lines in its powder X-ray diffraction pattern. In addition, in the metal chalcogenide of the present invention, the composition of components A, B, and C is usually 1:
It is displayed as 2:5, but since the C component has non-stoichiometry, it is not the exact value of 5,
It ranges from 4.0 to 6.0. Similarly, the values of components A and B are not exactly 1, but A is considered to be in the range of 0.8 to 1.2, and B is considered to be in the range of 1.6 to 2.4. Example 2 A metal chalcogenide corresponding to the composition of the general formula () was synthesized in the same manner as in Example 1, and its specific composition and interplanar spacing (Å) of the main diffraction lines in the powder X-ray diffraction pattern were determined. It is shown in Table 2. Example 3 A metal chalcogenide corresponding to the composition of the general formula () was synthesized in the same manner as in Example 1, and its specific composition and interplanar spacing (Å) of the main diffraction lines in the powder X-ray diffraction pattern were determined. It is shown in Table 3.

【表】【table】

【表】【table】

【表】【table】

Claims (1)

【特許請求の範囲】 1 一般式 AxByCz () (但し、式中、AはBi、Sb及びAsの中から選ば
れる少なくとも1種の元素、BはTi、V、Nb及
びTaの中から選ばれる少なくとも1種の元素、
CはS、Se及びTeの中から選ばれる少なくとも
1種の元素を示し、xは0.8≦x≦1.2の数、yは
1.6≦y≦2.4の数及びzは4.0≦z≦6.0の数を示
すものである。)で表される組成を有することを
特徴とする多元系金属カルコゲナイド。 2 一般式 AxByCz () (但し、式中、AはPb、Sn及びGeの中から選ば
れる少なくとも1種の元素、BはTi、V、Nb及
びTaの中から選ばれる少なくとも1種の元素、
CはS、Se及びTeの中から選ばれる少なくとも
1種の元素を示し、xは0.8≦x≦1.2の数、yは
1.6≦y≦2.4の数及びzは4.0≦z≦6.0の数を示
すものである。)で表される組成を有することを
特徴とする多元系金属カルコゲナイド。 3 一般式 A(1-a)xA′axByCz () (但し、式中、AはBi、Sb及びAsの中から選ば
れる少なくとも1種の元素、A′はPb、Sn及びGe
の中から選ばれる少なくとも1種の元素、Bは
Ti、V、Nb及びTaの中から選ばれる少なくとも
1種の元素、CはS、Se及びTeの中から選ばれ
る少なくとも1種の元素を示し、aは0≦a≦1
の数、xは0.8≦x≦1.2の数、yは1.6≦y≦2.4
の数及びzは4.0≦z≦6.0の数を示すものであ
る。)で表される組成を有することを特徴とする
多元系金属カルコゲナイド。
[Claims] 1 General formula AxByCz () (wherein A is at least one element selected from Bi, Sb, and As, and B is selected from Ti, V, Nb, and Ta) at least one element,
C represents at least one element selected from S, Se, and Te, x is a number of 0.8≦x≦1.2, and y is
The number 1.6≦y≦2.4 and z indicate the number 4.0≦z≦6.0. ) A multi-element metal chalcogenide characterized by having a composition represented by: 2 General formula AxByCz () (wherein A is at least one element selected from Pb, Sn and Ge, B is at least one element selected from Ti, V, Nb and Ta,
C represents at least one element selected from S, Se, and Te, x is a number of 0.8≦x≦1.2, and y is
The number 1.6≦y≦2.4 and z indicate the number 4.0≦z≦6.0. ) A multi-element metal chalcogenide characterized by having a composition represented by: 3 General formula A (1-a)x A′axByCz () (However, in the formula, A is at least one element selected from Bi, Sb, and As, and A′ is Pb, Sn, and Ge.
At least one element selected from B is
At least one element selected from Ti, V, Nb and Ta; C represents at least one element selected from S, Se and Te; a is 0≦a≦1
The number of , x is the number of 0.8≦x≦1.2, y is the number of 1.6≦y≦2.4
The number and z indicate a number of 4.0≦z≦6.0. ) A multi-element metal chalcogenide characterized by having a composition represented by:
JP1997789A 1988-11-30 1989-01-30 Multielement-based metal chalocogenide having 1/2/5 composition Granted JPH02199006A (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP1997789A JPH02199006A (en) 1989-01-30 1989-01-30 Multielement-based metal chalocogenide having 1/2/5 composition
US07/446,548 US5051204A (en) 1988-11-30 1989-11-28 Multi-element metal chalocogenide
DE89312411T DE68908108T2 (en) 1988-11-30 1989-11-29 Multi-element metal chalcogenide.
EP89312411A EP0371780B1 (en) 1988-11-30 1989-11-29 Multi-element metal chalcogenide

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1997789A JPH02199006A (en) 1989-01-30 1989-01-30 Multielement-based metal chalocogenide having 1/2/5 composition

Publications (2)

Publication Number Publication Date
JPH02199006A JPH02199006A (en) 1990-08-07
JPH0567563B2 true JPH0567563B2 (en) 1993-09-27

Family

ID=12014247

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1997789A Granted JPH02199006A (en) 1988-11-30 1989-01-30 Multielement-based metal chalocogenide having 1/2/5 composition

Country Status (1)

Country Link
JP (1) JPH02199006A (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0611642B2 (en) * 1989-03-14 1994-02-16 工業技術院長 Layered metal chalcogenide host material
KR101463195B1 (en) * 2011-04-28 2014-11-21 주식회사 엘지화학 New compound semiconductors and their application
JP5774141B2 (en) * 2011-04-28 2015-09-02 エルジー・ケム・リミテッド New compound semiconductors and their utilization
JP5767395B2 (en) * 2011-05-13 2015-08-19 エルジー・ケム・リミテッド New compound semiconductors and their utilization
EP2708503B1 (en) * 2011-05-13 2017-02-15 LG Chem, Ltd. Novel compound semiconductor and usage for same
CN103517870B (en) * 2011-05-13 2016-02-03 Lg化学株式会社 New compound semiconductor and uses thereof

Also Published As

Publication number Publication date
JPH02199006A (en) 1990-08-07

Similar Documents

Publication Publication Date Title
Foecker et al. The atomic order of the pnictogen and chalcogen atoms in equiatomic ternary compounds TPnCh (T= Ni, Pd; Pn= P, As, Sb; Ch= S, Se, Te)
Mansuetto et al. Synthesis and structures of the new group IV chalcogenides NaCuTiS3 and NaCuZrQ3 (Q= S, Se, Te)
Zeilinger et al. Structural and thermodynamic similarities of phases in the Li–Tt (Tt= Si, Ge) systems: redetermination of the lithium-rich side of the Li–Ge phase diagram and crystal structures of Li 17 Si 4.0− x Ge x for x= 2.3, 3.1, 3.5, and 4 as well as Li 4.1 Ge
Sleight et al. Chromium chalcogenides prepared at high pressure and the crystal growth of chromium sesquisulfide
JPH0567563B2 (en)
Huan et al. Antiferromagnetic-to-ferromagnetic transition in metallic Tl1− xKxCo2Se2 (0⩽ x⩽ 1.0) with ThCr2Si2-type structure
US5051204A (en) Multi-element metal chalocogenide
US5708233A (en) Thermoelectric semiconductor material
US3940472A (en) Quaternary sulfides and selenides containing Ba or Sr and selected transition metals
US3851045A (en) Lanthanide transition metal ternary chalcogenides
US3211656A (en) Mixed-crystal thermoelectric composition
Xia et al. Synthesis, crystal structures, magnetic and electric transport properties of Eu11InSb9 and Yb11InSb9
US4545967A (en) Stabilized lanthanum sulphur compounds
JPH0547482B2 (en)
Noel New sulfides of uranium and 3d transition series elements
Tenorio et al. Filamentary superconductivity in semiconducting policrystalline ZrSe 2 compound with Zr vacancies
Patschke et al. Rb 2 Cu 3 CeTe 5: a quaternary semiconducting compound with a two-dimensional polytelluride framework
Schwarz et al. The new barium zinc mercurides Ba3ZnHg10 and BaZn0. 6Hg3. 4–Synthesis, crystal and electronic structure
Küpers et al. Preferred selenium incorporation and unexpected interlayer bonding in the layered structure of Sb2Te3− x Se x
Isaeva et al. New metal-rich mixed chalcogenides with intergrowth structures: Ni8. 21Ge2S2 and Ni8. 45Ge2Se2
US3676082A (en) Magnetic compositions
Korzun et al. Preparation of Alloys and Investigation of Phase Equilibria in the CuFeS 2− δ–CuGaS 2 System
Menezes et al. La 12 Sb 9 S 38: a new semiconducting lanthanum antimony polysulfide with a mixed La/Sb site
Bobev et al. Synthesis, characterization and bonding of Ba3Li4Sn8
Zhou et al. Synthesis, crystal structure and physical properties of a novel quaternary selenide Cu6GeWSe8

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term