JPH0567303B2 - - Google Patents

Info

Publication number
JPH0567303B2
JPH0567303B2 JP59118812A JP11881284A JPH0567303B2 JP H0567303 B2 JPH0567303 B2 JP H0567303B2 JP 59118812 A JP59118812 A JP 59118812A JP 11881284 A JP11881284 A JP 11881284A JP H0567303 B2 JPH0567303 B2 JP H0567303B2
Authority
JP
Japan
Prior art keywords
bacteria
artificial organ
artificial
temperature
sterilization
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP59118812A
Other languages
Japanese (ja)
Other versions
JPS60261462A (en
Inventor
Osamu Nakamura
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nikkiso Co Ltd
Original Assignee
Nikkiso Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nikkiso Co Ltd filed Critical Nikkiso Co Ltd
Priority to JP59118812A priority Critical patent/JPS60261462A/en
Publication of JPS60261462A publication Critical patent/JPS60261462A/en
Publication of JPH0567303B2 publication Critical patent/JPH0567303B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Apparatus For Disinfection Or Sterilisation (AREA)
  • External Artificial Organs (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

〔産業上の利用分野〕 本発明は人工臓器の滅菌前処理方法に関するも
のである。詳しくは人工臓器を滅菌するに際し、
該製品の滅菌前付着菌数を低減し、または低濃度
に維持することを目的としたものである。なお、
本発明にいう人工臓器とは、通常滅菌して使用さ
れる血液浄化器を指し、血液透析器、血液ろ過
器、膜型人工肺及び血液中から有効成分を分離し
た後の血漿を浄化する装置などが含まれる。 〔従来の技術〕 本来人工臓器の滅菌は、製造直後に行なわれる
べきであり、製造者が行なうのが普通であるが、
放射線滅菌においてはその線源の維持管理に特殊
技術を要するために、人工臓器製造者でない専門
業者で行なわれるのが普通である。したがつて人
工臓器はその製造者において密封されたのちに放
射線滅菌業者に出荷される。このように滅菌工程
の委託を行なう場合には製造後滅菌までの間に時
間的遅れがあることが多い。滅菌前の人工臓器に
は、細菌・真菌などの微生物が付着している可能
性があるので、この時間的遅れの間これを室温放
置すると菌の増殖をまねき、滅菌前付着菌数の増
大による滅菌後の生存菌の存在(滅菌不良)、あ
るいは、死滅した菌から生じるエンドトキシンそ
の他の毒素の増大などの不都合が発生することに
なりやすい。 人工臓器を放射線滅菌する場合にはその材質の
変化を防止するために予め水を充填しておくこと
が一般的に行なわれているが、その場合は乾燥時
に較べて菌が増殖し易いために上記問題が重大に
なる。 菌の増殖を防ぐ手段としては、従来例えば静菌
剤を添加する方法、低温(0℃〜5℃)に保持す
る方法などが用いられてきた。 〔発明が解決しようとする問題点〕 従来の技術における静菌剤を添加する方法は、
残留する薬品の人工臓器本体および人体に対する
悪影響の恐れがあり、また残留する薬品の除去の
ために多大な手間と費用を要することがある。ま
た低温に保持する方法は、低温性菌に対しては増
殖防止の効果がほとんどないだけでなく、低温過
信のため菌の増殖に気付かず、かえつて重大な過
誤をおかすことになりかねない。また人工臓器内
部に封入されている水や水溶液の凍結による人工
臓器の破壊に対しても予防策を講じておかねばな
らないなどの問題がある。 静菌剤の添加または低温保持という方法は前述
のような問題点があるため、これらの手段によら
ず、菌数を低減し、または低濃度に維持すること
を目的として鋭意研究の結果、本発明者は、人工
臓器をあらかじめ加熱処理することにより所期の
目的を達成できることを突き止め、本発明に到達
した。 〔問題点を解決するための手段〕 すなわち本発明は、水を充填した人工臓器を放
射線滅菌するに際し、該人工臓器をあらかじめ50
℃を越え、かつ90℃以下の温度で加熱処理するこ
とを特徴とする人工臓器の滅菌前処理方法であ
る。 本発明の目的はあくまでも人工臓器の製造後滅
菌までの短期間菌の増殖を防止することであり、
滅菌そのものを目的とするものではない。したが
つて加熱処理後人工臓器内に少量の生菌が存在す
ることは許容するが、過度の長期間にわたる低濃
度維持を目的とするものではない。 以下に本発明の詳細を手順に従つて説明する。 まず滅菌しようとする人工臓器はクリンルーム
内の清浄な作業環境下で製造された後、必要によ
り充填される水で洗浄後または洗浄することなく
水で充填される。 水は除菌フイルターを通過させた水または逆浸
透圧濾過された水(いわゆるRO水)が通常使用
されている。この水は第2物質を溶解した溶液で
あつてもよい。たとえば生理的食塩水なども好適
に使用できる。 水を充填された人工臓器は、できるだけすみや
かに加熱処理される。加熱処理までの時間は水充
填後24時間以内、好ましくは15時間以内である。 加熱処理装置内は均一な温度を保つよう設計し
てあつても、実際には不均等な温度分布を生じる
ことが多い。したがつて人工臓器が設定された加
熱処理の最低温度以上を保つためには、あらかじ
め加熱処理装置内の温度分布を測定しておいて、
その最も温度の低い位置に温度ダミー(人工臓器
を改造して中央部に温度センサーを挿入したも
の)を配しておき、この温度ダミーが示す温度を
指標として、あらかじめ計画された温度に達して
から一定時間の加熱処理を行なう。 加熱の熱媒体としては、空気が主として用いら
れるが、人工臓器の材質によつては空気による酸
化その他の化学反応を防止する目的で炭酸ガス、
窒素ガス等の不活性ガスを用いることがある。ま
た加熱の熱効率を重視する場合には、水やその他
の液体およびその蒸気を用いることもでき、さら
にはマイクロ波などの電磁波も用いることができ
る。加熱処理の温度は、人工臓器の性能を損なわ
ない範囲で設定されるわけだが、不活性化の対象
である中温性菌の増殖温度範囲(50℃以下)を越
えた温度が必要である。90℃を越えると、人工臓
器の材料に耐放射線性以外に耐熱性も必要となつ
て、使用できる材料に限定を受ける。加熱処理が
終了した人工臓器は可及的速やかに滅菌を行な
う。 〔作用〕 本発明による加熱処理を施された人工臓器で
は、付着菌のうち、胞子を含む真菌および栄養細
胞状態の細菌はほとんど死滅する。 したがつて加熱処理後人工臓器内に生残する付
着菌は、細菌の芽胞、好温性細菌および好温性真
菌などである。これらのうち好温性細菌と好温性
真菌については、加熱処理後は人工臓器が室温に
維持されるため、増殖の機会はほとんど無い。ま
た細菌の芽胞については、芽胞を生産する菌がバ
チルス(Bacillus)属およびクロストリデイウム
(Clostridium)属の2属の菌のみであつてその属
の特性として、芽胞の発芽・増殖のためには高栄
養を必要とし、プラスチツク類を主原料として製
造される人工臓器内であつては栄養の調達が不可
能なため、菌の増殖の機会はほとんどない。以上
のごとく、本発明の加熱処理により人工臓器の付
着菌はほとんど死滅し、もしくは生残菌があつて
も増殖することなく低濃度に維持することが可能
となる。 〔実施例〕 清浄な水を充填した人工透析器に加熱処理(70
℃、30分)を施したものおよび加熱処理を施さな
いものについて保管中の充填水中菌数を測定して
表1.に示す。なお、水の充填は人工透析器を組み
立てた翌日に行ない、当日加熱処理した。
[Industrial Application Field] The present invention relates to a method for pre-sterilizing artificial organs. For details, when sterilizing artificial organs,
The purpose is to reduce the number of bacteria attached to the product before sterilization or to maintain it at a low concentration. In addition,
The artificial organ referred to in the present invention refers to a blood purifier that is normally sterilized and used, such as a hemodialyzer, a blood filter, a membrane oxygenator, and a device that purifies plasma after separating active ingredients from blood. etc. are included. [Prior art] Originally, sterilization of artificial organs should be performed immediately after manufacture, and is usually done by the manufacturer.
Because radiation sterilization requires special techniques to maintain and manage the radiation source, it is usually carried out by a specialist who is not an artificial organ manufacturer. Therefore, the artificial organ is sealed at its manufacturer and then shipped to a radiation sterilizer. When the sterilization process is outsourced in this way, there is often a time delay between production and sterilization. Since there is a possibility that microorganisms such as bacteria and fungi may be attached to the artificial organ before sterilization, if it is left at room temperature during this time delay, bacteria will proliferate, resulting in an increase in the number of attached bacteria before sterilization. Inconveniences such as the presence of viable bacteria after sterilization (poor sterilization) or an increase in endotoxin and other toxins generated from killed bacteria are likely to occur. When sterilizing artificial organs with radiation, it is common practice to fill the organ with water in advance to prevent changes in the material, but in this case, bacteria can multiply more easily than when it is dry. The above problem becomes serious. As a means to prevent the growth of bacteria, conventionally, for example, a method of adding a bacteriostatic agent, a method of maintaining at a low temperature (0° C. to 5° C.), etc. have been used. [Problems to be solved by the invention] The conventional method of adding a bacteriostatic agent is as follows:
There is a risk that the remaining chemicals will have an adverse effect on the artificial organ itself and the human body, and it may require a great deal of effort and expense to remove the remaining chemicals. Furthermore, the method of keeping food at low temperatures not only has little effect on preventing the growth of psychrotrophic bacteria, but also overconfidence in low temperatures may lead to failure to notice the growth of bacteria, leading to serious errors. There are also problems such as the need to take precautions against destruction of the artificial organ due to freezing of the water or aqueous solution sealed inside the artificial organ. Since the methods of adding bacteriostatic agents or keeping them at low temperatures have the problems mentioned above, we have developed this method as a result of intensive research aimed at reducing the number of bacteria or maintaining them at a low concentration without using these methods. The inventors discovered that the intended purpose could be achieved by heat-treating the artificial organ in advance, and arrived at the present invention. [Means for Solving the Problems] That is, the present invention provides that when an artificial organ filled with water is sterilized by radiation, the artificial organ is sterilized for 50 minutes in advance.
This is a pre-sterilization method for artificial organs characterized by heat treatment at a temperature exceeding 90°C and below 90°C. The purpose of the present invention is to prevent the proliferation of bacteria for a short period of time after the manufacture of artificial organs until sterilization.
It is not intended for sterilization itself. Therefore, although it is acceptable for a small amount of viable bacteria to exist in the artificial organ after heat treatment, it is not intended to maintain a low concentration for an excessively long period of time. The details of the present invention will be explained below in accordance with the procedure. First, the artificial organ to be sterilized is manufactured in a clean working environment in a clean room, and then is filled with water after being washed with water, which is filled if necessary, or without washing. Water that has passed through a sterilization filter or reverse osmosis filtered water (so-called RO water) is usually used. This water may be a solution in which the second substance is dissolved. For example, physiological saline can also be suitably used. The water-filled artificial organ is heat-treated as soon as possible. The time until heat treatment is within 24 hours, preferably within 15 hours after filling with water. Even if the inside of a heat treatment apparatus is designed to maintain a uniform temperature, in reality, an uneven temperature distribution often occurs. Therefore, in order to keep the artificial organ at or above the set minimum temperature for heat treatment, the temperature distribution within the heat treatment equipment must be measured in advance.
A temperature dummy (a modified artificial organ with a temperature sensor inserted in its center) is placed at the lowest temperature position, and the temperature indicated by this temperature dummy is used as an indicator to reach the pre-planned temperature. Then heat treatment is performed for a certain period of time. Air is mainly used as a heating medium, but depending on the material of the artificial organ, carbon dioxide, carbon dioxide, etc. are used to prevent oxidation and other chemical reactions caused by air.
Inert gas such as nitrogen gas may be used. Further, when emphasis is placed on the thermal efficiency of heating, water, other liquids, and their vapors may be used, and furthermore, electromagnetic waves such as microwaves may be used. The temperature for heat treatment is set within a range that does not impair the performance of the artificial organ, but the temperature must exceed the growth temperature range (below 50°C) of the mesophilic bacteria that are to be inactivated. When temperatures exceed 90 degrees Celsius, materials for artificial organs must have heat resistance in addition to radiation resistance, which limits the materials that can be used. The artificial organ that has undergone heat treatment should be sterilized as soon as possible. [Operation] In the artificial organ subjected to the heat treatment according to the present invention, most of the attached bacteria, including spore-containing fungi and bacteria in the vegetative cell state, are killed. Therefore, the adherent bacteria that survive in the artificial organ after heat treatment include bacterial spores, thermophilic bacteria, and thermophilic fungi. Among these, thermophilic bacteria and fungi have almost no chance of multiplying because the artificial organ is maintained at room temperature after heat treatment. Regarding bacterial spores, only two genera of bacteria, Bacillus and Clostridium, produce spores. Bacteria require a high level of nutrition, and since it is impossible to procure nutrients in artificial organs manufactured using plastics as the main raw material, there is little opportunity for bacterial growth. As described above, by the heat treatment of the present invention, most of the bacteria adhering to the artificial organ are killed, or even if there are surviving bacteria, it is possible to maintain them at a low concentration without multiplying. [Example] A dialysis machine filled with clean water was heated (70
The number of bacteria in the filled water during storage was measured for those subjected to heat treatment (℃, 30 minutes) and those that were not heat treated, and are shown in Table 1. Note that water was filled the day after the artificial dialyzer was assembled, and heat treated on the same day.

〔発明の効果〕〔Effect of the invention〕

本発明により、静菌剤の添加、低温保持の方法
を用いることなく、人工臓器の滅菌前付着菌数を
低減し、または低濃度に維持することができ、放
射線滅菌時における滅菌条件の不達成(滅菌不
良)および菌によるエンドトキシンその他の毒素
生産などの不都合を防止することに成功した。
According to the present invention, it is possible to reduce the number of bacteria attached to an artificial organ before sterilization or to maintain it at a low concentration without adding a bacteriostatic agent or using a low-temperature maintenance method, making it possible to prevent sterilization conditions from being achieved during radiation sterilization. We succeeded in preventing inconveniences such as (poor sterilization) and the production of endotoxin and other toxins by bacteria.

Claims (1)

【特許請求の範囲】[Claims] 1 水を充填した人工臓器を放射線滅菌するに際
し、該人工臓器をあらかじめ50℃を越え、かつ90
℃以下の温度で加熱処理をすることを特徴とする
人工臓器の滅菌前処理方法。
1. When radiation sterilizing an artificial organ filled with water, the artificial organ must be heated to over 50°C and 90°C in advance.
A pre-sterilization method for artificial organs characterized by heat treatment at a temperature of ℃ or below.
JP59118812A 1984-06-09 1984-06-09 Production of artificial organ Granted JPS60261462A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59118812A JPS60261462A (en) 1984-06-09 1984-06-09 Production of artificial organ

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59118812A JPS60261462A (en) 1984-06-09 1984-06-09 Production of artificial organ

Publications (2)

Publication Number Publication Date
JPS60261462A JPS60261462A (en) 1985-12-24
JPH0567303B2 true JPH0567303B2 (en) 1993-09-24

Family

ID=14745741

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59118812A Granted JPS60261462A (en) 1984-06-09 1984-06-09 Production of artificial organ

Country Status (1)

Country Link
JP (1) JPS60261462A (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5530390A (en) * 1978-05-19 1980-03-04 Sendzimir Inc T Rolling machine
JPS5881044A (en) * 1981-11-11 1983-05-16 三菱レイヨン株式会社 Pasturization of liquid separation apparatus
JPS59232555A (en) * 1983-05-28 1984-12-27 アクゾ・エヌ・ヴエ− Cleaning treatment of assembled dialyzer

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5530390A (en) * 1978-05-19 1980-03-04 Sendzimir Inc T Rolling machine
JPS5881044A (en) * 1981-11-11 1983-05-16 三菱レイヨン株式会社 Pasturization of liquid separation apparatus
JPS59232555A (en) * 1983-05-28 1984-12-27 アクゾ・エヌ・ヴエ− Cleaning treatment of assembled dialyzer

Also Published As

Publication number Publication date
JPS60261462A (en) 1985-12-24

Similar Documents

Publication Publication Date Title
US4230663A (en) Cold gas sterilization process using hydrogen peroxide at low concentrations
US4169124A (en) Cold gas sterilization process
Heinmets et al. The use of metabolites in the restoration of the viability of heat and chemically inactivated Escherichia coli
US3708263A (en) Method for continuous sterilization at low temperature
Hemmer et al. Sterilization of bacterial spores by using supercritical carbon dioxide and hydrogen peroxide
EP1785149A1 (en) Method of sterilization and sterilization apparatus
JP5628450B1 (en) Vegetable sterilization system
Diehl et al. High hydrostatic pressure, a novel approach in orthopedic surgical oncology to disinfect bone, tendons and cartilage
JPH0567303B2 (en)
JP6267004B2 (en) Production method of pasteurized vegetables
JPH0819387A (en) Sterilization of food
US2989435A (en) Method of chemical sterilization of aqueous liquids containing bacteria or spores ofbacteria
JPS5929207B2 (en) How to sterilize food
JPS63214168A (en) Sterilization of thermostable spore bacterium
JPS6142395A (en) Sterilization apparatus of ion exchange tower
NL2014784B1 (en) Bone material process.
WO2016072411A1 (en) Method for producing packaged vegetable
WO2014024118A1 (en) Device, assembly and method for maintaining sterility
US2356505A (en) Process fob sterilization of organic
JPS5819259A (en) Pasturization of medical tool
JPS63248407A (en) Preservation of membrane module
JPH0557036B2 (en)
US2297962A (en) Canning method
van Stijn PhD Sterilization Method: Oxygen-Free Gamma Radiation
US4314965A (en) Sterilization process using a heat effect additive

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term