US3708263A - Method for continuous sterilization at low temperature - Google Patents
Method for continuous sterilization at low temperature Download PDFInfo
- Publication number
- US3708263A US3708263A US00106739A US3708263DA US3708263A US 3708263 A US3708263 A US 3708263A US 00106739 A US00106739 A US 00106739A US 3708263D A US3708263D A US 3708263DA US 3708263 A US3708263 A US 3708263A
- Authority
- US
- United States
- Prior art keywords
- treated
- solution
- ultrasonic
- chemical solution
- rinsing
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
Images
Classifications
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61L—METHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
- A61L2/00—Methods or apparatus for disinfecting or sterilising materials or objects other than foodstuffs or contact lenses; Accessories therefor
- A61L2/16—Methods or apparatus for disinfecting or sterilising materials or objects other than foodstuffs or contact lenses; Accessories therefor using chemical substances
- A61L2/18—Liquid substances or solutions comprising solids or dissolved gases
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61L—METHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
- A61L2/00—Methods or apparatus for disinfecting or sterilising materials or objects other than foodstuffs or contact lenses; Accessories therefor
- A61L2/02—Methods or apparatus for disinfecting or sterilising materials or objects other than foodstuffs or contact lenses; Accessories therefor using physical phenomena
- A61L2/025—Ultrasonics
Definitions
- Said method consists of treating materials first in a synergistically active chemical solution in an ultrasonic tank, then of rinsing in a second ultrasonic tank.
- the final step consists of drying the processed material in a sterile atmosphere.
- the three different processing steps take place in a matter of minutes inside a laminar flow positive pressure clean or white room.
- the apparatus continuously delivers steriIe parts or instruments ready for packaging and sealing. Sterilized parts or instruments are not physically or chemically affected by the process and do not contain dissolved corrosive or toxic compounds.
- This invention relates to a continuous sterilization method at low and medium temperatures to process heat sensitive materials such as hospital and medical plastic made disposables or delicate electro-optical devices such as bronchoscopes or cytoscopes which cannot be autoclaved.
- heat sensitive materials such as hospital and medical plastic made disposables or delicate electro-optical devices such as bronchoscopes or cytoscopes which cannot be autoclaved.
- Today hospitals, clinics and practitioner offices use a large number of disposables made of heat sensitive materials. Among these items are syringes, suction catheters, feeding and urinary drainage tubes, sutures, masks, nebulizer tubes, surgical gloves, etc.
- Ethylene oxide is a very active chemical (alkylating agent) and it sometimes alters the characteristics of the processed material. A note of warning has been sounded, for instance, in the sterilization of foodstuffs. It has been shown (E. A. Hawk and O. Mickelsen, Science, vol. 12], no. 3143, 442-444, Mar. 1955) that various vitamins and amino acids were attacked by ethylene oxide. More recently a food additive amendment to the Food, Drug and Cosmetic Act discouraged the use of ethylene oxide due to the presence of traces of toxic ethylene glycol which is one of the by-products ofthe hydrolyzation of this chemical.
- the pressure decrease is also programmed to coincide with the pressure decrease within the package as the permeable gases permeate out during the final stage (post-diffusion .period). This means a lengthy operation which can last up to 8 hours when including water vaporization'time, ethylene oxide exposure and gas evacuation.
- ethylene oxide sterilization is the only technique used today at industrial scale to batch process medical and hospital disposables.
- Other non-thermal techniques of surface sterilization have been tried at laboratory scale (particles radiation, electro-magnetic radiations) but they always were too inefficient (long contact time required), expensive or delicate to handle for industrial scale processing.
- ultraviolet (at 2,650 A, 2,350 A and 2,537 A for instance) irradiation can be under certain conditions quite effective to destroy bacteria, vegetative cells or spores.
- the energy level required to kill Bacillus Subtilis spores for instance is said to be around 22,000 microwattlseclcm
- the difficulty with ultraviolet radiation as a sterilizing agent is that it has a very low penetrating power and micro-organisms are easily shielded from it by soil or other materials through which it cannot penetrate.
- the presence of agglomerates or shadow zones greatly limits the use of this technique for surface sterilization of odd shaped devices.
- certain organic materials and plastics are quite susceptible (polymerization or molecular degradation) tohigh intensity UV irradiation.
- radioactive sources such as cobalt 60 (gamma radiation) or Xrays.
- sonic or ultrasonic waves can be brought into play in four major ways;.namely, through large variations of pressure, motion, heat degradation or electrical phenomena.
- the acoustic energy is transmitted through a liquid like water at an intensity of l0 wattlcm one can calculate that the water molecules will oscillate with a motion amplitude of the order of 3 microns (assume the emission frequency equal to 20 kHz).
- the molecular accelerations at the end of the molecular excursions will be 5,000 times greater than the acceleration due to gravity and considerable pressure changes (a few atmospheres) will occur at any given point in the liquid twenty thousand times each second.
- Nitrous acid, nitric acid and nitrogen oxides can also be detected in small amounts during the insonation of water saturated with air or nitrogen.
- low frequency (8 to 300 kHz) high energy density (higher than watts/liter) acoustic emissions may alone produce free radicals, atoms, ions or new chemicals with strong bactericidal or sporicidal powers. Beside the production of new chemicals or ac tive radicals which could be toxic to most pathogens, viruses or spores it is important to consider in detail the other physical mechanisms which may affect the life of unicellular or multicellular micro-organisms under ultrasonic irradiation.
- Each ion or molecule receives a supplementary amount of energy in a high intensity acoustic field, and it boosts its level of activity. This could be, for instance, an extra push due to the passage of fast travelling cavitation shock waves resulting from the collapse of a resonant bubble. (l. Schmid, Acustica, 9:4, 321-326, 1959). But the effect of acoustic waves on the membrane structure must also be carefully considered. The enormous localized pressure waves which can rip apart metal particles during intense vapourous cavitation can indeed loosen macromolecular structures, such as the cell walls of water-borne micro-organisms. By so doing, pressure waves associated with the acoustic field can change the permeability of the walls and membranes of living cells.
- a combination of liquid borne ultrasonic energy with the chemical action of a glutaraldehyde solution provides an extremely fast kill of pathogen bacteria, viruses, vegetative cells, bacterial spores and spores.
- Such fast bactericidal and sporicidal action takes place in a matter of minutes (1 to 30 minutes) thus enabling the continuous treatment of contaminated parts when they are submerged during the right time period in the ultrasonically activated solution of glutaraldehyde.
- the ultrasonic bath was operated at a nominal frequency of 20 kHz while the density of acoustic energy corresponded to approximately 15 watts per liter.
- the average number of micro-organisms per syringe was one million before treatment. All other things being equal, a higher bath temperature C) would reduce treatment time to less than 4 minutes.
- the method of surface sterilization, object of the present invention consists of a three step system.
- the first step consists of dipping the contaminated objects in an ultrasonic bath heated at a temperature comprised between and 70C and filled with a glutaraldehyde solution (maximum concentration 5 percent).
- the objects to be sterilized are contained in a tray (or trays) made of perforated metal or plastic. Said tray is submerged in the activated ultrasonic solution and moves slowly under the influence of a carrier-conveyor system.
- the contact time into the activated ultrasonic solution varies according to the nature of the contaminant and the bath temperature, but it is in general comprised between 2 and minutes.
- the glutaraldehyde content of the sterilized parts is always less than one thousandth H1 ,000) of the original amount present in the processing tank. This means a quantity far below any potentially dangerous toxicity level.
- a second ultrasonic tank is used with sterile water into which the tray is dipped during a few minutes at a temperature comprised between 54 and 70C.
- This second ultrasonic tank which performs a thorough washing operation of any remaining traces of glutaraldehyde is the second step of the continuous sterilization process object of the present invention.
- the last step consists of a drying operation (a few minutes) into a medium temperature tunnel.
- .Said tunnel contains several powerful ultraviolet lamps (intensity l0 watts/square foot) to maintain sterile surface conditions while the warm stream of filtered air is injected in the tunnel countercurrent to the direction of the moving tray (or trays).
- the filtered air temperature is calculated to maintain at all times a maximum temperature in the 54 to 70 C range inside the processed solid parts.
- Residence time (a few minutes) in the tunnel is the same as the exposure time in the ultrasonically activated solution tank and in the following washing tank.
- FIG. 1 is a vertical cross-sectional side view of the three apparatuses (synergistic bath, cleaning tank and dryer) which are needed to apply the method object of the invention.
- FIG. 2 is a vertical cross-sectional front view of the dryer-oven taken along the line 22 as seen in FIG. 1.
- the system to continuously sterilize heat sensitive parts consists of an ultrasonic tank 3 which contains the sterilizing agents, said ultrasonic tank being followed by a second ultrasonic tank 4 which rinses and eliminates most of the chemicals absorbed on the processed material, said ultrasonic rinsing tank being followed by a drying tunnel or oven 5 equipped with a sporicidal source (ultraviolet lamps, microwave source, radianty or X rays source).
- a sporicidal source ultraviolet lamps, microwave source, radianty or X rays source.
- the heat sensitive material 6 to be processed is placed into trays of perforated metal or plastic baskets 7 which are suspended through a hook 8 to a standard moving chain-wheel device 9 guided by a rail support 10.
- the latter is designed in such a way that the basket will be submerged at a few inches distance of the liquid/air interface when the basket enters the areas above the ultrasonic tanks 3 and 4.
- the ultrasonic tanks 3 and 4 are in general of the same type and they have the same dimensions to insure identical contact time for the processed material in the liquid phases.
- the ultrasonic tank will consist for instance of a stainless steel parallel-epipedic tank 11 whose lateral walls (one or several of them, according to the type of operation) contain a heating element 12 (electrical resistance, infrared, microwave, or dielectric, for instance.
- a heating element 12 electrical resistance, infrared, microwave, or dielectric, for instance.
- To the bottom of the tank are fastened one or several standard electroacoustic transducers 13 (piezo ceramic, ferrite or magnetostrictive types) which irradiate in and upward manner and create a high intensity ultrasonic field 14.
- the acoustic energy density in the two tanks 3 and 4 must be greater than ten watts of irradiated acoustic energy per liter.
- the frequency of emission of the transducer elements in the first tank 3 must also be comprised between 8 kHz and 900 kHz while the frequency range in the rinsing tank 4 is restricted to the 8 kHz to 300 kHz region.
- a power-generator G located in the lower section below each tank bottom is a power-generator G to drive the transducers array with associated cooling and automatic frequency tuning or impedance matching devices.
- the standard power generator could be packaged separately and placed at a remote location since this will not affect the proper functioning of the transducers.
- the ultrasonic generator is activated from the main line alternative current 120 or 220 volts, 60 cycles) through an electrical connector 15.
- Each ultrasonic tank is equipped with a draining-valve system arrangement 16.
- the first ultrasonic tank 3 is provided with an opening 17 which enables introducing fresh sporicidal agent into the tank.
- An electric pump 18 introduces automatically the active chemicals at the right dosage and concentration into the filtered water main line 19.
- the active cavitating solution will contain, for instance, a solution 20 of glutaraldehyde whose concentration will be comprised between 0.05 and 5 percent volume.
- a certain amount of dimethylsulfoxide could be added (concentration lower than 2 percent in volume).
- the temperature in the first tank 3 could vary between 15 and C according to solution pH and to the type of irradiated micro-organisms.
- the first tank is operated around 54 C.
- the speed of the basket conveyor system is adjusted to allow an average contact time in the sterilizing solution comprised between 2 and 30 minutes according to the type of application.
- the second ultrasonic tank 4 whose function is to rinse away most of the chemicals absorbed on the sterilized parts or components originally contains germ free water 21 with small amount of (less that 0.1 percent) surface active agents such as cationic surface active agents or quaternary ammonium salts.
- the second ultrasonic tank is always operated at a temperature comprised between 45 and 70 C which corresponds to maximum cavitation activity (L. D. Rosenberg, Ultrasonic News, 16 -20, 4th quarter 1960).
- the baskets which contain the sterile equipment enter into the drying tunnel 5.
- the length of the drying tunnel is the same as the length of each one of the two ultrasonic tanks 3 and 4, thus providing the same contact time in the liquids and the dryer.
- the dryer tunnel 5, as shown in FIG. 1, is only one of the possible embodiments of the type of dryer apparatus to be used in our invention.
- the dryer tunnel in this example is of circular shape with a slit longitudinal opening 22 at the top to allow the continuous motion of the hooks 8 to which the basket 7 are attached.
- Three openings 23 at the bottom of the tunnel are provided to introduce warm filtered air into the tunnel.
- Warm air could be conveyed through a piping system communicating with a central source of warm filtered air, or it could be provided by means of individual blowers 24 equipped with an internal heating element 25.
- the air could be drawn directly from the processing room and filtered at the blower inlet 26.
- the temperature inside the dryer tunnel is adjusted for each application (taking into account convection, conduction and radiation thermal effects) in such a manner that the maximum temperature of the parts at the time they leave the tunnel is always below 70 to 75 C.
- This objective can be achieved through the use of various forms of thermal energy such as infrared, dielectric or electromagnetic (microwaves) heating.
- the dryer tunnel is equipped with powerful ultraviolet lamps.
- three such ultraviolet lamps 27 are shown spaced each at 120 from the other. These ultraviolet lamps could, for instance, be of the Hanovia type 94A-l which emits 7.3 watts of UV energy at the 2,537 A wave length. They will insure complete destruction of airborne bacteria and spores during processing time in the tunnel.
- a transformer 28 is shown connected to one of the ultraviolet lamps.
- the basket 29 which leaves the tunnel, contains dry, sterilized parts or components with traces of chemicals far below toxicity level. At no time does the temperature of parts reach a level higher than 70 75 C. Such parts and components are ready to be fed manually or automatically to a packaging machine under sterile conditions.
- FIGS. 1 and 2 the entire system described in FIGS. 1 and 2 is enclosed inside a positive pressure clean or white room equipped with high retention ULTRA HEPA filter modules.
- Horizontal laminar flow clean rooms (class 100) of the type manufactured by Agnew-Higgins could be used to operate the continuous sterilization system hereabove described.
- additional mobile LETHERAY high intensity UV air sterilizers could be added inside the white room specially in the vicinity of transfer points i.e., between tank 4 and tunnel 5, or between tunnel 5 exit and the packaging sealing machine).
- the present invention can be applied to variable load sizes of heat sensitive materials at different temperatures within the specified 15 C range or at multiple gas pressures above the irradiated liquid, and that, still without departing from the scope of the invention, the structural details of the described apparatuses, the dimensions and the shapes of their members (such as the ultrasonic tank configuration) and their arrangement (the position of ultraviolet tubes inside the dryer tunnel, for instance) may be modified, and that certain members may be replaced by other equivalent means (electrical heating elements replaced, for instance by infrared radiant panels).
- the process of sterilizing sensitive materials such as plastic or the like comprising contacting the material to be treated with a chemical solution comprising an aqueous solution of from 0.05 to 5 percent by volume glutaraldehyde and from 1 part per million to 2 percent by volume of dimethyl-sulfoxide and ultrasonic waves simultaneously at temperatures below 75 C.
- a continuous process of synergistically destroying all surface micro-organisms including pathogens, viruses and spores on metal or heat sensitive materials such as plastic or the like comprising contacting the material to be treated with a chemical solution comprising an aqueous solution of from 0.05 to 5 percent by volume glutaraldehyde and from 1 part per million to 2 percent by volume dimethylsulfoxide and ultrasonic waves simultaneously at temperatures below 75 C, subsequently treating the material with a rinsing solution and ultrasonic waves simultaneously at temperatures below 75 C and finally drying the material'attemperatures below 75 C.
Landscapes
- Health & Medical Sciences (AREA)
- Epidemiology (AREA)
- Life Sciences & Earth Sciences (AREA)
- Animal Behavior & Ethology (AREA)
- General Health & Medical Sciences (AREA)
- Public Health (AREA)
- Veterinary Medicine (AREA)
- Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- General Chemical & Material Sciences (AREA)
- Apparatus For Disinfection Or Sterilisation (AREA)
Abstract
An automatic method and apparatus to continuously surface sterilize at temperatures below 75* C any objects, parts or components made of metal or heat sensitive materials. Said method consists of treating materials first in a synergistically active chemical solution in an ultrasonic tank, then of rinsing in a second ultrasonic tank. The final step consists of drying the processed material in a sterile atmosphere. The three different processing steps take place in a matter of minutes inside a laminar flow positive pressure clean or white room. The apparatus continuously delivers sterile parts or instruments ready for packaging and sealing. Sterilized parts or instruments are not physically or chemically affected by the process and do not contain dissolved corrosive or toxic compounds.
Description
United States Patent [191 BOucher 1 Jan. 2, 1973 541 METHOD FOR CONTINUOUS STERILIZATION AT LOW TEMPERATURE [75] Inventor: Raymond M. G. Boucher, New York, N.Y. 10021 [73] Assignee: Wave Energy Systems, Inc., New
York,N.Y.
221 Filed: Jan. 15,1971
21 App1.No.: 106,739
[52] US. Cl. ..21/54 A, 21/54 R, 21/58, 21/102 R, 21/102 A, 21/DIG. 2
[51] Int. Cl. ..A61l 13/00, A611 1/00, A611 3/00 [58] Field of Search..2l/102 R, 54 A, DIG. 2, 102 A, 21/58, 54 R; 134/1 [5 6] References Cited UNITED STATES PATENTS 2,137,376 ll/l938 Altorfer ..21/DIG. 2 2,717,874 9/1955 Verain ...21/102 R X 2,894,860 7/1959 Engelhardt ..134/1 3,016,328 1/1962 Pepper et a1. ..424/127 3,282,775 11/1966 Stonehill ..424/333 X 3,478,758 11/1969 Davies ...21/102 R X 3,549,771 12/1970 Herschler ..21/58 X FOREIGN PATENTS OR APPLICATIONS 947,699 H1964 Great Britain ..21/54R 947,700 1/1964 Great Britain ..21/54R Primary Examiner-Barry S. Richman Attorney-Shoemaker & Mattare 57 ABSTRACT An automatic method and apparatus to continuously surface sterilize at temperatures below 75 C any objects, parts or components made of metal or heat sensitive materials. Said method consists of treating materials first in a synergistically active chemical solution in an ultrasonic tank, then of rinsing in a second ultrasonic tank. The final step consists of drying the processed material in a sterile atmosphere. The three different processing steps take place in a matter of minutes inside a laminar flow positive pressure clean or white room. The apparatus continuously delivers steriIe parts or instruments ready for packaging and sealing. Sterilized parts or instruments are not physically or chemically affected by the process and do not contain dissolved corrosive or toxic compounds.
19 Claims, 2 Drawing Figures PATENTEDJAI 2 ms INVENTOR RAYMOND M. G. BOUCHER ig/AAA! L. Ni 2. i--- J.
METHOD FOR CONTINUOUS STERILIZATION AT LOW TEMPERATURE This invention relates to a continuous sterilization method at low and medium temperatures to process heat sensitive materials such as hospital and medical plastic made disposables or delicate electro-optical devices such as bronchoscopes or cytoscopes which cannot be autoclaved. Today hospitals, clinics and practitioner offices use a large number of disposables made of heat sensitive materials. Among these items are syringes, suction catheters, feeding and urinary drainage tubes, sutures, masks, nebulizer tubes, surgical gloves, etc. To sterilize these heat sensitive materials before, during or after packaging, most of todays manufacturers use low temperature gas sterilization. This is at the moment the only practical method to handle low softening point plastics, but, as well known, this method has numerous drawbacks and limitations. Although several aerosols, vapours and gases (see C. R. Philipps, Disinfection, Sterilization and Preservation, pg. 669 Lea and Febiger, Philadelphia, 1968) have been suggested in the past for gaseous sterilization, ethylene-oxide is the only chemical used on a large scale for industrial and medical applications. The advantages of ethylene-oxide sterilization lie not in the speed, simplicity, or economy of the treatment but rather in the fact that many types of materials are sterilized with least damage to the material itself when this technique is used. Among the drawbacks of this method is the acute inhalation toxicity of this gas. Cases of acute human exposures with nausea, vomiting, and mental disorientation have been reported in the technical literature (R. E. Joyner, Archiv. Environ Health, vol. 8, 700-710, May 2, 1964). As little as 3 percent of ethylene-oxide vapor in the air will support combustion and will have explosive violence if confined. When mixed with carbon dioxide (90% CO or various fluorinated hydrocarbons the resulting mixture can in turn be mixed with air in all proportions without any risk of explosion. However, these mixtures are very slow acting compared to pure ethylene oxide. The humidity of the air or gas mixture is another important factor to take into consideration. Ethylene oxide sterilization is most rapid at about 30 to 40 percent relative humidity and decreases as the relative humidity approaches 100 percent. Highly desiccated micro-organisms are slow to respond to ethylene oxide sterilization. Ethylene oxide is a very active chemical (alkylating agent) and it sometimes alters the characteristics of the processed material. A note of warning has been sounded, for instance, in the sterilization of foodstuffs. It has been shown (E. A. Hawk and O. Mickelsen, Science, vol. 12], no. 3143, 442-444, Mar. 1955) that various vitamins and amino acids were attacked by ethylene oxide. More recently a food additive amendment to the Food, Drug and Cosmetic Act discouraged the use of ethylene oxide due to the presence of traces of toxic ethylene glycol which is one of the by-products ofthe hydrolyzation of this chemical.
donning rubber shoes only 1 hour or so after they were sterilized. More recently R. B. Roberts (MSR Fourth Quarter, page 3, 1968) warned that ethylene oxide residues on surgical supplies could harm medical personnel as well as patients. On rubber gloves, they can burn the hands; and on tubes carrying blood, they will damage red blood cells. Endotracheal tubes which are not properly aerated can cause tracheitis or tissue necrosis. As a result of these observations it was recommended that surgical plastic devices stand at least 5 days at room temperature or 8 hours at F before use. Since already the time requested for ethylene oxide sterilization is not negligible (for instance a minute cycle at 30C) an additional long deaeration period often renders this method very expensive. It precludes anyway the development of a continuous process for sterile packaging.
Special problems (see D. A. Gunther, J. R. Nelson, G. W. Smith, Contarn. Contr. vol. Vlll, No. 8, 9-12, Aug. 1969) are also encountered in ethylene oxide bulk sterilization of disposable articles such as catheters, irrigation sets, intravenous kits, syringes etc.
Most of these items are being packaged in clear plastic film, such as hermetically sealed polyethylene. When a sealed polyethylene package is placed in the environment of a permeable sterilizing gas mixture, the gases will permeate the polyethylene unit they reach an equilibrium. This occurs when the concentrations of the permeating gases become equal on the inside and on the outside of the package. Since the residual air within the package is trapped it also contributes to increase the pressure inside the package. Thus, when the permeating gases reach equilibrium, the total pressure in the package may become greater than the outside pressure. This often results in package swelling or even rupture. To cope with this problem various pressure cycles are imposed upon the processed load. The pressure decrease is also programmed to coincide with the pressure decrease within the package as the permeable gases permeate out during the final stage (post-diffusion .period). This means a lengthy operation which can last up to 8 hours when including water vaporization'time, ethylene oxide exposure and gas evacuation.
Despite all the above mentioned drawbacks, ethylene oxide sterilization is the only technique used today at industrial scale to batch process medical and hospital disposables. Other non-thermal techniques of surface sterilization have been tried at laboratory scale (particles radiation, electro-magnetic radiations) but they always were too inefficient (long contact time required), expensive or delicate to handle for industrial scale processing. For instance ultraviolet (at 2,650 A, 2,350 A and 2,537 A for instance) irradiation can be under certain conditions quite effective to destroy bacteria, vegetative cells or spores. The energy level required to kill Bacillus Subtilis spores for instance is said to be around 22,000 microwattlseclcm The difficulty with ultraviolet radiation as a sterilizing agent is that it has a very low penetrating power and micro-organisms are easily shielded from it by soil or other materials through which it cannot penetrate. The presence of agglomerates or shadow zones greatly limits the use of this technique for surface sterilization of odd shaped devices. In addition certain organic materials and plastics are quite susceptible (polymerization or molecular degradation) tohigh intensity UV irradiation. The same disadvantage exists when one uses radioactive sources, such as cobalt 60 (gamma radiation) or Xrays. The energy imparted by electrons, Xrays and gamma rays results in ionizations (Compton effect) within the absorbed material. This has a lethal effect on the majority of spores according to dosage rate, presence of oxygen or protective compounds, physiological state of the micro organisms, water content and temperature. To achieve complete sterilization for instance of Bacillus megaterium spores (A Tallentire, and E. L. Powers, Rad Res, 20, 270-287, 1963) large doses of energy (5.10 Rad) are needed and this means potential damage to the irradiated material. More recently the synergistic effect produced by combining heat and radiation (Contamination Control, 20-22, Feb. 1970) gave some hope of improving operational conditions. Unfortunately, if the method provides a reduction in irradiation time requirements (from 40 to 12 hours) at 105 C it does not seem to give encouraging results at temperatures below 105 C.
It is therefore an object of the present invention to provide a method to surface sterilize laboratory, medical, dental devices and heat sensitive disposables in a matter of minutes rather than hours.
it is also an object of the present invention to surface sterilize within a short time period at low and medium temperatures within the 15 to 70 C temperature range.
it is a further object of this invention to quickly surface sterilize" heat sensitive instruments and components in a continuous process, which includes dipping the load of contaminated objects in an ultrasonic bath synergistically activated by a sporicidal agent, rinsing it in a second bath with sterile water, drying it at a temperature below 75C inside an ultraviolet tunnel and conveying the sterile material directly to the packaging machine. All said automatic operations taking place in a germsand particles-free white room atmosphere. 7
It is a further object of this invention to continuously surface-sterilize heat sensitive materials, tools, instruments or components without leaving an amount of absorbed or dissolved chemical which could create a toxicity problem when the processed part is in contact with the human body.
It is a further object of this invention to continuously sterilize heat'sensitive materials in a manner such that none of the physical, chemical, mechanical or structural characteristics of the sterilized products will be altered during processing.
Other objects, advantages, features and uses of our invention will be apparent during the course of the following discussion. To aid in the understanding of the present invention, the potential contribution of large amplitude sonic and ultrasonic waves to the mechanism of sterilization in liquid phase when used alone or in combination with chemicals such as glutaraldehyde or alkalynized glutaraldehyde will first be reviewed briefly.
Although a little complex at first sight, the physical action of sonic or ultrasonic waves can be brought into play in four major ways;.namely, through large variations of pressure, motion, heat degradation or electrical phenomena. The acoustic energy is transmitted through a liquid like water at an intensity of l0 wattlcm one can calculate that the water molecules will oscillate with a motion amplitude of the order of 3 microns (assume the emission frequency equal to 20 kHz). The molecular accelerations at the end of the molecular excursions will be 5,000 times greater than the acceleration due to gravity and considerable pressure changes (a few atmospheres) will occur at any given point in the liquid twenty thousand times each second. Since the pressure is increased and decreased alternately, it is understandable that during the negative pressure phase a point may be reached at which the natural cohesive forces of the liquid will be overcome. Then a new phenomenon known as cavitation" takes place. It corresponds to the formation and rapid collapse of small cavities through the entire liquid. According to the energy density level the cavities are filled with gas or vapor. In the latter case, their collapse produces very large amplitude shock waves (up to several hundred atmospheres) with local temperature up to a few hundred degrees Centigrade or more. Electrical discharges are also believed to occur during the collapsing phase, this is called the sonoluminescence effect. 7
Due primarily to the effects of electrical discharges (ionization), hot points in the liquid, and sharp pressure waves gradients, the molecular bonds of water will be severed and free radicals OH and H will then be produced.
Chemically active hydroxyl radicals and hydrogen atoms will be available in the water solution to trigger several types of chemical reactions which may lead to bactericidal compounds such as water peroxide. (See LE. Elpiner, Ultrasound, pg. 20, Chapter 2, Consult. Bur. ed. New York 1964). If other chemicals are present in the water such as glutaraldehyde, other molecular bond breakages could take place which would favor for instance the combination of aldehyde radicals with cells amino groups. With carbontetrachloride one will observe, for instance, the production of free chlorine (S.P. Liu, Chlorine Release Test for Caviation Activity Measurements, Journal of Acoustical Society of America, Vol. 38, No. 5, 817-826, Nov. 1965) and with potassium iodide the liberation of iodine (D. E. Goldman and G. R. Ringe, Determination of Pressure Nodes in Liquids, J. Acous. Soc. Am., Vol. 21, 270, 1949). It is known that alkyl and aryl halides in aqueous suspension, irradiated at low frequency, are hydrolysed to produce a halide ion and the corresponding hydroxyl compound or ether (A. E. Crawford, Ultrasonic Engineering, pg. 212, Chapter 9, London, Butterworths Sci. Publ. 1955). The production of highly bactericidal compounds such as ozone can also be the result of low frequency sonic irradiation of oxygen saturated water. (M. Haissinsky and A. Mangeot, Nuovo Cimento, 4:5, 1086, 1956). Nitrous acid, nitric acid and nitrogen oxides can also be detected in small amounts during the insonation of water saturated with air or nitrogen.
It can be said that low frequency (8 to 300 kHz) high energy density (higher than watts/liter) acoustic emissions may alone produce free radicals, atoms, ions or new chemicals with strong bactericidal or sporicidal powers. Beside the production of new chemicals or ac tive radicals which could be toxic to most pathogens, viruses or spores it is important to consider in detail the other physical mechanisms which may affect the life of unicellular or multicellular micro-organisms under ultrasonic irradiation.
Large amplitude sonic and ultrasonic waves, inside the frequency range previously stated, will considerably modify the ion exchange processes through the cell membranes. This modification of the diffusional process through inert or living membranes is well known in the art. Along these lines there is, for instance, the early work of J. H. Rees (Mast. Thesis, Mass. Inst. Techn., 1948) on the influence of low frequency insonation (10 to 30 kHz) on the dialysis constant. The enhanced membrane diffusion observed during insonation can be interpreted as the complex result of the radiation pressure, the acoustic pressure and cavitation on the motion of individual ions or molecules. Each ion or molecule receives a supplementary amount of energy in a high intensity acoustic field, and it boosts its level of activity. This could be, for instance, an extra push due to the passage of fast travelling cavitation shock waves resulting from the collapse of a resonant bubble. (l. Schmid, Acustica, 9:4, 321-326, 1959). But the effect of acoustic waves on the membrane structure must also be carefully considered. The enormous localized pressure waves which can rip apart metal particles during intense vapourous cavitation can indeed loosen macromolecular structures, such as the cell walls of water-borne micro-organisms. By so doing, pressure waves associated with the acoustic field can change the permeability of the walls and membranes of living cells. This would explain, for instance, why low frequency (8 300 kHz) high energy density (above 10 watts/liter) ultrasound waves increase the sensitivity of micro-organisms to disinfectants. It has been shown, for instance, a few years ago (I. E. Elpiner, Gigiena l Sanit, USSR, 7:26, 1958) that the sterilization of aqueous suspensions of E. Coli previously irradiated at 20-25 kHz requires much lower concentration of bactericides than the treatment of the same type of unirradiated suspensions.
One can conclude that ultrasonic irradiation of contaminated liquids at low frequency, high intensity, and with reasonable contact time may lead either to the production of compounds which would be toxic to the micro-organisms in contact with the liquid phase (through reaction at the active sites) or to cells structure modifications which will be lethal to the same micro-organisms.
Whatever the micro-organisms destruction mechanism is, ultrasonic irradiation alone would rarely achieve a hundred percent kill. This is understandable when one remembers that positive results can be observed in practice only with huge amount of acoustic energy and long exposure times (often several days).
It has been found in accordance with one aspect of the present invention that a combination of liquid borne ultrasonic energy with the chemical action of a glutaraldehyde solution provides an extremely fast kill of pathogen bacteria, viruses, vegetative cells, bacterial spores and spores. Such fast bactericidal and sporicidal action takes place in a matter of minutes (1 to 30 minutes) thus enabling the continuous treatment of contaminated parts when they are submerged during the right time period in the ultrasonically activated solution of glutaraldehyde.
When using batches of hundred disposable syringes artifically contaminated with Bacillus Subtilis (ATCC 6051) or Clostridium sporogenes (ATCC 7955) it was found that a 6 minutes contact time in a 1 percent solution of glutaraldehyde (pH5) at a temperature of 54 C.
would give 100 percent kill. The ultrasonic bath was operated at a nominal frequency of 20 kHz while the density of acoustic energy corresponded to approximately 15 watts per liter. The average number of micro-organisms per syringe was one million before treatment. All other things being equal, a higher bath temperature C) would reduce treatment time to less than 4 minutes.
It was also found that the sporicidal effect remained the same when pH varied between 2 and 7 at the above mentioned temperatures, all other experimental conditions being identical.
It was also found that the same bactericidal and sporicidal activity was displayed for ultrasonically irradiated solutions (1 and 2 percent) buffered by suitable alkalinating agents to a pH of 7.5 to 8.5. In this latter case it was discovered that under the experimen tal conditions hereabove defined it was possible to decrease the percent kill contact time down to 8 minutes at a temperature as low as 25 C.
It was also found that higher ultrasonic frequencies (250 kHz for instance) could also provide total destruction of spores on the contaminated syringes with a slightly longer exposure (30' minutes at 25 C) time in a 2 percent solution of alkalinized glutaraldehyde. In all cases the bactericidal and sporicidal mechanisms seem to be the result of a synergistic phenomenon between the chemical and ultrasonic energy since the killing effect of the combined agents is always greater than the sum of the two agents acting separately.
It was also found that the synergistic bactericidal and sporicidal activity can be accelerated by adding traces of dimethyl sulfoxide to the glutaraldehyde solution in the ultrasonic tank. For instance, as previously mentioned, a batch of 100 disposable syringes artifically contaminated with Bacillus Subtilis (ATCC 6051 were sterilized after a 6 minutes contact in a 1 percent solution of glutaraldehyde (pHS) at 54 C. The same batch of syringes under identical conditions were sterilized in only 3 minutes when adding between I and I0 parts per million of dimethylsulfoxide to the activated solution in the ultrasonic tank.
This important time reduction could be due to a faster penetration of activated chemical molecules or radicals through the spores cortex. The above described experiments took place at a nominal frequency of 20 kHz while the average density of acoustic energy in the tank oscillated between 15 and 20 watts per litter.
It was also found that the concentration of glutaraldehyde could be greatly decreased when operating at higher temperatures in the 60 to 70 C range. For instance, at 70C a 0.1 percent concentration of glutaraldehyde (pH 4.7) enables the complete sterilization of contaminated disposablesyringes in to 6 minutes, thus providing results equal to those obtained with a 1 percent glutaraldehyde solution at 54C. In all these experiments, the acoustic energy density in the tank remained constant (around to watts/liter). The nominal frequency was kept at 20 kHz.
The method of surface sterilization, object of the present invention, consists of a three step system. The first step consists of dipping the contaminated objects in an ultrasonic bath heated at a temperature comprised between and 70C and filled with a glutaraldehyde solution (maximum concentration 5 percent). The objects to be sterilized are contained in a tray (or trays) made of perforated metal or plastic. Said tray is submerged in the activated ultrasonic solution and moves slowly under the influence of a carrier-conveyor system. The contact time into the activated ultrasonic solution varies according to the nature of the contaminant and the bath temperature, but it is in general comprised between 2 and minutes.
When the irradiated tray leaves the ultrasonic tank which contains the glutaraldehyde solution traces of this chemical may remain absorbed on the wet processed parts. From analytical data (spectroscopy) the glutaraldehyde content of the sterilized parts is always less than one thousandth H1 ,000) of the original amount present in the processing tank. This means a quantity far below any potentially dangerous toxicity level. However, to decrease this content down to a few gammas (parts per million) a second ultrasonic tank is used with sterile water into which the tray is dipped during a few minutes at a temperature comprised between 54 and 70C. This second ultrasonic tank which performs a thorough washing operation of any remaining traces of glutaraldehyde is the second step of the continuous sterilization process object of the present invention. The last step consists of a drying operation (a few minutes) into a medium temperature tunnel. .Said tunnel contains several powerful ultraviolet lamps (intensity l0 watts/square foot) to maintain sterile surface conditions while the warm stream of filtered air is injected in the tunnel countercurrent to the direction of the moving tray (or trays). The filtered air temperature is calculated to maintain at all times a maximum temperature in the 54 to 70 C range inside the processed solid parts. Residence time (a few minutes) in the tunnel is the same as the exposure time in the ultrasonically activated solution tank and in the following washing tank.
FIG. 1 is a vertical cross-sectional side view of the three apparatuses (synergistic bath, cleaning tank and dryer) which are needed to apply the method object of the invention.
FIG. 2 is a vertical cross-sectional front view of the dryer-oven taken along the line 22 as seen in FIG. 1.
As can be seen in FIG. 1, the system to continuously sterilize heat sensitive parts consists of an ultrasonic tank 3 which contains the sterilizing agents, said ultrasonic tank being followed by a second ultrasonic tank 4 which rinses and eliminates most of the chemicals absorbed on the processed material, said ultrasonic rinsing tank being followed by a drying tunnel or oven 5 equipped with a sporicidal source (ultraviolet lamps, microwave source, radianty or X rays source).
The heat sensitive material 6 to be processed is placed into trays of perforated metal or plastic baskets 7 which are suspended through a hook 8 to a standard moving chain-wheel device 9 guided by a rail support 10. The latter is designed in such a way that the basket will be submerged at a few inches distance of the liquid/air interface when the basket enters the areas above the ultrasonic tanks 3 and 4.
The ultrasonic tanks 3 and 4 are in general of the same type and they have the same dimensions to insure identical contact time for the processed material in the liquid phases. The ultrasonic tank will consist for instance of a stainless steel parallel-epipedic tank 11 whose lateral walls (one or several of them, according to the type of operation) contain a heating element 12 (electrical resistance, infrared, microwave, or dielectric, for instance. To the bottom of the tank are fastened one or several standard electroacoustic transducers 13 (piezo ceramic, ferrite or magnetostrictive types) which irradiate in and upward manner and create a high intensity ultrasonic field 14. To successfully apply the process object of the present invention, the acoustic energy density in the two tanks 3 and 4 must be greater than ten watts of irradiated acoustic energy per liter.
The frequency of emission of the transducer elements in the first tank 3 must also be comprised between 8 kHz and 900 kHz while the frequency range in the rinsing tank 4 is restricted to the 8 kHz to 300 kHz region. Also located in the lower section below each tank bottom is a power-generator G to drive the transducers array with associated cooling and automatic frequency tuning or impedance matching devices. The standard power generator could be packaged separately and placed at a remote location since this will not affect the proper functioning of the transducers. As shown in FIG. 1, the ultrasonic generator is activated from the main line alternative current 120 or 220 volts, 60 cycles) through an electrical connector 15. Each ultrasonic tank is equipped with a draining-valve system arrangement 16. The first ultrasonic tank 3 is provided with an opening 17 which enables introducing fresh sporicidal agent into the tank. An electric pump 18 introduces automatically the active chemicals at the right dosage and concentration into the filtered water main line 19. In the first tank 3, the active cavitating solution will contain, for instance, a solution 20 of glutaraldehyde whose concentration will be comprised between 0.05 and 5 percent volume. Optionally and according to the type of micro-organisms to be destroyed, a certain amount of dimethylsulfoxide could be added (concentration lower than 2 percent in volume). The temperature in the first tank 3 could vary between 15 and C according to solution pH and to the type of irradiated micro-organisms. In most current applications for spores destruction, the first tank is operated around 54 C. The speed of the basket conveyor system is adjusted to allow an average contact time in the sterilizing solution comprised between 2 and 30 minutes according to the type of application. The second ultrasonic tank 4 whose function is to rinse away most of the chemicals absorbed on the sterilized parts or components originally contains germ free water 21 with small amount of (less that 0.1 percent) surface active agents such as cationic surface active agents or quaternary ammonium salts. The second ultrasonic tank is always operated at a temperature comprised between 45 and 70 C which corresponds to maximum cavitation activity (L. D. Rosenberg, Ultrasonic News, 16 -20, 4th quarter 1960).
After the sterilizing and rinsing operations, the baskets which contain the sterile equipment enter into the drying tunnel 5. The length of the drying tunnel is the same as the length of each one of the two ultrasonic tanks 3 and 4, thus providing the same contact time in the liquids and the dryer. The dryer tunnel 5, as shown in FIG. 1, is only one of the possible embodiments of the type of dryer apparatus to be used in our invention. As shown in FIG. 2, the dryer tunnel in this example is of circular shape with a slit longitudinal opening 22 at the top to allow the continuous motion of the hooks 8 to which the basket 7 are attached. Three openings 23 at the bottom of the tunnel are provided to introduce warm filtered air into the tunnel. Warm air could be conveyed through a piping system communicating with a central source of warm filtered air, or it could be provided by means of individual blowers 24 equipped with an internal heating element 25. The air could be drawn directly from the processing room and filtered at the blower inlet 26. The temperature inside the dryer tunnel is adjusted for each application (taking into account convection, conduction and radiation thermal effects) in such a manner that the maximum temperature of the parts at the time they leave the tunnel is always below 70 to 75 C. This objective can be achieved through the use of various forms of thermal energy such as infrared, dielectric or electromagnetic (microwaves) heating. Since the baskets which enter the dryer-tunnel are sterile and contain sterile material, it is necessary to sterilize the tunnel atmosphere to avoid the deposition of airborne bacteria or spores. To insure such a protection during the final drying phase we already mentioned that we use warm filtered air. As a supplementary protection, the dryer tunnel is equipped with powerful ultraviolet lamps. In FIGS. 1 and 2, three such ultraviolet lamps 27 are shown spaced each at 120 from the other. These ultraviolet lamps could, for instance, be of the Hanovia type 94A-l which emits 7.3 watts of UV energy at the 2,537 A wave length. They will insure complete destruction of airborne bacteria and spores during processing time in the tunnel. A transformer 28 is shown connected to one of the ultraviolet lamps. The basket 29 which leaves the tunnel, contains dry, sterilized parts or components with traces of chemicals far below toxicity level. At no time does the temperature of parts reach a level higher than 70 75 C. Such parts and components are ready to be fed manually or automatically to a packaging machine under sterile conditions.
Also not shown in FIGS. 1 and 2, but obvious to a person skilled in the art, the entire system described in FIGS. 1 and 2 is enclosed inside a positive pressure clean or white room equipped with high retention ULTRA HEPA filter modules. Horizontal laminar flow clean rooms (class 100) of the type manufactured by Agnew-Higgins could be used to operate the continuous sterilization system hereabove described. With a view to increasing the efficiency of the white room for bacteria and spores control, additional mobile LETHERAY high intensity UV air sterilizers could be added inside the white room specially in the vicinity of transfer points i.e., between tank 4 and tunnel 5, or between tunnel 5 exit and the packaging sealing machine).
Without departing from the frame work of the present invention, it must be well understood that, according to the desired results, the present invention can be applied to variable load sizes of heat sensitive materials at different temperatures within the specified 15 C range or at multiple gas pressures above the irradiated liquid, and that, still without departing from the scope of the invention, the structural details of the described apparatuses, the dimensions and the shapes of their members (such as the ultrasonic tank configuration) and their arrangement (the position of ultraviolet tubes inside the dryer tunnel, for instance) may be modified, and that certain members may be replaced by other equivalent means (electrical heating elements replaced, for instance by infrared radiant panels).
The teachings of the invention may be practiced within the following parameters:
First Step:
contact time in the sterilizing solution: 2 to 30 minutes Glutaraldehyde concentration: 0.05 to 5 percent in volume Glutaraldehyde solution pH: 2 to 8.5
Dimethylsulfoxide concentration: less than 2 percent in volume Acoustic energy density in liquid: higher than 10 watts/liter Emission Frequency: 8 to 900 kHz Temperature range in liquid: 15 to 70 C Second Step:
Contact time in rinsing solution: 2 to 30 minutes Concentration of surface active agents less than 0.1
percent in volume Acoustic energy density in liquid: higher than 10 watts/liter Emission Frequency: 8 to 300 kHz Temperature range in liquid: 45 to 70 C Third Step:
Contact time in dryer tunnel: 2 to 30 minutes Temperature inside tunnel: adjusted to a maximum of 70 to C in the processed material leaving the dryer The embodiments of the invention in which an exclusive property or privilege is claimed are defined as follows:
l. The process of sterilizing sensitive materials such as plastic or the like comprising contacting the material to be treated with a chemical solution comprising an aqueous solution of from 0.05 to 5 percent by volume glutaraldehyde and from 1 part per million to 2 percent by volume of dimethyl-sulfoxide and ultrasonic waves simultaneously at temperatures below 75 C.
2. A continuous process of synergistically destroying all surface micro-organisms including pathogens, viruses and spores on metal or heat sensitive materials such as plastic or the like, comprising contacting the material to be treated with a chemical solution comprising an aqueous solution of from 0.05 to 5 percent by volume glutaraldehyde and from 1 part per million to 2 percent by volume dimethylsulfoxide and ultrasonic waves simultaneously at temperatures below 75 C, subsequently treating the material with a rinsing solution and ultrasonic waves simultaneously at temperatures below 75 C and finally drying the material'attemperatures below 75 C.
3. The process of claim 2, wherein the material to be treated is first submerged in said chemical solution while said material to be treated and said chemical solution is being treated with ultrasonic waves, subsequently said material to be treated is submerged in a rinsing solution while said material to be treated and said rinsing solution is being treated with ultrasonic waves and finally drying said material to be treated.
4. The process of claim 2, wherein the rinsing solution is sterile water.
5. The process of claim 2, wherein all the steps take place in a sterile atmosphere.
6. The process of claim 2, wherein the chemical solution has a pH of between 2 to 8.5.
7. The process of claim 2, wherein the chemical solution contains a buffer to adjust the pH from between 7 and 8.5.
8. The process of claim 2, wherein the chemical solution is submitted to a high intensity ultrasonic field whose normal frequency is from between 8 kHz and 900 kHz.
9. The process of claim 2, wherein the chemical solution is submitted to an ultrasonic field having an intensity of at least 10 watts per liter.
10. The process of claim 2, wherein the material is treated in the chemical solution at a temperature of between 15 and C.
11. The process of claim 2, wherein the rinsing solution is submitted to a high intensity ultrasonic field whose normal frequency is from between 8 kHz and 300 kHz.
12. The process of claim 2, wherein the intensity of the ultrasonic field on the rinsing solution is greater than 10 watts per liter.
13. The process of claim 2, wherein the temperature of the rinsing solution is between 45 and 70 C.
14. The process of claim 2, wherein the material to be treated is dried at a temperature at between 70 and C.
15. The process of claim 2, wherein the material is treated with the chemical solution and ultrasonic waves, the rinsing solution and ultrasonic waves and the drying operation for from 2 to 30 minutes each, respectively.
16. The process of claim 2, wherein the material being treated is exposed to ultraviolet light while being dried. g
17. The process of claim 2, wherein the rinsing solution also contains up to 0.1 percent by volume of a surface active agent.
18. The process of claim 17, wherein the surface active agent is a cationic surface active agent.
19. The process of claim 18, wherein the cationic surface active agent is a quaternary ammonium salt.
Claims (18)
- 2. A continuous process of synergistically destroying all surface micro-organisms including pathogens, viruses and spores on metal or heat sensitive materials such as plastic or the like, comprising contacting the material to be treated with a chemical solution comprising an aqueous solution of from 0.05 to 5 percent by volume glutaraldehyde and from 1 part per million to 2 percent by volume dimethylsulfoxide and ultrasonic waves simultaneously at temperatures below 75* C, subsequently treating the material with a rinsing solution and ultrasonic waves simultaneously at temperatures below 75* C and finally drying the material at temperatures below 75* C.
- 3. The process of claim 2, wherein the material to be treated is first submerged in said chemical solution while said material to be treated and said chemical solution is being treated with ultrasonic waves, subsequently said material to be treated is submerged in a rinsing solution while said material to be treated and said rinsing solution is being treated with ultrasonic waves and finally drying said material to be treated.
- 4. The process of claim 2, wherein the rinsing solution is sterile water.
- 5. The process of claim 2, wherein all the steps take place in a sterile atmosphere.
- 6. The process of claim 2, wherein the chemical solution has a pH of between 2 to 8.5.
- 7. The process of claim 2, wherein the chemical solution contains a buffer to adjust the pH from between 7 and 8.5.
- 8. The process of claim 2, wherein the chemical solution is submitted to a high intensity ultrasonic field whose normal frequency is from between 8 kHz and 900 kHz.
- 9. The process of claim 2, wherein the chemical solution is submitted to an ultrasonic field having an intensity of at least 10 watts per liter.
- 10. The process of claim 2, wherein the material is treated in the chemical solution at a temperature of between 15* and 70* C.
- 11. The process of claim 2, wherein the rinsing solution is submitted to a high intensity ultrasonic field whose normal frequency is from between 8 kHz and 300 kHz.
- 12. The process of claim 2, wherein the intensity of the ultrasonic field on the rinsing solution is greater than 10 watts per liter.
- 13. The process of claim 2, wherein the temperature of the rinsing solution is between 45* and 70* C.
- 14. The process of claim 2, wherein the material to be treated is dried at a temperature at between 70* and 75* C.
- 15. The process of claim 2, wherein the material is treated with the chemical solution and ultrasonic waves, the rinsing solution and ultrasonic waves and the drying operation for from 2 to 30 minutes each, respectively.
- 16. The process of claim 2, wherein the material being treated is exposed to ultraviolet light while being dried.
- 17. The process of claim 2, wherein the rinsing solution also contains up to 0.1 percent by volume of a surface active agent.
- 18. The process of claim 17, wherein the surface active agent is a cationic surface active agent.
- 19. The process of claim 18, wherein the cationic surface active agent is a quaternary ammonium salt.
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US10673971A | 1971-01-15 | 1971-01-15 |
Publications (1)
Publication Number | Publication Date |
---|---|
US3708263A true US3708263A (en) | 1973-01-02 |
Family
ID=22312993
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US00106739A Expired - Lifetime US3708263A (en) | 1971-01-15 | 1971-01-15 | Method for continuous sterilization at low temperature |
Country Status (1)
Country | Link |
---|---|
US (1) | US3708263A (en) |
Cited By (29)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3885987A (en) * | 1973-12-13 | 1975-05-27 | Flight Services Unlimited Inc | Process for cleaning and sanitizing ear sets |
DE2554587A1 (en) * | 1974-12-11 | 1976-06-16 | Arbrook Inc | DISINFECTANT |
US4076617A (en) * | 1971-04-22 | 1978-02-28 | Tii Corporation | Sonic cavitation and ozonation of waste material |
US4211744A (en) * | 1978-05-24 | 1980-07-08 | Biophysics Research & Consulting Corporation | Process for ultrasonic pasteurization |
US4308229A (en) * | 1980-09-04 | 1981-12-29 | Voit J Kenneth | Sterilization apparatus and method |
US4424188A (en) | 1981-12-31 | 1984-01-03 | International Paper Company | Sterilization of packaging material |
US4607652A (en) * | 1984-08-29 | 1986-08-26 | Yung Simon K C | Contact lens cleaning apparatus |
US4697605A (en) * | 1984-08-29 | 1987-10-06 | Smc Metal Tech Co., Ltd. | Contact lens cleaning apparatus |
US4847304A (en) * | 1987-05-21 | 1989-07-11 | Surgikos, Inc. | Disinfecting and sterilizing composition |
US4851449A (en) * | 1987-05-21 | 1989-07-25 | Surgikos, Inc. | Odorless aromatic dialdehyde disinfecting and sterilizing composition |
US4978530A (en) * | 1986-05-02 | 1990-12-18 | Health Care Products, Inc. | Sanitized, disinfected and sporicidal articles, and processes for sanitizing, disinfecting and rendering objects sporicidal |
WO1994013138A1 (en) * | 1992-12-15 | 1994-06-23 | Williams Robert M | Sterilization devices, sporidical compositions, sterilization methods, and devices for reducing surface tension |
US5686045A (en) * | 1994-02-09 | 1997-11-11 | Carter; Stephen D. | Method for the heat independent sterilization of microbially contaminated instruments |
US5889209A (en) * | 1997-12-18 | 1999-03-30 | The Regents Of The University Of California | Method and apparatus for preventing biofouling of aquatic sensors |
US6447718B1 (en) | 1999-11-10 | 2002-09-10 | Stephen Douglas Carter | Apparatus and associated method for decontaminating contaminated matter with ultrasonic transient cavitation |
US20020153021A1 (en) * | 2001-03-30 | 2002-10-24 | Cfr Assainissement Inc. | Washing and sterilizing line and uses thereof |
US20020159917A1 (en) * | 2001-04-27 | 2002-10-31 | Swart Sally Kay | System and method for cleaning, high level disinfection, or sterilization of medical or dental instruments or devices |
US6609553B2 (en) * | 1998-07-27 | 2003-08-26 | Canon Kabushiki Kaisha | Sample processing apparatus and method |
WO2003099100A3 (en) * | 2002-05-29 | 2004-11-11 | P M G Medica Ltd | Method, apparatus and system for treating biofilms associated with catheters |
US20080095812A1 (en) * | 2006-09-07 | 2008-04-24 | Biolargo Life Technologies, Inc. | Systems providing antimicrobial activity to an environment |
US20080128362A1 (en) * | 2006-12-04 | 2008-06-05 | Bacoustics Llc | Method of ultrasonically treating a continuous flow of fluid |
WO2008045135A3 (en) * | 2006-10-11 | 2008-07-03 | Biolargo Life Technologies Inc | Systems providing antimicrobial activity to an environment |
US20090028915A1 (en) * | 2006-09-07 | 2009-01-29 | Biolargo Life Technologies, Incorporated | Material having antimicrobial activity when wet |
US7829029B2 (en) | 2002-05-29 | 2010-11-09 | NanoVibronix, Inv. | Acoustic add-on device for biofilm prevention in urinary catheter |
US20110064605A1 (en) * | 2006-07-05 | 2011-03-17 | Thermapure, Inc. | Method for treating an object contaminated with harmful biological organisms or chemical substances utilizing electromagnetic waves |
US20110262990A1 (en) * | 2010-04-21 | 2011-10-27 | Zhaowei Wang | Acoustic device and methods thereof for separation and concentration |
US20120125763A1 (en) * | 2009-05-15 | 2012-05-24 | Ausbiodiesel Pty Ltd | Method and apparatus for the making of a fuel |
US20120136083A1 (en) * | 2008-09-26 | 2012-05-31 | Nike, Inc. | Systems And Methods For Stabilization Of A Phylon Article |
CN114938805A (en) * | 2022-06-27 | 2022-08-26 | 广州迈高化学有限公司 | Preparation method of organic-matter-resistant glutaraldehyde disinfectant |
Citations (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US2137376A (en) * | 1937-12-27 | 1938-11-22 | Henry W Altorfer | Clothes drier |
US2717874A (en) * | 1950-11-16 | 1955-09-13 | Verain Marcel Jules | Procedure and apparatus for the sterilization of water |
US2894860A (en) * | 1953-07-30 | 1959-07-14 | Capito & Klein Ag | Method of de-scaling of metals by pickling |
US3016328A (en) * | 1961-01-03 | 1962-01-09 | Ethicon Inc | Dialdehyde alcoholic sporicidal composition |
GB947700A (en) * | 1961-05-01 | 1964-01-29 | Bendix Corp | Sterilization method and apparatus |
GB947699A (en) * | 1960-10-03 | 1964-01-29 | Bendix Corp | Sterilization method and apparatus |
US3282775A (en) * | 1963-05-10 | 1966-11-01 | Ethicon Inc | Sporicidal compositions comprising a saturated dialdehyde and a cationic surfactant |
US3478758A (en) * | 1967-02-13 | 1969-11-18 | George W Davies | Washing and sterilizing device |
US3549771A (en) * | 1964-02-10 | 1970-12-22 | Crown Zellerbach Corp | Retarding the growth of microorganisms with dimethyl sulfoxide |
-
1971
- 1971-01-15 US US00106739A patent/US3708263A/en not_active Expired - Lifetime
Patent Citations (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US2137376A (en) * | 1937-12-27 | 1938-11-22 | Henry W Altorfer | Clothes drier |
US2717874A (en) * | 1950-11-16 | 1955-09-13 | Verain Marcel Jules | Procedure and apparatus for the sterilization of water |
US2894860A (en) * | 1953-07-30 | 1959-07-14 | Capito & Klein Ag | Method of de-scaling of metals by pickling |
GB947699A (en) * | 1960-10-03 | 1964-01-29 | Bendix Corp | Sterilization method and apparatus |
US3016328A (en) * | 1961-01-03 | 1962-01-09 | Ethicon Inc | Dialdehyde alcoholic sporicidal composition |
GB947700A (en) * | 1961-05-01 | 1964-01-29 | Bendix Corp | Sterilization method and apparatus |
US3282775A (en) * | 1963-05-10 | 1966-11-01 | Ethicon Inc | Sporicidal compositions comprising a saturated dialdehyde and a cationic surfactant |
US3549771A (en) * | 1964-02-10 | 1970-12-22 | Crown Zellerbach Corp | Retarding the growth of microorganisms with dimethyl sulfoxide |
US3478758A (en) * | 1967-02-13 | 1969-11-18 | George W Davies | Washing and sterilizing device |
Cited By (42)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4076617A (en) * | 1971-04-22 | 1978-02-28 | Tii Corporation | Sonic cavitation and ozonation of waste material |
US3885987A (en) * | 1973-12-13 | 1975-05-27 | Flight Services Unlimited Inc | Process for cleaning and sanitizing ear sets |
DE2554587A1 (en) * | 1974-12-11 | 1976-06-16 | Arbrook Inc | DISINFECTANT |
US4211744A (en) * | 1978-05-24 | 1980-07-08 | Biophysics Research & Consulting Corporation | Process for ultrasonic pasteurization |
US4308229A (en) * | 1980-09-04 | 1981-12-29 | Voit J Kenneth | Sterilization apparatus and method |
US4424188A (en) | 1981-12-31 | 1984-01-03 | International Paper Company | Sterilization of packaging material |
US4607652A (en) * | 1984-08-29 | 1986-08-26 | Yung Simon K C | Contact lens cleaning apparatus |
US4697605A (en) * | 1984-08-29 | 1987-10-06 | Smc Metal Tech Co., Ltd. | Contact lens cleaning apparatus |
US4978530A (en) * | 1986-05-02 | 1990-12-18 | Health Care Products, Inc. | Sanitized, disinfected and sporicidal articles, and processes for sanitizing, disinfecting and rendering objects sporicidal |
US4847304A (en) * | 1987-05-21 | 1989-07-11 | Surgikos, Inc. | Disinfecting and sterilizing composition |
US4851449A (en) * | 1987-05-21 | 1989-07-25 | Surgikos, Inc. | Odorless aromatic dialdehyde disinfecting and sterilizing composition |
US5447684A (en) * | 1988-10-03 | 1995-09-05 | Williams; Robert M. | Sterilization devices, sporicidal compositions, sterilization methods, and devices for reducing surface tension |
WO1994013138A1 (en) * | 1992-12-15 | 1994-06-23 | Williams Robert M | Sterilization devices, sporidical compositions, sterilization methods, and devices for reducing surface tension |
US5783146A (en) * | 1992-12-15 | 1998-07-21 | Williams, Jr.; Robert M. | Sporicidal compositions, sterlization devices and methods for rapid cleaning, disinfection, and sterilization |
US5686045A (en) * | 1994-02-09 | 1997-11-11 | Carter; Stephen D. | Method for the heat independent sterilization of microbially contaminated instruments |
US5889209A (en) * | 1997-12-18 | 1999-03-30 | The Regents Of The University Of California | Method and apparatus for preventing biofouling of aquatic sensors |
US6609553B2 (en) * | 1998-07-27 | 2003-08-26 | Canon Kabushiki Kaisha | Sample processing apparatus and method |
US6773534B2 (en) | 1998-07-27 | 2004-08-10 | Canon Kabushiki Kaisha | Sample processing apparatus and method |
US6447718B1 (en) | 1999-11-10 | 2002-09-10 | Stephen Douglas Carter | Apparatus and associated method for decontaminating contaminated matter with ultrasonic transient cavitation |
US20020153021A1 (en) * | 2001-03-30 | 2002-10-24 | Cfr Assainissement Inc. | Washing and sterilizing line and uses thereof |
US20020159917A1 (en) * | 2001-04-27 | 2002-10-31 | Swart Sally Kay | System and method for cleaning, high level disinfection, or sterilization of medical or dental instruments or devices |
WO2002087635A1 (en) * | 2001-04-27 | 2002-11-07 | Ecolab Inc. | System and method for cleaning high level disinfection, or sterilization of medical or dental instruments or devices |
US7829029B2 (en) | 2002-05-29 | 2010-11-09 | NanoVibronix, Inv. | Acoustic add-on device for biofilm prevention in urinary catheter |
US7393501B2 (en) | 2002-05-29 | 2008-07-01 | Nano Vibronix Inc | Method, apparatus and system for treating biofilms associated with catheters |
US20050038376A1 (en) * | 2002-05-29 | 2005-02-17 | Jona Zumeris | Method, apparatus and system for treating biofilms associated with catheters |
WO2003099100A3 (en) * | 2002-05-29 | 2004-11-11 | P M G Medica Ltd | Method, apparatus and system for treating biofilms associated with catheters |
US20110064605A1 (en) * | 2006-07-05 | 2011-03-17 | Thermapure, Inc. | Method for treating an object contaminated with harmful biological organisms or chemical substances utilizing electromagnetic waves |
US20080095812A1 (en) * | 2006-09-07 | 2008-04-24 | Biolargo Life Technologies, Inc. | Systems providing antimicrobial activity to an environment |
US9414601B2 (en) | 2006-09-07 | 2016-08-16 | Biolargo Life Technologies, Incorporated | Material having antimicrobial activity when wet |
US20090028915A1 (en) * | 2006-09-07 | 2009-01-29 | Biolargo Life Technologies, Incorporated | Material having antimicrobial activity when wet |
US8021610B2 (en) | 2006-09-07 | 2011-09-20 | Biolargo Life Technologies, Inc. | Systems providing antimicrobial activity to an environment |
WO2008045135A3 (en) * | 2006-10-11 | 2008-07-03 | Biolargo Life Technologies Inc | Systems providing antimicrobial activity to an environment |
US7846341B2 (en) | 2006-12-04 | 2010-12-07 | Bacoustics, Llc | Method of ultrasonically treating a continuous flow of fluid |
US20080128362A1 (en) * | 2006-12-04 | 2008-06-05 | Bacoustics Llc | Method of ultrasonically treating a continuous flow of fluid |
US20120136083A1 (en) * | 2008-09-26 | 2012-05-31 | Nike, Inc. | Systems And Methods For Stabilization Of A Phylon Article |
US9456655B2 (en) * | 2008-09-26 | 2016-10-04 | Nike, Inc. | Systems and methods for stabilization of a phylon article |
US20120125763A1 (en) * | 2009-05-15 | 2012-05-24 | Ausbiodiesel Pty Ltd | Method and apparatus for the making of a fuel |
US9428703B2 (en) * | 2009-05-15 | 2016-08-30 | Ausbiodiesel Pty Ltd | Method and apparatus for the making of a fuel |
US20110262990A1 (en) * | 2010-04-21 | 2011-10-27 | Zhaowei Wang | Acoustic device and methods thereof for separation and concentration |
US8889388B2 (en) * | 2010-04-21 | 2014-11-18 | Zhaowei Wang | Acoustic device and methods thereof for separation and concentration |
WO2012067908A1 (en) * | 2010-11-18 | 2012-05-24 | Thermapure, Inc. | Method for treating an object contaminated with harmful biological organisms or chemical substances utilizing electromagnetic waves |
CN114938805A (en) * | 2022-06-27 | 2022-08-26 | 广州迈高化学有限公司 | Preparation method of organic-matter-resistant glutaraldehyde disinfectant |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US3708263A (en) | Method for continuous sterilization at low temperature | |
US3837805A (en) | Apparatus for continuous sterilization at low temperature | |
Bharti et al. | Recent advances in sterilization and disinfection technology: A review | |
Govindaraj et al. | Systematic review on sterilization methods of implants and medical devices | |
CN100512881C (en) | Vacuum sterilization process and devices | |
US3753651A (en) | Method and apparatus for surface sterilization | |
JP2780228B2 (en) | Plasma sterilization method and apparatus by pulsed sterilizing agent treatment | |
US5645796A (en) | Process for plasma sterilizing with pulsed antimicrobial agent treatment | |
US20040022673A1 (en) | Sterilisation process and apparatus therefor | |
JP2002521093A (en) | Sterilization using liquid carbon dioxide and UV irradiation | |
JP5232008B2 (en) | Methods for inactivating pathogens in a donor's blood, plasma, or erythrocyte concentrate while moving in a flexible container | |
Sierra et al. | Ultrasonic synergistic effects in liquid-phase chemical sterilization | |
JP4247117B2 (en) | Device for cleaning aqueous solutions in human medicine therapy | |
RU69405U1 (en) | MULTIFUNCTIONAL LOW TEMPERATURE GAS STERILIZER | |
EP2922579A1 (en) | Sterilization method comprising sterilization fluid and ultrasonically generated cavitation microbubbles | |
MXPA04010027A (en) | Methods and apparatus for decontaminating fluids. | |
JP2006263173A (en) | Device for generating high concentration germicidal gas, and circulation type sterilizing method with the germicidal gas | |
JP2555613B2 (en) | Sterilizer with ozone and ultraviolet rays | |
CN114617984A (en) | Sterilization and disinfection method and device | |
CN111686282A (en) | Sterilizing device and method thereof | |
KR101273888B1 (en) | Multipurpose compact sterilizer by means of atmospheric air-plasma with surface type | |
RU2296585C1 (en) | Object disinfecting and sterilizing apparatus | |
Zheng et al. | Rapid disinfection performance of a touchable pulsed SDBD nonthermal plasma | |
Woods | Radiation processing: current status and future possibilities | |
GB2371986A (en) | Sterilisation process |