JPH0567198A - Three-dimensional shape measuring instrument - Google Patents

Three-dimensional shape measuring instrument

Info

Publication number
JPH0567198A
JPH0567198A JP3225905A JP22590591A JPH0567198A JP H0567198 A JPH0567198 A JP H0567198A JP 3225905 A JP3225905 A JP 3225905A JP 22590591 A JP22590591 A JP 22590591A JP H0567198 A JPH0567198 A JP H0567198A
Authority
JP
Japan
Prior art keywords
dimensional shape
position detecting
detecting element
type position
image pickup
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP3225905A
Other languages
Japanese (ja)
Inventor
Kunio Sannomiya
邦夫 三宮
Kazutoshi Iketani
和俊 池谷
Yukifumi Tsuda
幸文 津田
Mutsuko Gomi
睦子 五味
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP3225905A priority Critical patent/JPH0567198A/en
Publication of JPH0567198A publication Critical patent/JPH0567198A/en
Pending legal-status Critical Current

Links

Landscapes

  • Measurement Of Optical Distance (AREA)
  • Image Processing (AREA)
  • Image Analysis (AREA)
  • Length Measuring Devices By Optical Means (AREA)

Abstract

PURPOSE:To provide a three-dimensional shape measuring instrument which has a high resolution and has excellent characteristics by resolving the problem that the measurement resolving power is limited by the width of photodetectors constituting an array type position detecting element at the time of using the array type position detecting element. CONSTITUTION:This instrument is provided with a first array type position detecting element 105, a semitransparent mirror 108, a second array type position detecting element 111, a first three-dimensional shape calculating means 106, and a second three-dimensional shape calculating means 112, and the first three- dimensional shape calculating means 106 acquires height information of a high resolution in the X-axis direction by the output signal of the first array type position detecting element 105, and the second three-dimensional shape calculating means 112 acquires height information of a high resolution in the Y-axis direction by the output signal of the second array type position detecting element 111, and two height information are interpolated to obtain height information of high resolution.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は非接触で被測定物の三次
元形状を測定する三次元形状計測装置に関するもので、
特に光切断法を用いて被測定物の形状を測定する三次元
形状測定装置に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a three-dimensional shape measuring device for measuring the three-dimensional shape of an object to be measured without contact,
In particular, the present invention relates to a three-dimensional shape measuring apparatus that measures the shape of an object to be measured using the light section method.

【0002】[0002]

【従来の技術】三次元形状を測定する方法として従来か
ら、光切断法やステレオビジョン法やモワレトポグラフ
ィー法などがあり、これらの方法を用いた非接触式の三
次元測定装置が実用化され始めている。特に光切断法は
これらの方法の中で、測定精度、処理速度、データ処理
量および装置の作り易さ等の点で優れているため、多用
されている。通常の光切断法では、撮像装置としてCC
Dカメラ等の走査型撮像装置を用いているため、1つの
スリット像を入力する時間は1フィールド(1/60
秒)または1フレーム(1/30秒)になる。このた
め、被測定物全体の形状データを取得するには、数秒〜
10数秒かかり、高速性が要求される応用には使用でき
ないという問題がある。この問題を解決するため、非走
査型撮像素子を用いた形状計測装置が考案され、既に特
許出願されている(特開昭64−46605)。この発
明は、前記光切断法における撮像装置に一次元位置検出
素子を複数個配列した撮像素子を用いる方法であり、各
素子毎に並行して信号処理、位置演算ができるため、撮
像面に結像されたスリット像の位置がほぼリアルタイム
で検出できる。したがって、上記発明(特開昭64−4
6605)による形状計測装置を用いると、計測時間を
飛躍的に短縮することができるため、従来の走査型撮像
装置を用いた形状計測装置では計測不可能であった移動
する物体や、運動する生体等の形状計測が可能なる。
2. Description of the Related Art Conventionally, as a method for measuring a three-dimensional shape, there are a light section method, a stereo vision method, a moire topography method, etc., and a non-contact type three-dimensional measuring apparatus using these methods has been put into practical use. Have begun. Among these methods, the light-section method is particularly widely used because it is excellent in measurement accuracy, processing speed, data processing amount, and easiness of making a device. In the normal optical cutting method, CC is used as an image pickup device.
Since a scanning image pickup device such as a D camera is used, the time for inputting one slit image is one field (1/60
Second) or 1 frame (1/30 second). Therefore, it takes several seconds to obtain the shape data of the entire DUT.
It takes 10 seconds or more, and there is a problem that it cannot be used for applications requiring high speed. In order to solve this problem, a shape measuring apparatus using a non-scanning type image pickup device has been devised and a patent has already been applied (Japanese Patent Laid-Open No. 64-46605). The present invention is a method of using an image pickup device in which a plurality of one-dimensional position detection elements are arranged in the image pickup device in the optical cutting method. Since each device can perform signal processing and position calculation in parallel, the image pickup device is connected to the image pickup surface. The position of the imaged slit image can be detected almost in real time. Therefore, the above invention (Japanese Patent Laid-Open No. 64-4)
6605), the measurement time can be drastically shortened. Therefore, a moving object or a moving body that cannot be measured by a conventional shape measurement device using a scanning imaging device can be measured. It is possible to measure shapes such as.

【0003】図5は従来の非走査型撮像素子を用いた上
記発明の三次元形状計測装置のブロック結線例を示す図
である。図5において501は被測定物、502はスリット光
走査機構、503はスリット光、504は撮像装置、505は撮
像装置の撮像面に配置された配列型位置検出素子、506
は配列型位置検出素子の出力信号より三次元形状を計算
する三次元形状演算手段、515は本測定系の座標軸を示
す記号、Pは被測定物の測定点、P'は測定点Pの配列
型位置検出素子上の像、ROは投影中心、SOはスリット
光放出点である。スリット光503はY軸に並行でありX
軸に沿って走査される。かかる三次元形状測定装置にお
いて、スリット光503は被測定物501に投射されその拡散
反射光の像が撮像装置504の撮像面に配置された配列型
位置検出素子505上に結像される。この場合、被測定物
の測定点Pに対応する配列型位置検出素子上の像はP'
となり、基線長(投影中心ROとスリット光放出点SO
距離)とスリット投射角αが既知であり、投影中心と測
定点を結ぶ直線と基線とのなす角θを上記被測定物の測
定点Pの配列型位置検出素子上の像P'より求めること
で三角形SOPROが定まり、三角測量の原理で被測定物
の測定点Pの座標値を計算することが出来る。被測定物
の全体形状はスリット光503をX軸方向に順次走査し、
撮像した像から順次被測定物の対応する点の座標値を求
めることで取得できる。 図6は、図5における配列型
位置検出素子505と三次元形状演算手段506の詳細な構成
を示す図である。図6において、601はN個の一次元位
置検出素子がアレイ状に配列された配列型位置検出素
子、602は被測定物のスリット光反射光の像、603はI/
V変換器、604は位置演算回路、605は座標演算回路、60
6は三次元形状演算手段であり、三次元形状演算手段606
はI/V変換器603と位置演算回路604と座標演算回路60
5により構成されている。一次元位置検出素子601-Iから
の出力は各素子毎に入射した光点の位置を示す電流であ
り、1つの一次元位置検出素子601-Iに2つの出力を有
している。したがって、N個の一次元位置検出素子601-
Iの場合は2N個の出力が必要になる。I/V変換器603
はこれらの一次元位置検出素子601-Iからの電流出力を
電圧に変換するもので、通常はオペアンプを用いて変換
する。位置演算回路604は一次元位置検出素子601-Iに入
射した光点の位置を算出する演算回路であり、各一次元
位置検出素子601-Iから出力される2つの電流I1、I2
を電圧に変換したV1、V2を用いて(1)式に示す演算
を行い、光点位置P’を各一次元位置検出素子601-I毎
に求める。
FIG. 5 is a diagram showing an example of block connection of the three-dimensional shape measuring apparatus of the present invention using a conventional non-scanning type image pickup device. In FIG. 5, 501 is an object to be measured, 502 is a slit light scanning mechanism, 503 is slit light, 504 is an image pickup device, 505 is an array type position detection element arranged on the image pickup surface of the image pickup device, and 506.
Is a three-dimensional shape calculation means for calculating a three-dimensional shape from the output signal of the array-type position detecting element, 515 is a symbol indicating the coordinate axes of the present measurement system, P is a measurement point of the object to be measured, and P'is an array of measurement points P. An image on the mold position detecting element, R O is the projection center, and S O is the slit light emitting point. The slit light 503 is parallel to the Y axis and X
Scanned along the axis. In such a three-dimensional shape measuring apparatus, the slit light 503 is projected on the object 501 to be measured, and an image of the diffuse reflection light thereof is formed on the array type position detection element 505 arranged on the image pickup surface of the image pickup apparatus 504. In this case, the image on the array-type position detection element corresponding to the measurement point P of the measured object is P ′.
Therefore, the baseline length (distance between the projection center R O and the slit light emitting point S O ) and the slit projection angle α are known, and the angle θ between the straight line connecting the projection center and the measurement point and the baseline is defined as the object to be measured. By obtaining from the image P ′ of the measuring point P on the array type position detecting element, the triangle S O PR O is determined, and the coordinate value of the measuring point P of the measured object can be calculated by the principle of triangulation. The entire shape of the DUT is sequentially scanned with slit light 503 in the X-axis direction,
It can be obtained by sequentially obtaining the coordinate values of the points corresponding to the measured object from the captured image. FIG. 6 is a diagram showing a detailed configuration of the array-type position detection element 505 and the three-dimensional shape calculation means 506 in FIG. In FIG. 6, 601 is an array type position detecting element in which N one-dimensional position detecting elements are arranged in an array, 602 is an image of slit light reflected light of the object to be measured, and 603 is I /
V converter, 604 is position calculation circuit, 605 is coordinate calculation circuit, 60
6 is a three-dimensional shape calculation means, and three-dimensional shape calculation means 606
Is an I / V converter 603, a position calculation circuit 604, and a coordinate calculation circuit 60.
It is composed of 5. The output from the one-dimensional position detecting element 601-1 is a current indicating the position of the incident light spot for each element, and one one-dimensional position detecting element 601-1 has two outputs. Therefore, N one-dimensional position detecting elements 601-
In case of I, 2N outputs are required. I / V converter 603
Is for converting the current output from the one-dimensional position detecting element 601-I into a voltage, which is usually converted using an operational amplifier. The position calculation circuit 604 is a calculation circuit that calculates the position of the light spot incident on the one-dimensional position detection element 601-I, and the two currents I 1 and I 2 output from each one-dimensional position detection element 601-I.
Is converted into a voltage, the calculation shown in the equation (1) is performed using V 1 and V 2 , and the light spot position P ′ is obtained for each one-dimensional position detecting element 601-I.

【0004】 P’= (V1−V2)/(V1+V2) ────────────(1) この演算は、アナログ除算器を用いて行うことも、A/
D変換しディジタル的に行うことも可能である。座標演
算回路605は位置演算回路604で算出した一次元位置検出
素子601-I上のスリット像の位置から被測定物の三次元
座標を算出する機構で、前述した三角測量の原理に基づ
く演算を実現している。以上説明したように、光切断法
はスリット光を被測定物に投射しその反射スリット画像
から被測定物の形状を測定する方式であるため、画像デ
ータの操作、処理方法が簡便であり、装置化も比較的簡
単である。
P ′ = (V 1 −V 2 ) / (V 1 + V 2 ) ───────────── (1) This calculation can be performed using an analog divider. /
It is also possible to perform D conversion and digital processing. The coordinate calculation circuit 605 is a mechanism that calculates the three-dimensional coordinates of the object to be measured from the position of the slit image on the one-dimensional position detection element 601-I calculated by the position calculation circuit 604, and performs the calculation based on the above-described triangulation principle. Has been realized. As described above, the light cutting method is a method of projecting slit light onto the object to be measured and measuring the shape of the object to be measured from the reflection slit image, so that the operation and processing method of the image data is simple, and the device It is also relatively easy to implement.

【0005】[0005]

【発明が解決しようとする課題】しかしながら上記の従
来の構成では、スリット光反射光の像の画像分解能が一
次元位置検出素子短辺方向の幅により決定されるため、
測定結果のY軸方向の分解能も一次元位置検出素子短辺
方向の幅により決定される。一次元位置検出素子短辺方
向の幅は電気的特性等の制約により、現在の技術レベル
では100μm程度である。これに反して、X軸方向の分解
能はスリット光の走査制御精度や光位置の検出精度から
10μm程度まで実現できる。以上の理由により、従来の
非走査型撮像素子を用いた三次元形状計測装置において
は取得するデータの分解能が走査方向により異なるとい
う課題を有していた。
However, in the above conventional structure, the image resolution of the image of the slit light reflected light is determined by the width in the short side direction of the one-dimensional position detecting element.
The resolution of the measurement result in the Y-axis direction is also determined by the width in the short side direction of the one-dimensional position detecting element. The width of the one-dimensional position detecting element in the short side direction is about 100 μm at the current technical level due to restrictions such as electrical characteristics. On the other hand, the resolution in the X-axis direction depends on the scanning control accuracy of slit light and the detection accuracy of the light position.
It can be realized up to about 10 μm. For the above reasons, the conventional three-dimensional shape measuring apparatus using the non-scanning image pickup device has a problem that the resolution of the acquired data differs depending on the scanning direction.

【0006】本発明は上記従来技術の課題を解決するも
ので、走査方向に依存することのない高分解能の三次元
情報が得られる三次元形状計測装置を提供することを目
的とする。
The present invention solves the above-mentioned problems of the prior art, and an object of the present invention is to provide a three-dimensional shape measuring apparatus capable of obtaining high-resolution three-dimensional information independent of the scanning direction.

【0007】[0007]

【課題を解決するための手段】この目的を達成するため
に本発明は、撮像面に配列型位置検出素子を有する第1
の撮像装置と、前記第1の撮像装置の配列型位置検出素
子の長手方向に直交し被測定物を走査する第1のスリッ
ト光走査機構と、第1の撮像装置と被測定物の間の配置
された半透過型反射鏡と、前記半透過型反射鏡を介して
被測定物を撮像する撮像面に配列型位置検出素子を有す
る第2の撮像装置と、前記第2の撮像装置の配列型位置
検出素子の長手方向に直交し被測定物を走査する第2の
スリット光走査機構と、第1の撮像装置の位置検出素子
の出力信号より三次元形状情報を計算する第1の三次元
形状演算手段と、第2の撮像装置の位置検出素子の出力
信号より三次元形状情報を計算する第2の三次元形状演
算手段と、第1の三次元形状情報と第2の三次元形状情
報よりお互いに補間して測定精度を向上させる測定精度
向上手段と、第1の撮像装置と第1のスリット光走査機
構と第2の撮像装置と第2のスリット光走査機構と第1
の三次元形状演算手段と第2の三次元形状演算手段と測
定精度向上手段の動作を同期させる全体制御手段の構成
を有している。
In order to achieve this object, the present invention provides a first type having an array type position detecting element on an image pickup surface.
Between the first image pickup device and the object to be measured, and a first slit light scanning mechanism that is orthogonal to the longitudinal direction of the array-type position detection elements of the first image pickup device and scans the object to be measured. Arranged semi-transmissive reflecting mirror, a second imaging device having an array type position detection element on an imaging surface for imaging an object to be measured through the semi-transmissive reflecting mirror, and an array of the second imaging device A second slit light scanning mechanism that is orthogonal to the longitudinal direction of the die position detection element and scans the object to be measured, and a first three-dimensional shape that calculates three-dimensional shape information from the output signal of the position detection element of the first imaging device. Shape calculating means, second three-dimensional shape calculating means for calculating three-dimensional shape information from the output signal of the position detecting element of the second image pickup device, first three-dimensional shape information and second three-dimensional shape information A measuring accuracy improving means for further interpolating each other to improve the measuring accuracy; The imaging device and the first slit light scanning mechanism and the second imaging device and the second slit light scanning mechanism first
The three-dimensional shape calculating means, the second three-dimensional shape calculating means and the measurement accuracy improving means are synchronized with the overall control means.

【0008】[0008]

【作用】本発明は上記構成によって、第1の撮像装置で
得られた出力信号より第1の三次元形状演算手段で三次
元形状情報を得、走査方向がお互いに直交するよう配置
された第2の撮像装置で得られた出力信号より第2の三
次元形状演算手段で三次元形状情報を得、測定精度向上
手段において上記二つの三次元形状情報を補間して高分
解能の三次元形状情報を得ることができる。
According to the present invention, according to the above construction, the three-dimensional shape information is obtained by the first three-dimensional shape calculation means from the output signal obtained by the first image pickup device, and the scanning directions are arranged so as to be orthogonal to each other. The three-dimensional shape information is obtained by the second three-dimensional shape calculation means from the output signal obtained by the second imaging device, and the two pieces of three-dimensional shape information are interpolated by the measurement accuracy improving means to obtain high-resolution three-dimensional shape information. Can be obtained.

【0009】[0009]

【実施例】以下、本発明の一実施例について、図面を参
照しながら説明する。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS An embodiment of the present invention will be described below with reference to the drawings.

【0010】図1は本発明の一実施例における三次元形
状計測装置のブロック結線図である。図1において、10
1は被測定物、102は第1のスリット光走査機構、103は
第1のスリット光、104は第1の撮像装置、105は第1の
撮像装置104の撮像面に配置された第1の配列型位置検
出素子、106は第1の撮像装置の出力信号より三次元形
状を計算する第1の三次元形状演算手段、107は被測定
物と第1の撮像装置の間に配置された半透過型反射鏡、
108は第1のスリット光走査機構102と直交して走査する
第2のスリット光走査機構、109は第2のスリット光、1
10は半透過型反射鏡107による像を撮像する第2の撮像
装置、111は第2の撮像装置104の撮像面に配置された第
2の配列型位置検出素子、112は第2の撮像装置の出力
信号より三次元形状を計算する第2の三次元形状演算手
段、113は第1の三次元形状演算手段で取得した三次元
形状と第2の三次元形状演算手段で取得した三次元形状
とによりお互いに補間して計算精度を高める測定精度向
上手段、114は全体の動作の同期を制御する全体制御手
段、115は本測定系の座標軸を示す記号、Pは被測定物
の測定点、P'は測定点Pの第1の配列型位置検出素子
上の像、ROは第1の撮像装置の投影中心、SOは第1の
スリット光走査機構のスリット光放射点である。
FIG. 1 is a block connection diagram of a three-dimensional shape measuring apparatus according to an embodiment of the present invention. In FIG. 1, 10
1 is the object to be measured, 102 is the first slit light scanning mechanism, 103 is the first slit light, 104 is the first image pickup device, and 105 is the first image pickup surface of the first image pickup device 104. An array-type position detection element, 106 is a first three-dimensional shape calculation means for calculating a three-dimensional shape from the output signal of the first image pickup apparatus, and 107 is a semi-circle disposed between the object to be measured and the first image pickup apparatus. Transmissive mirror,
Reference numeral 108 denotes a second slit light scanning mechanism that scans orthogonally to the first slit light scanning mechanism 102, 109 denotes a second slit light scanning mechanism, 1
Reference numeral 10 is a second image pickup device for picking up an image by the semi-transmissive reflecting mirror 107, 111 is a second array type position detecting element arranged on the image pickup surface of the second image pickup device 104, and 112 is a second image pickup device. Second three-dimensional shape calculating means for calculating a three-dimensional shape from the output signal of the reference numeral 113, reference numeral 113 denotes the three-dimensional shape acquired by the first three-dimensional shape calculating means and the three-dimensional shape acquired by the second three-dimensional shape calculating means. Measurement accuracy improving means for interpolating each other to improve calculation accuracy, 114 is overall control means for controlling synchronization of the entire operation, 115 is a symbol indicating the coordinate axis of the main measurement system, P is a measurement point of the object to be measured, P ′ is an image of the measurement point P on the first array type position detecting element, R O is a projection center of the first image pickup device, and S O is a slit light emitting point of the first slit light scanning mechanism.

【0011】かかる三次元形状測定装置において、第1
のスリット光103は被測定物101に投射されその拡散反射
光の像が第1の撮像装置104の撮像面に配置された第1
の配列型位置検出素子105上に結像される。この場合、
被測定物の測定点Pに対応する第1の配列型位置検出素
子105上の像はP'となり、基線長(投影中心ROとスリ
ット光放射点SOの距離)とスリット投射角αが既知で
あり、投影中心と測定点を結ぶ直線と基線とのなす角θ
を被測定物の測定点Pの第1の配列型位置検出素子105
上の像P'より求めることで三角形SOPROが定まり、
三角測量の原理で被測定物上の点Pの座標値を第1の三
次元形状演算手段106において計算することが出来る。
被測定物の全体形状は第1のスリット光103をX軸方向
に順次走査し、撮像した像から順次被測定物の対応する
点の座標値を求めることで取得できる。
In such a three-dimensional shape measuring apparatus, the first
The slit light 103 of the first is projected on the DUT 101, and the image of the diffuse reflection light is arranged on the image pickup surface of the first image pickup device 104.
An image is formed on the array type position detection element 105 of. in this case,
The image on the first array type position detecting element 105 corresponding to the measurement point P of the object to be measured becomes P ′, and the base line length (distance between the projection center R O and the slit light emitting point S O ) and the slit projection angle α are It is known and the angle θ formed by the straight line connecting the projection center and the measurement point and the base line
Is the first array type position detecting element 105 at the measuring point P of the object to be measured.
The triangle S O PR O is determined by obtaining it from the above image P ′,
The coordinate value of the point P on the object to be measured can be calculated by the first three-dimensional shape calculation means 106 by the principle of triangulation.
The entire shape of the object to be measured can be acquired by sequentially scanning the first slit light 103 in the X-axis direction and sequentially obtaining the coordinate values of the corresponding points of the object to be measured from the captured image.

【0012】同様にして、第2のスリット光109は被測
定物101に投射されその拡散反射光の像が半透過型反射
鏡を経て第2の撮像装置110の撮像面に配置された第2
の配列型位置検出素子111上に結像される。この場合、
基線長(投影中心(図示せず)とスリット光放射点(図
示せず)の距離)とスリット投射角(図示せず)が既知
であり、投影中心と測定点を結ぶ直線と基線とのなす角
(図示せず)を被測定物の測定点Pの第2の配列型位置
検出装置上の像(図示せず)より求めることで、三角測
量の原理で被測定物の測定点Pの座標値を第2の三次元
形状演算手段112において計算することが出来る。被測
定物の全体形状は第2のスリット光109をY軸方向に順
次走査し、撮像した像から順次被測定物の対応する点の
座標値を求めることで取得できる。なお、第1のスリッ
ト光103と第2のスリット光109が同時に照射されないよ
うに、かつ、第1のスリット光103の照射に基づいて第
1の三次元形状演算手段106で三次元形状を取得し、第
2のスリット光109の照射に基づいて第2の三次元形状
演算手段112で三次元形状を取得するよう全体制御手段1
14にて制御している。
Similarly, the second slit light 109 is projected on the object 101 to be measured, and the image of the diffuse reflection light thereof is passed through the semi-transmissive reflecting mirror and is placed on the image pickup surface of the second image pickup device 110.
An image is formed on the array type position detection element 111 of. in this case,
The base line length (distance between the projection center (not shown) and the slit light emitting point (not shown)) and the slit projection angle (not shown) are known, and the straight line connecting the projection center and the measurement point forms the base line. The angle (not shown) is obtained from the image (not shown) of the measuring point P of the object to be measured on the second array position detecting device, so that the coordinates of the measuring point P of the object to be measured are coordinated by the principle of triangulation. The value can be calculated by the second three-dimensional shape calculation means 112. The entire shape of the object to be measured can be acquired by sequentially scanning the second slit light 109 in the Y-axis direction and sequentially obtaining the coordinate values of the corresponding points from the imaged image. Note that the first slit light 103 and the second slit light 109 are not simultaneously irradiated, and the first three-dimensional shape calculation means 106 obtains a three-dimensional shape based on the irradiation of the first slit light 103. Then, the overall control means 1 so that the second three-dimensional shape calculation means 112 acquires the three-dimensional shape based on the irradiation of the second slit light 109.
It is controlled by 14.

【0013】第1の三次元形状演算手段106及び第2の
三次元形状演算手段112の構成や作用は従来の三次元形
状演算手段506と同様であるのでここでは説明を省略す
る。
The structure and operation of the first three-dimensional shape calculating means 106 and the second three-dimensional shape calculating means 112 are the same as those of the conventional three-dimensional shape calculating means 506, and therefore their explanations are omitted here.

【0014】次に、図2、図3、図4を用いて測定精度
向上手段113の作用を説明する。図2及び図3は第1の
配列型位置検出素子及び第2の配列型位置検出素子にお
ける撮像状態の模式図を示す。図2における21ー1、21ー
2、21ー3、21ー4、・・・、21ーNは第1の配列型位置検出
素子の個々の一次元位置検出素子、22は1つのスリット
反射光の像、23は一次元位置検出素子21-Iが第2の配列
型位置検出素子のJ番目の一次元位置検素子と撮像領域
を共有する領域、図3における31ー1、31ー2、31ー3、31ー
4、・・・、31ーNは第2の配列型位置検出素子の個々の
一次元位置検出素子、32は1つのスリット反射光の像、
33は一次元位置検出素子31-Jが第1の配列型位置検出素
子のI番目の一次元位置検素子と撮像領域を共有する領
域である。スリット光103を十分に精度良くX軸方向に
移動制御することによりX軸方向の測定分解能を高める
ことが出来る。また、スリット光109を十分に精度良く
Y軸方向に移動制御することによりY軸方向の測定分解
能を高めることが出来る。図4は上記共有された撮像領
域のより詳細な図である。図4(a)に示すごとく、一
定時間内にスリット光103の反射光の像401-jはこの領域
内に複数本発生し、一定時間内にスリット光109の反射
光の像402-iも複数本発生する。スリット光103の反射光
の像401-jにより第1の配列型位置検出素子105を用いて
得られる測定点の座標値は図4(b)の403-jとなり、
スリット光109の反射光の像402-iにより第2の配列型位
置検出素子111を用いて得られる測定点の座標値は図4
(c)の404-iとなる。測定精度向上手段113において上
記共有された撮像領域を所定の細かさで分割した点p
(x,y)に対するZ軸方向の測定値を以下のように算
定する。すなわち、 yi < y ≦ yi+1 ────────────────────(2) なるyi、yi+1に対して第1の配列型位置検出素子105
を用いて得られるZ軸方向の測定値をz(yi)、z
(yi+1)とするときyに対するZ軸方向の測定値z
(y)を
Next, the operation of the measurement accuracy improving means 113 will be described with reference to FIGS. 2, 3, and 4. FIG. 2 and FIG. 3 are schematic diagrams showing the image pickup state in the first array type position detecting element and the second array type position detecting element. 21-1 and 21- in Figure 2
2, 21-3, 21-4, ..., 21-N are individual one-dimensional position detecting elements of the first array type position detecting element, 22 is an image of one slit reflected light, and 23 is a one-dimensional position. A region in which the detection element 21-I shares an imaging area with the J-th one-dimensional position detection element of the second array type position detection element, 31-1, 31-2, 31-3, 31- in FIG.
4, ..., 31-N are individual one-dimensional position detecting elements of the second array type position detecting element, 32 is an image of one slit reflected light,
Reference numeral 33 denotes an area in which the one-dimensional position detecting element 31-J shares an imaging area with the I-th one-dimensional position detecting element of the first array type position detecting element. By controlling the movement of the slit light 103 in the X-axis direction with sufficient accuracy, the measurement resolution in the X-axis direction can be increased. Further, by controlling the movement of the slit light beam 109 in the Y-axis direction with sufficient accuracy, the measurement resolution in the Y-axis direction can be increased. FIG. 4 is a more detailed view of the shared imaging area. As shown in FIG. 4A, a plurality of reflected light images 401-j of the slit light 103 are generated in this area within a certain time, and an image 402-i of the reflected light of the slit light 109 is also generated within the certain time. Multiple occurrences. The coordinate value of the measurement point obtained by using the first array-type position detecting element 105 from the image 401-j of the reflected light of the slit light 103 is 403-j in FIG.
The coordinate values of the measurement points obtained by using the second array type position detecting element 111 from the image 402-i of the reflected light of the slit light 109 are shown in FIG.
It becomes 404-i in (c). A point p obtained by dividing the shared imaging area by the measurement accuracy improving means 113 into a predetermined fineness.
The measured value in the Z-axis direction with respect to (x, y) is calculated as follows. That is, y i <y ≤ y i + 1 ──────────────────── (2) The first array type for y i , y i + 1 Position detection element 105
Z (y i ), z is the measured value in the Z-axis direction obtained by using
(Y i + 1 ), measurement value z in the Z-axis direction with respect to y
(Y)

【0015】[0015]

【数1】 [Equation 1]

【0016】 xj < x ≦ xj+1 ────────────────────(4) なるxj、xj+1に対して第2の配列型位置検出素子109
を用いて得られるZ軸方向の測定値をz(xj)、z
(xj+1)とするときxに対するZ軸方向の測定値z
(x)を
X j <x ≤ x j + 1 ──────────────────── (4) The second array for x j and x j + 1 Mold position detection element 109
Z (x j ), z is the measured value in the Z-axis direction obtained by using
When (x j + 1 ), the measured value z in the Z-axis direction with respect to x
(X)

【0017】[0017]

【数2】 [Equation 2]

【0018】とし、点p(x,y)に対するZ軸方向の
測定値z(x,y)を
And the measured value z (x, y) in the Z-axis direction with respect to the point p (x, y)

【0019】[0019]

【数3】 [Equation 3]

【0020】とすることで測定値を補間する。本実施例
においては、測定精度向上手段113での上記補間演算は
マイクロコンピュータを使って実現している。
By setting the above, the measured value is interpolated. In the present embodiment, the interpolation calculation by the measurement accuracy improving means 113 is realized by using a microcomputer.

【0021】以上のごとく本実施例においては、第1の
配列型位置検出素子によりX軸方向に細かい分解能での
Z軸方向の測定値を取得し、第2の配列型位置検出素子
によりY軸方向に細かい分解能のZ軸方向の測定値を取
得し、これら二つの測定値をお互いに補間することで高
分解能の三次元形状情報を得ることを実現している。
As described above, in the present embodiment, the first array-type position detecting element obtains a measurement value in the Z-axis direction with fine resolution in the X-axis direction, and the second array-type position detecting element acquires the Y-axis. It is possible to obtain high-resolution three-dimensional shape information by acquiring measurement values in the Z-axis direction with fine resolution in the direction and interpolating these two measurement values with each other.

【0022】[0022]

【発明の効果】以上のように本発明は、撮像面に配列型
位置検出素子を有する第1の撮像装置と、前記第1の撮
像装置の配列型位置検出素子の長手方向に直交し被測定
物を走査する第1のスリット光走査機構と、第1の撮像
装置と被測定物の間の配置された半透過型反射鏡と、前
記半透過型反射鏡を介して被測定物を撮像する撮像面に
配列型位置検出素子を有する第2の撮像装置と、前記第
2の撮像装置の配列型位置検出素子の長手方向に直交し
被測定物を走査する第2のスリット光走査機構と、第1
の撮像装置の位置検出素子の出力信号より三次元形状情
報を計算する第1の三次元形状演算手段と、第2の撮像
装置の位置検出素子の出力信号より三次元形状情報を計
算する第2の三次元形状演算手段と、第1の三次元形状
情報と第2の三次元形状情報よりお互いに補間して測定
精度を向上させる測定精度向上手段と、第1のスリット
光走査機構と第2のスリット光走査機構と第1の三次元
形状演算手段と第2の三次元形状演算手段と測定精度向
上手段の動作を同期させる全体制御手段をを設けること
により、一次元位置検出素子の短辺方向の幅の制限を受
けることの無い分解能の優れた三次元形状計測装置を実
現できるものである。
As described above, according to the present invention, the first image pickup apparatus having the array type position detecting element on the image pickup surface, and the array type position detecting element of the first image pickup apparatus are orthogonal to the longitudinal direction and are measured. A first slit light scanning mechanism for scanning an object, a semi-transmissive reflecting mirror disposed between the first imaging device and the object to be measured, and an image of the object to be measured is imaged through the semi-transmissive reflecting mirror. A second imaging device having an array-type position detection element on the imaging surface; and a second slit light scanning mechanism that is orthogonal to the longitudinal direction of the array-type position detection element of the second imaging device and scans an object to be measured. First
The first three-dimensional shape calculation means for calculating the three-dimensional shape information from the output signal of the position detection element of the second image pickup device, and the second three-dimensional shape information from the output signal of the position detection element of the second image pickup device. The three-dimensional shape calculation means, the measurement accuracy improving means for interpolating the first three-dimensional shape information and the second three-dimensional shape information with each other to improve the measurement accuracy, the first slit light scanning mechanism and the second By providing the slit light scanning mechanism, the first three-dimensional shape calculation means, the second three-dimensional shape calculation means, and the overall control means for synchronizing the operations of the measurement accuracy improving means, the short side of the one-dimensional position detecting element It is possible to realize a three-dimensional shape measuring apparatus with excellent resolution that is not limited by the width of the direction.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の一実施例における三次元形状計測装置
のブロック結線図
FIG. 1 is a block connection diagram of a three-dimensional shape measuring apparatus according to an embodiment of the present invention.

【図2】同実施例における三次元形状計測装置の要部で
ある第1の配列型位置検出素子の撮像状態を示す図
FIG. 2 is a diagram showing an imaging state of a first array type position detection element, which is a main part of the three-dimensional shape measuring apparatus in the embodiment.

【図3】同実施例における三次元形状計測装置の要部で
ある第2の配列型位置検出素子の撮像状態を示す図
FIG. 3 is a diagram showing an imaging state of a second array-type position detection element, which is a main part of the three-dimensional shape measuring apparatus in the embodiment.

【図4】同実施例における三次元形状計測装置の共有領
域でのZ方向の補間アルゴリズムを示す図
FIG. 4 is a diagram showing an interpolation algorithm in the Z direction in a shared area of the three-dimensional shape measuring apparatus according to the same embodiment.

【図5】従来の三次元形状計測装置のブロック結線図FIG. 5 is a block connection diagram of a conventional three-dimensional shape measuring device.

【図6】従来の三次元形状計測装置における配列型位置
検出素子と三次元形状演算手段の詳細ブロック結線図
FIG. 6 is a detailed block connection diagram of an array-type position detecting element and a three-dimensional shape calculating means in a conventional three-dimensional shape measuring apparatus.

【符号の説明】[Explanation of symbols]

101 被測定物 102 第1のスリット光走査機構 103 第1のスリット光 104 第1の撮像装置 105 第1の配列型位置検出素子 106 第1の三次元形状演算手段 107 半透過型反射鏡 108 第2のスリット光走査機構 109 第2のスリット光 110 第2の撮像装置 111 第2の配列型位置検出素子 112 第2の三次元形状演算手段 113 測定精度向上手段 114 全体制御手段 115 座標軸を示す記号 101 Object to be Measured 102 First Slit Light Scanning Mechanism 103 First Slit Light 104 First Imaging Device 105 First Array Type Position Detecting Element 106 First Three-Dimensional Shape Calculating Means 107 Semi-Transmissive Reflecting Mirror 108 2 slit light scanning mechanism 109 2nd slit light 110 2nd imaging device 111 2nd array type position detection element 112 2nd three-dimensional shape calculation means 113 measurement accuracy improvement means 114 overall control means 115 Symbols indicating coordinate axes

───────────────────────────────────────────────────── フロントページの続き (72)発明者 五味 睦子 神奈川県川崎市多摩区東三田3丁目10番1 号 松下技研株式会社内 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Mutsuko Gomi 3-10-1 Higashisanda, Tama-ku, Kawasaki City, Kanagawa Prefecture Matsushita Giken Co., Ltd.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 撮像面に配列型位置検出素子を有する第
1の撮像装置と、前記第1の撮像装置の配列型位置検出
素子の長手方向に直交し被測定物を走査する第1のスリ
ット光走査機構と、第1の撮像装置と被測定物の間の配
置された半透過型反射鏡と、前記半透過型反射鏡を介し
て被測定物を撮像する撮像面に配列型位置検出素子を有
する第2の撮像装置と、前記第2の撮像装置の配列型位
置検出素子の長手方向に直交し被測定物を走査する第2
のスリット光走査機構と、第1の撮像装置の位置検出素
子の出力信号より三次元形状情報を計算する第1の三次
元形状演算手段と、第2の撮像装置の位置検出素子の出
力信号より三次元形状情報を計算する第2の三次元形状
演算手段と、第1の三次元形状情報と第2の三次元形状
情報よりお互いに補間して測定精度を向上させる測定精
度向上手段と、第1のスリット光走査機構と第2のスリ
ット光走査機構と第1の三次元形状演算手段と第2の三
次元形状演算手段と測定精度向上手段の動作を同期させ
る全体制御手段を具備することを特徴とする三次元形状
計測装置。
1. A first imaging device having an array-type position detection element on an imaging surface, and a first slit orthogonal to a longitudinal direction of the array-type position detection element of the first imaging device and scanning an object to be measured. An optical scanning mechanism, a semi-transmissive reflecting mirror arranged between the first imaging device and the object to be measured, and an array type position detecting element on an imaging surface for picking up an image of the object to be measured through the semi-transmissive reflecting mirror. And a second image pickup device having a second scanning device that scans an object under measurement orthogonal to the longitudinal direction of the array-type position detection element of the second image pickup device.
From the slit light scanning mechanism, the first three-dimensional shape calculation means for calculating three-dimensional shape information from the output signal of the position detecting element of the first image pickup device, and the output signal of the position detecting element of the second image pickup device. A second three-dimensional shape calculation means for calculating the three-dimensional shape information; a measurement accuracy improving means for interpolating the first three-dimensional shape information and the second three-dimensional shape information with each other to improve the measurement accuracy; A first slit light scanning mechanism, a second slit light scanning mechanism, a first three-dimensional shape calculation means, a second three-dimensional shape calculation means, and an overall control means for synchronizing the operations of the measurement accuracy improving means. A characteristic three-dimensional shape measuring device.
JP3225905A 1991-09-05 1991-09-05 Three-dimensional shape measuring instrument Pending JPH0567198A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3225905A JPH0567198A (en) 1991-09-05 1991-09-05 Three-dimensional shape measuring instrument

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3225905A JPH0567198A (en) 1991-09-05 1991-09-05 Three-dimensional shape measuring instrument

Publications (1)

Publication Number Publication Date
JPH0567198A true JPH0567198A (en) 1993-03-19

Family

ID=16836728

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3225905A Pending JPH0567198A (en) 1991-09-05 1991-09-05 Three-dimensional shape measuring instrument

Country Status (1)

Country Link
JP (1) JPH0567198A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010091549A (en) * 2008-10-09 2010-04-22 Samsung Heavy Industries Co Ltd Laser vision module and non-contact measuring instrument using same

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010091549A (en) * 2008-10-09 2010-04-22 Samsung Heavy Industries Co Ltd Laser vision module and non-contact measuring instrument using same

Similar Documents

Publication Publication Date Title
US6268923B1 (en) Optical method and system for measuring three-dimensional surface topography of an object having a surface contour
Jalkio et al. Three dimensional inspection using multistripe structured light
US7791738B2 (en) Three-dimensional shape measuring device, and portable measuring device
US4695163A (en) Method and apparatus for determining surface shapes using reflected laser light
JP3206843B2 (en) 3D image measurement device
US20040258210A1 (en) X-ray apparatus and method to produce a surface image
EP3801365B1 (en) Device, method and system for generating dynamic projection patterns in a confocal camera
WO1999058930A1 (en) Structured-light, triangulation-based three-dimensional digitizer
KR20160030509A (en) Video-based auto-capture for dental surface imaging apparatus
JPH06123610A (en) Method and apparatus for optical measurement of objective
US6427345B1 (en) Method and apparatus for a line based, two-dimensional characterization of a three-dimensional surface
JPH0567195A (en) Shape measuring instrument
JPH0567198A (en) Three-dimensional shape measuring instrument
JPH09196624A (en) Method and apparatus for measurement of very small size
WO1993024805A1 (en) Interferometric method and apparatus to measure surface topography
JP3324809B2 (en) Measurement point indicator for 3D measurement
JPH05164519A (en) Measuring instrument for three-dimensional shape of structure surrounding railroad track
JP3157001B2 (en) 3D shape measuring device
KR101833055B1 (en) 3-dimensional measuring system
JP4503804B2 (en) Three-dimensional information acquisition method and confocal scanning microscope
JPH06258040A (en) Laser displacement meter
JPH0444201B2 (en)
JPH07324913A (en) Measuring method of dimension
JPH0989534A (en) Three-dimensional configuration measuring device
JPH1047932A (en) Method and device for measuring shape of moving object