JPH02199006A - Multielement-based metal chalocogenide having 1/2/5 composition - Google Patents
Multielement-based metal chalocogenide having 1/2/5 compositionInfo
- Publication number
- JPH02199006A JPH02199006A JP1997789A JP1997789A JPH02199006A JP H02199006 A JPH02199006 A JP H02199006A JP 1997789 A JP1997789 A JP 1997789A JP 1997789 A JP1997789 A JP 1997789A JP H02199006 A JPH02199006 A JP H02199006A
- Authority
- JP
- Japan
- Prior art keywords
- composition
- metal chalcogenide
- powder
- mentioned
- multielement
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 229910052751 metal Inorganic materials 0.000 title claims abstract description 27
- 239000002184 metal Substances 0.000 title claims abstract description 27
- 239000000203 mixture Substances 0.000 title claims abstract description 20
- 150000004770 chalcogenides Chemical class 0.000 claims abstract description 25
- 229910052717 sulfur Inorganic materials 0.000 claims description 8
- 229910052711 selenium Inorganic materials 0.000 claims description 7
- 229910052758 niobium Inorganic materials 0.000 claims description 6
- 229910052719 titanium Inorganic materials 0.000 claims description 6
- 229910052720 vanadium Inorganic materials 0.000 claims description 6
- 229910052787 antimony Inorganic materials 0.000 claims description 4
- 229910052785 arsenic Inorganic materials 0.000 claims description 4
- 229910052797 bismuth Inorganic materials 0.000 claims description 4
- 229910052796 boron Inorganic materials 0.000 claims description 4
- 229910052714 tellurium Inorganic materials 0.000 claims description 4
- 229910052745 lead Inorganic materials 0.000 claims description 3
- 229910052732 germanium Inorganic materials 0.000 claims description 2
- 229910052718 tin Inorganic materials 0.000 claims description 2
- 229910052715 tantalum Inorganic materials 0.000 claims 3
- 239000000463 material Substances 0.000 abstract description 18
- 239000000843 powder Substances 0.000 abstract description 11
- 230000003287 optical effect Effects 0.000 abstract description 6
- 150000002739 metals Chemical class 0.000 abstract description 3
- 238000000634 powder X-ray diffraction Methods 0.000 abstract description 3
- 239000010453 quartz Substances 0.000 abstract description 3
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N silicon dioxide Inorganic materials O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 abstract description 3
- 238000001816 cooling Methods 0.000 abstract description 2
- 230000003647 oxidation Effects 0.000 abstract description 2
- 238000007254 oxidation reaction Methods 0.000 abstract description 2
- 238000007789 sealing Methods 0.000 abstract description 2
- 238000005303 weighing Methods 0.000 abstract description 2
- 239000000126 substance Substances 0.000 description 4
- WHXSMMKQMYFTQS-UHFFFAOYSA-N Lithium Chemical compound [Li] WHXSMMKQMYFTQS-UHFFFAOYSA-N 0.000 description 2
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 2
- 150000001875 compounds Chemical class 0.000 description 2
- 239000013078 crystal Substances 0.000 description 2
- 229910052744 lithium Inorganic materials 0.000 description 2
- 229910052760 oxygen Inorganic materials 0.000 description 2
- 239000001301 oxygen Substances 0.000 description 2
- 229910010293 ceramic material Inorganic materials 0.000 description 1
- 229910052798 chalcogen Inorganic materials 0.000 description 1
- 150000001787 chalcogens Chemical class 0.000 description 1
- 239000004020 conductor Substances 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 229910052733 gallium Inorganic materials 0.000 description 1
- 238000010438 heat treatment Methods 0.000 description 1
- 239000012212 insulator Substances 0.000 description 1
- 239000004065 semiconductor Substances 0.000 description 1
Landscapes
- Inorganic Compounds Of Heavy Metals (AREA)
Abstract
Description
【発明の詳細な説明】
[技術分野]
本発明は多元系金属カルコゲナイドに関するものである
。DETAILED DESCRIPTION OF THE INVENTION [Technical Field] The present invention relates to multi-element metal chalcogenides.
[従来技術]
金属カルコゲナイドは、酸素に較べてカルコゲナイド(
S、Se、Te)の電気陰性度が小さいため、金属オキ
サイドに較べてイオン性が小さ(共有結合性が大きい、
それ故1本質的に結合の異方性が大きく、低次元性(層
状、鎖状、チャンネル構造等)の物質を形成し易い。ま
た、物性的にはカルコゲンの電子の最高被占準位が酸素
のそれよりも浅いために、オキサイドが、主として絶縁
体やバンドギャップの大きい半導体を形成するのに対し
、カルコゲナイドは、良電導体やバンドギャップの小さ
い半導体を形成しやすい、金属カルコゲナイドはこれら
の構造的、物性的特徴を生かして、光学材料(太陽電池
、非線型光学材料、発光材料)、超電導材料(特にシェ
ブレル化合物)、リチウム電池材料等への幅広い応用が
期待され、既に一部は実用化されている。[Prior art] Compared to oxygen, metal chalcogenide has less chalcogenide (
S, Se, Te) have low electronegativity, so they have low ionicity (high covalent bonding,
Therefore, (1) it inherently has a large bond anisotropy, and it is easy to form a substance with low dimensionality (layered, chained, channel structure, etc.). In addition, in physical terms, the highest occupied electron level of chalcogen is shallower than that of oxygen, so oxides mainly form insulators and semiconductors with a large band gap, whereas chalcogenides are good conductors. Taking advantage of these structural and physical characteristics, metal chalcogenides are useful for forming optical materials (solar cells, nonlinear optical materials, light-emitting materials), superconducting materials (particularly Chevrel compounds), and lithium. It is expected to have a wide range of applications such as battery materials, and some have already been put into practical use.
現在実用に供されているセラミックス材料の大半はオキ
サイドであるが、今後素材・材料に対する要求がますま
す多様化していく中にあって、前述したようにオキサイ
ドにない特徴を持つ金属カルコゲナイドを、素材・材料
として開拓する必要性は更に高まると予想される。その
場合に重要なことは、物質群(化合物群)の数を多くそ
ろえることであるが、3元系(金属二種)以上の金属カ
ルコゲナイドは、チオスピネル、カルコパライト、シェ
ブレル等2〜3の物質群を形成することが知られている
だけである。The majority of ceramic materials currently in practical use are oxides, but as requirements for materials become more and more diverse in the future, metal chalcogenides, which have characteristics not found in oxides, are being developed as materials.・The need to develop it as a material is expected to further increase. In that case, the important thing is to have a large number of substance groups (compound groups), but metal chalcogenides of ternary system (two metals) or more are made of two or three substance groups such as thiospinel, chalcopalite, and chevrel. It is only known to form.
[発明が解決しようとする問題点]
本発明は金属を多種含む新規な金属カルコゲナイドを提
供する。[Problems to be Solved by the Invention] The present invention provides a novel metal chalcogenide containing various metals.
[問題点を解決するための手段]
本発明者らは、前記を解決すべく種々研究を重ねた結果
1本発明を完成するに至った。[Means for Solving the Problems] The present inventors have conducted various studies to solve the above problems, and as a result, have completed the present invention.
即ち、本発明によれば、下記一般式(1)〜(III)
で表される組成を有する新規な多元系金属カルコゲナイ
ドが提供される。これらのものはほとんど同一の結晶構
造を有するものである。That is, according to the present invention, the following general formulas (1) to (III)
A novel multi-element metal chalcogenide having a composition represented by is provided. These substances have almost the same crystal structure.
一般式(1) AxByCz
(但し、式中、AはBi、Sb及びAsの中から選ばれ
る少なくとも1種の元素、BはTi、V。General formula (1) AxByCz (wherein A is at least one element selected from Bi, Sb and As, and B is Ti and V.
Nb及びTaの中から選ばれる少なくとも1種の元素、
CはS、Se及びTeの中から選ばれる少なくとも1種
の元素を示し、Xは0.8≦x≦1゜2の数、yは1.
6≦y≦2.4の数及び2は4゜0≦2≦6.0の数を
示すものである。)一般式(II) AxByC
z
(但し1式中、AはPb、Sn及びGaの中から選ばれ
る少なくとも1種の元素、BはTi、V。At least one element selected from Nb and Ta,
C represents at least one element selected from S, Se, and Te, X represents a number of 0.8≦x≦1°2, and y represents 1.
The number 6≦y≦2.4 and 2 indicate the number 4°0≦2≦6.0. ) General formula (II) AxByC
z (However, in formula 1, A is at least one element selected from Pb, Sn and Ga, and B is Ti and V.
Nb及びTaの中から選ばれる少なくとも1種の元素、
CはS、Se及びTeの中から選ばれる少なくとも1種
の元素を示し、Xは0.8≦x≦162の数、yは1.
6≦y≦2.4の数及び2は4゜0≦2≦6.0の数を
示すものである。)一般式(III) A (、−
a)xA’ a x B y Cz(但し、式中、Aは
Bi、Sb及びAsの中から選ばれる少なくとも1種の
元素、A′はpb、sn及びGeの中から選ばれる少な
くとも1種の元素、BはTi、V、Nb及びTaの中か
ら選ばれる少なくとも1種の元素、CはS、Se及びT
eの中から選ばれる少なくとも1種の元素を示し、aは
0≦a≦1の数、Xは0.8≦x≦1.2の数、yは1
.6≦y≦2.4の数及び2は4.0≦2≦6.0の数
を示すものである。)本発明の多元系金属カルコゲナイ
ドは、前記組成に対応する成分の元素粉末あるいは金属
カルコゲナイド粉末を、その組成割合に秤取して、石英
等の耐熱耐酸化性容器中に真空封入し、400〜120
0℃で加熱処理した後、室温まで冷却することによって
製造することができる。At least one element selected from Nb and Ta,
C represents at least one element selected from S, Se, and Te, X represents a number of 0.8≦x≦162, and y represents 1.
The number 6≦y≦2.4 and 2 indicate the number 4°0≦2≦6.0. ) General formula (III) A (,-
a) xA' a x B y Cz (wherein, A is at least one element selected from Bi, Sb, and As, and A' is at least one element selected from pb, sn, and Ge) Element, B is at least one element selected from Ti, V, Nb and Ta, C is S, Se and T
represents at least one element selected from e, a is a number of 0≦a≦1, X is a number of 0.8≦x≦1.2, and y is 1
.. The number 6≦y≦2.4 and 2 indicate the number 4.0≦2≦6.0. ) The multi-component metal chalcogenide of the present invention is produced by weighing elemental powders or metal chalcogenide powders having the components corresponding to the above-mentioned composition in their composition ratios, vacuum-sealing them in a heat-resistant and oxidation-resistant container such as quartz, 120
It can be produced by heating at 0° C. and then cooling to room temperature.
このようにして得られたものは、褐色から黒色の粉末で
、粉末xIIA回折パターンがほとんど1つの面からの
回折線のみを示す、また条件によっては薄片状結晶が得
られ、それが容易に襞間することとあわせ、何らかの層
状構造を持つと推定される。The product obtained in this way is a brown to black powder with a powder xIIA diffraction pattern showing almost only diffraction lines from one plane, and depending on the conditions, flaky crystals can be obtained, which can be easily folded. It is presumed that it has some kind of layered structure.
[発明の効果]
本発明の多元系金属カルコゲナイドは、太陽電池、非線
型光学材料1発光材料等の光学材料や、超電導材料、リ
チウム電池材料等として利用される。[Effects of the Invention] The multi-component metal chalcogenide of the present invention can be used as optical materials such as solar cells, nonlinear optical materials, luminescent materials, superconducting materials, lithium battery materials, and the like.
[実施例] 次に本発明を実施例により、さらに詳箱に説明する。[Example] Next, the present invention will be explained in more detail with reference to Examples.
実施例1
前記一般式(1)の組成に対応する金属カルコゲナイド
を次のようにして合成した。Example 1 A metal chalcogenide corresponding to the composition of general formula (1) above was synthesized as follows.
第1表の組成に対応する元素粉末をその組成割合に採取
し、石英容器中に真空封入した後、400〜1200℃
の温度に加熱し、次いで室温まで冷却した。このように
して得られた金属カルコゲナイドの具体的組成と、その
粉末xa回折パターンにおける主な回折線の面間隔(人
)を第1表に示す。Elemental powders corresponding to the compositions in Table 1 were collected in the proportions, vacuum sealed in a quartz container, and heated to 400 to 1200°C.
and then cooled to room temperature. Table 1 shows the specific composition of the metal chalcogenide thus obtained and the interplanar spacing (person) of the main diffraction lines in its powder xa diffraction pattern.
なお1本発明の金属カルコゲナイドにおいては、その成
分AとBとCの組成は、通常、1:2:5と表示される
が、C成分にはノンストイキオメトリ−があるので正確
な5の値ではなく、4.0〜6.0の範囲にある。また
、成分A及びBも同様に、その値は正確な1ではなくA
は0.8〜1゜2の範囲に、Bは1.6〜2.4の範囲
にあるものと考えられる。Note that in the metal chalcogenide of the present invention, the composition of components A, B, and C is usually expressed as 1:2:5, but since component C has nonstoichiometry, the exact value of 5 cannot be determined. It is not in the range of 4.0 to 6.0. Similarly, the values of components A and B are not exactly 1, but A
is considered to be in the range of 0.8 to 1°2, and B is considered to be in the range of 1.6 to 2.4.
実施例2
前記一般式(n)の組成に対応する金属カルコゲナイド
を実施例1と同様にして合成し、その具体的組成と、粉
末X線回折パターンにおける主な回折線の面間隔(人)
を第2表に示す。Example 2 A metal chalcogenide corresponding to the composition of the general formula (n) was synthesized in the same manner as in Example 1, and its specific composition and interplanar spacing (person) of the main diffraction lines in the powder X-ray diffraction pattern were determined.
are shown in Table 2.
実施例3
前記一般式(m)の組成に対応する金属カルコゲナイド
を実施例1と同様にして合成し、その具体的組成と、粉
末X線回折パターンにおける主な回折線の面間隔(人)
を第3表に示す。Example 3 A metal chalcogenide corresponding to the composition of the general formula (m) was synthesized in the same manner as in Example 1, and its specific composition and interplanar spacing (person) of the main diffraction lines in the powder X-ray diffraction pattern were determined.
are shown in Table 3.
Claims (3)
≦y≦2.4の数及びzは4. 0≦z≦6.0の数を示すものである。) で表される組成を有することを特徴とする 多元系金属カルコゲナイド。(1) General formula A_xB_yC_z(I) (However, in the formula, A is at least one element selected from Bi, Sb, and As, and B is at least one element selected from Ti, V, Nb, and Ta. element, C represents at least one element selected from S, Se, and Te, x is a number of 0.8≦x≦1.2, and y is 1.6
The number of ≦y≦2.4 and z are 4. This indicates a number of 0≦z≦6.0. ) A multi-element metal chalcogenide characterized by having a composition represented by:
≦y≦2.4の数及びzは4. 0≦z≦6.0の数を示すものである。) で表される組成を有することを特徴とする 多元系金属カルコゲナイド。(2) General formula A_xB_yC_z(II) (However, in the formula, A is at least one element selected from Pb, Sn, and Ge, and B is at least one element selected from Ti, V, Nb, and Ta. element, C represents at least one element selected from S, Se, and Te, x is a number of 0.8≦x≦1.2, and y is 1.6
The number of ≦y≦2.4 and z are 4. This indicates a number of 0≦z≦6.0. ) A multi-element metal chalcogenide characterized by having a composition represented by:
_yC_z(III)(但し、式中、AはBi、Sb及び
Asの 中から選ばれる少なくとも1種の元素、A′はPb、S
n及びGeの中から選ばれる少 なくとも1種の元素、BはTi、V、Nb 及びTaの中から選ばれる少なくとも1種 の元素、CはS、Se及びTeの中から選 ばれる少なくとも1種の元素を示し、aは 0≦a≦1の数、xは0.8≦x≦1.2 の数、yは1.6≦y≦2.4の数及びz は4.0≦z≦6.0の数を示すものであ る。)で表される組成を有することを特徴 とする多元系金属カルコゲナイド。(3) General formula A_(_1_-_a_)_xA'a_xB
_yC_z(III) (wherein, A is at least one element selected from Bi, Sb, and As, and A' is Pb, S
B is at least one element selected from Ti, V, Nb, and Ta; C is at least one element selected from S, Se, and Te. Indicates an element, a is a number of 0≦a≦1, x is a number of 0.8≦x≦1.2, y is a number of 1.6≦y≦2.4, and z is a number of 4.0≦z≦ 6.0. ) A multi-element metal chalcogenide characterized by having a composition represented by:
Priority Applications (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP1997789A JPH02199006A (en) | 1989-01-30 | 1989-01-30 | Multielement-based metal chalocogenide having 1/2/5 composition |
US07/446,548 US5051204A (en) | 1988-11-30 | 1989-11-28 | Multi-element metal chalocogenide |
EP89312411A EP0371780B1 (en) | 1988-11-30 | 1989-11-29 | Multi-element metal chalcogenide |
DE89312411T DE68908108T2 (en) | 1988-11-30 | 1989-11-29 | Multi-element metal chalcogenide. |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP1997789A JPH02199006A (en) | 1989-01-30 | 1989-01-30 | Multielement-based metal chalocogenide having 1/2/5 composition |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH02199006A true JPH02199006A (en) | 1990-08-07 |
JPH0567563B2 JPH0567563B2 (en) | 1993-09-27 |
Family
ID=12014247
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP1997789A Granted JPH02199006A (en) | 1988-11-30 | 1989-01-30 | Multielement-based metal chalocogenide having 1/2/5 composition |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH02199006A (en) |
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH02239107A (en) * | 1989-03-14 | 1990-09-21 | Agency Of Ind Science & Technol | Layered metallic chalcogenide host material |
JP2014510006A (en) * | 2011-04-28 | 2014-04-24 | エルジー・ケム・リミテッド | New compound semiconductors and their utilization |
JP2014516901A (en) * | 2011-05-13 | 2014-07-17 | エルジー・ケム・リミテッド | New compound semiconductors and their utilization |
JP2014516899A (en) * | 2011-04-28 | 2014-07-17 | エルジー・ケム・リミテッド | New compound semiconductors and their utilization |
JP2014519547A (en) * | 2011-05-13 | 2014-08-14 | エルジー・ケム・リミテッド | New compound semiconductors and their utilization |
JP2014520202A (en) * | 2011-05-13 | 2014-08-21 | エルジー・ケム・リミテッド | New compound semiconductors and their utilization |
-
1989
- 1989-01-30 JP JP1997789A patent/JPH02199006A/en active Granted
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH02239107A (en) * | 1989-03-14 | 1990-09-21 | Agency Of Ind Science & Technol | Layered metallic chalcogenide host material |
JP2014510006A (en) * | 2011-04-28 | 2014-04-24 | エルジー・ケム・リミテッド | New compound semiconductors and their utilization |
JP2014516899A (en) * | 2011-04-28 | 2014-07-17 | エルジー・ケム・リミテッド | New compound semiconductors and their utilization |
JP2014516901A (en) * | 2011-05-13 | 2014-07-17 | エルジー・ケム・リミテッド | New compound semiconductors and their utilization |
JP2014519547A (en) * | 2011-05-13 | 2014-08-14 | エルジー・ケム・リミテッド | New compound semiconductors and their utilization |
JP2014520202A (en) * | 2011-05-13 | 2014-08-21 | エルジー・ケム・リミテッド | New compound semiconductors and their utilization |
Also Published As
Publication number | Publication date |
---|---|
JPH0567563B2 (en) | 1993-09-27 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CA2347429C (en) | Conductive isostructural compounds | |
Conrad et al. | Boron–Sulfur and Boron–Selenium Compounds—From Unique Molecular Structural Principles to Novel Polymeric Materials | |
Foecker et al. | The atomic order of the pnictogen and chalcogen atoms in equiatomic ternary compounds TPnCh (T= Ni, Pd; Pn= P, As, Sb; Ch= S, Se, Te) | |
Lee et al. | Equilibrium phase relations in the Bi-Ca-Sr-Cu-O system at 850 and 900 C | |
Meerschaut et al. | Preparation and characterization of new mixed sandwiched layered compoundsLn32Nb28S88 (Ln= La, Ce) | |
Yao et al. | Crystal structure and electronic structure of NbxTa2− xS (x≈ 0.95): A new layered compound in ternary Ta-Nb-S system | |
JPH02199006A (en) | Multielement-based metal chalocogenide having 1/2/5 composition | |
Yan et al. | Pb 3 SBrI 3: the first Pb-based chalcohalide with multiple halogens features a unique two-dimensional structure composed of diverse Pb-centered polyhedra | |
US5051204A (en) | Multi-element metal chalocogenide | |
US3940472A (en) | Quaternary sulfides and selenides containing Ba or Sr and selected transition metals | |
US5708233A (en) | Thermoelectric semiconductor material | |
US4545967A (en) | Stabilized lanthanum sulphur compounds | |
Marking et al. | Encapsulation of Cyclooctasulfur Molecules in an Open Metal-Sulfide Framework. Isolation of the Host-Guest Complex Cs2Sn3S7. cntdot. 1/2S8 from Molten Cesium Polysulfide Fluxes | |
US3211656A (en) | Mixed-crystal thermoelectric composition | |
US3851045A (en) | Lanthanide transition metal ternary chalcogenides | |
JPH02149406A (en) | Multicomponent metal chalcogenide | |
Iglesias et al. | Crystal chemistry of AB2X4 (X= S, Se, Te) compounds | |
Patschke et al. | Rb 2 Cu 3 CeTe 5: a quaternary semiconducting compound with a two-dimensional polytelluride framework | |
Schwarz et al. | The new barium zinc mercurides Ba3ZnHg10 and BaZn0. 6Hg3. 4–Synthesis, crystal and electronic structure | |
US3676082A (en) | Magnetic compositions | |
Isaeva et al. | New metal-rich mixed chalcogenides with intergrowth structures: Ni8. 21Ge2S2 and Ni8. 45Ge2Se2 | |
Menezes et al. | La 12 Sb 9 S 38: a new semiconducting lanthanum antimony polysulfide with a mixed La/Sb site | |
US3859232A (en) | Semiconducting metal oxides with the cubic ksbo' 3 'crystal structure | |
CN115072671B (en) | Germanium bismuth tellurium-based thermoelectric material and preparation method thereof | |
JP3921665B2 (en) | Method for producing oxide having NaCl type crystal structure |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
EXPY | Cancellation because of completion of term |