JPH0566896B2 - - Google Patents

Info

Publication number
JPH0566896B2
JPH0566896B2 JP63143297A JP14329788A JPH0566896B2 JP H0566896 B2 JPH0566896 B2 JP H0566896B2 JP 63143297 A JP63143297 A JP 63143297A JP 14329788 A JP14329788 A JP 14329788A JP H0566896 B2 JPH0566896 B2 JP H0566896B2
Authority
JP
Japan
Prior art keywords
piezoelectric
composition
zno
coupling coefficient
electromechanical coupling
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP63143297A
Other languages
Japanese (ja)
Other versions
JPH026364A (en
Inventor
Kensaku Murakawa
Masanaga Kikuzawa
Koichi Terao
Tatsuhiko Shigematsu
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Sumitomo Metal Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Industries Ltd filed Critical Sumitomo Metal Industries Ltd
Priority to JP63143297A priority Critical patent/JPH026364A/en
Publication of JPH026364A publication Critical patent/JPH026364A/en
Publication of JPH0566896B2 publication Critical patent/JPH0566896B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Compositions Of Oxide Ceramics (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

(産業上の利用分野) この発明は、径方向電気機械結合係数、誘電
率、および圧電定数が大きく、圧電歪を利用した
圧電アクチユエータ、圧電ブザー塔の材料として
好適な圧電材料用磁器組成物に関する。 (従来の技術) 従来より圧電材料としてはジルコン酸チタン酸
鉛Pb(ZrTi)O3磁器組成物が知られている。こ
の化合物は圧電性が大きいこと、高温まで使用可
能であること、更には第3成分を置換あるいは添
加することにより変性に富んだ磁器が得られるこ
と等の利点を有する。特にZr、Tiの一部をMgと
Nbに置換したPb(Mg1/3Nb2/3)O3−PbTiO3
PbZrO3の3成分系圧電材料はPbOの蒸発が少な
く焼成しやすいこと、主成分に各種の添加物を加
えることにより種々の圧電特性を持たせることが
可能であることなどから、圧電ブザー、周波数フ
イルター、圧電着火素子、超音波振動子などの材
料として使用されてきた。 近年、精密機械、光学機器等の分野で精密な変
位素子の必要性が高まり、これに圧電歪を利用し
た変位駆動用素子を用いることが試みられてい
る。この様な分野に使用される圧電材料としては
径方向電気機械結合係数、誘電率及び圧電定数が
大きいことが要求される。 従来知られている材料のうち、Pb(Mg1/3
Nb2/3)O3−PbTiO3−PbZrO3(特公昭42−9716
号公報)は、径方向電気機械結合係数が50〜70%
と大きな値をもつにもかかわらず、比誘電率は
高々2500程度である。比誘電率を大きくする材料
としては、上記組成のPbの一部をSr、Ba、Caで
置換した材料(特公昭44−17103号公報)が提案
されている。 また、特開昭49−122512号公報、特開昭62−
17065号公報にはPb(Mg1/3Nb2/3)O3−Pb(Ni1/3
Nb2/3)O3−PbTiO3−PbZrO3の4成分系圧電材
料が提案されており、特定性において径方向電気
機械結合係数、誘電率、圧電定数ともに高い圧電
磁器が得られている。この種の材料の圧電定数
d31は、300〜314×10-12m/v程度である。 (発明が解決すべき課題) しかしながら、近年の圧電材料の高性能化の要
求に対しては上記圧電材料も充分な特性を有して
いない。即ち、従来の圧電材料は、比誘電率、電
気機械結合係数、圧電定数のうちいずれかが小さ
い。そのため、これらの材料を圧電アクチユエー
タとして利用した場合には、変位量が小さく、ま
た駆動電圧が大きくなるという欠点があつた。 本発明の目的は、比誘電率、径方向電気機械結
合係数および圧電定数がともに大きく、大きな圧
電歪を得ることのできる圧電材料を提供すること
にある。 (課題を解決するための手段) 本発明者らは、従来から良好な特性が認められ
ている、Pb(Mg1/3Nb2/3)O3−PbTiO3−PbZrO3
の3成分系組成およびPb(Mg1/3Nb2/3)O3−Pb
(Ni1/3Nb2/3)O3−PbTiO3−PbZrO3の4成分系
組成を基本とし、圧電材料としての径方向電気機
械結合係数を高めることを目的としてPbの一部
をの元素で置換することを想定してSrを添加し
た上で他の添加物の効果を調査した。その結果、
SnO2、ZnO、Bi2O3、3成分系組成においてはさ
らにNiOを適量同時に添加することにより、比誘
電率、径方向電気機械結合係数および圧電定数が
共に高い材料が得られることを見出した。 上記の知見に基づく本発明は、下記の圧電材料
組成物を要旨とする。 各元素の含有量が重量%で下記の範囲にある
Pb、Ti、Zr、Mg、Nb、Ni、Sr、Sn、Zn、Bi
および酸素と不可避不純物元素から成ることを特
徴とする圧電材料用磁器組成物。 57.0≦Pb≦62.5 0.01≦Ni≦2.0 4.0≦Ti≦7.5 Sr≦3.0 0.7≦Zr≦17.0 0.03≦Sn≦2.0 0.2≦Mg≦1.5 0.02≦Zn≦1.0 1.8≦Nb≦11.0 0.05≦Bi≦6.5 上記の組成は、基本の3成分系組成〔Pb
(Mg1/3Nb2/3)O3−PbTiO3−PbZrO3〕のPbの10
原子%以下をSrで置換し、更にSnZn、Bi、Niを
添加したもの、および基本の4成分系組成
〔(Mg1/3Nb2/3)O3−Pb(Ni1/3Nb2/3)O3
PbTiO3−PbZrO3〕のPbの10原子%を以下をSr
で置換し、更にSn、Zn、Biを添加したものに相
当する。PbのSrによる置換量が10原子%を越え
ると径方向電気機械結合係数および圧電定数が小
さくなる。またTi、Zr、MgおよびNbを上記の
範囲に限定したのは、この範囲外では比誘電率お
よび圧電定数が小さくなるためである。 その他の添加物である前記3成分系組成におい
てはSnO2、ZnO、Bi2O3およびNiO、4成分系組
成においてはSnO2、ZnOおよびBi2O3は、各化合
物を一種あるいは2、3種の組合せで添加しても
比誘電率、電気機械結合係数、圧電定数が無添加
組成品の各値より低下したり、あるいは改善効果
が小さい。ところが、3成分系組成では前記4
種、4成分系組成では前記3種を同時に、しかも
各元素の含有量が前記の範囲になるように添加
(Niの場合は、Mgに対する置換を含む)すると
各特性の向上が認められる。この条件をはずれる
と特性のどれかが低下する。 本発明の組成物は、各元素の酸化物、炭酸化物
または水酸化物等を前記の組成となるように配合
し形成した後、焼結することによつて製造するこ
とができる。 なお、配合原料から不可避的にFe、Ca、Na、
Si、Baなどの不純物元素が混入する可能性があ
る。ただし、これらの元素の圧電材料用組成物中
の含有率は、いずれも0.005wt%を越えない程度
である。 実施例 1 基本の4成分系組成物をαPb(Mg1/3Nb2/3)O3
−βPb(Ni1/3Nb2/3)O3−γPbTiO3−δPbZrO3(但
し、α+β+γ+δ=1)と表し、PbO、ZrO2
TiO2、MgO、NiO、Nb2O5、SrCO3、SnO2
ZnO、Bi2O3の各原料を第1表の1に示す組成と
成るように秤量しボールミルを用いて十分に混合
した。なお、第1表の2には酸素および不可避不
純物元素以外の元素の配合量について重量%で示
した。得られた混合粉を900〜1100℃で約2時間
仮焼し、この仮焼物を再びボールミルで十分に粉
砕混合した後、有機バインダーを混合して造粒し
た。この造粒粉を約1000Kg/cm2の圧力で直径20
mm、厚さ2mmに成形し、これを1200〜1300℃の温
度で2時間焼成した。得られた円板状の焼結体両
面に銀電極を形成し、100℃のシリコンオイル中
で2kv/mmの直流電圧を印加して分極処理を行つ
た。 このようにして得られた磁器の圧電特性を第1
表の2に示した。なお表中のεT 33/ε0は比誘電率、
krは径方向電気機械結合係数、d31は圧電定数で
ある。
(Industrial Application Field) The present invention relates to a ceramic composition for piezoelectric material, which has a large radial electromechanical coupling coefficient, dielectric constant, and piezoelectric constant, and is suitable as a material for piezoelectric actuators and piezoelectric buzzer towers that utilize piezoelectric distortion. . (Prior Art) Lead zirconate titanate Pb(ZrTi)O 3 porcelain composition has been known as a piezoelectric material. This compound has advantages such as high piezoelectricity, being usable up to high temperatures, and the ability to obtain highly modified porcelain by substituting or adding a third component. In particular, some of Zr and Ti are mixed with Mg.
Pb substituted with Nb (Mg 1/3 Nb 2/3 )O 3 −PbTiO 3
The three-component piezoelectric material PbZrO 3 is easy to sinter, with little evaporation of PbO, and it is possible to provide various piezoelectric properties by adding various additives to the main component. It has been used as a material for filters, piezoelectric ignition elements, ultrasonic vibrators, etc. In recent years, the need for precise displacement elements has increased in the fields of precision machinery, optical instruments, etc., and attempts have been made to use displacement driving elements that utilize piezoelectric distortion. Piezoelectric materials used in such fields are required to have a large radial electromechanical coupling coefficient, dielectric constant, and piezoelectric constant. Among the conventionally known materials, Pb (Mg 1/3
Nb 2/3 ) O 3 −PbTiO 3 −PbZrO 3 (Special Publication No. 42-9716
(No. 2) has a radial electromechanical coupling coefficient of 50 to 70%.
Although it has a large value, its relative permittivity is only about 2500 at most. As a material for increasing the relative dielectric constant, a material in which part of the Pb in the above composition is replaced with Sr, Ba, and Ca has been proposed (Japanese Patent Publication No. 17103/1983). Also, JP-A-49-122512, JP-A-62-
Publication No. 17065 describes Pb(Mg 1/3 Nb 2/3 )O 3 −Pb(Ni 1/3
A four-component piezoelectric material of Nb2 /3 ) O3 - PbTiO3 - PbZrO3 has been proposed, and a piezoelectric ceramic with high specificity in terms of radial electromechanical coupling coefficient, dielectric constant, and piezoelectric constant has been obtained. Piezoelectric constant of this kind of material
d 31 is approximately 300 to 314×10 −12 m/v. (Problems to be Solved by the Invention) However, the piezoelectric materials described above do not have sufficient characteristics to meet the recent demands for higher performance of piezoelectric materials. That is, conventional piezoelectric materials have a small dielectric constant, an electromechanical coupling coefficient, or a piezoelectric constant. Therefore, when these materials are used as a piezoelectric actuator, there are disadvantages in that the amount of displacement is small and the drive voltage is large. An object of the present invention is to provide a piezoelectric material that has a large relative dielectric constant, a radial electromechanical coupling coefficient, and a piezoelectric constant, and can obtain a large piezoelectric strain. (Means for Solving the Problems) The present inventors developed Pb(Mg 1/3 Nb 2/3 )O 3 −PbTiO 3 −PbZrO 3 , which has been recognized to have good properties.
The ternary composition of Pb(Mg 1/3 Nb 2/3 )O 3 −Pb
(Ni 1/3 Nb 2/3 ) O 3 - PbTiO 3 - PbZrO 3 is the basic four-component system composition, and some of the Pb is added to the elements in order to increase the radial electromechanical coupling coefficient as a piezoelectric material. After adding Sr with the assumption that it would be replaced with Sr, the effects of other additives were investigated. the result,
It was discovered that in a three-component composition of SnO 2 , ZnO, Bi 2 O 3 , by simultaneously adding an appropriate amount of NiO, a material with high relative dielectric constant, radial electromechanical coupling coefficient, and piezoelectric constant could be obtained. . The gist of the present invention based on the above knowledge is the following piezoelectric material composition. The content of each element is within the following range in weight%
Pb, Ti, Zr, Mg, Nb, Ni, Sr, Sn, Zn, Bi
and a porcelain composition for piezoelectric material, characterized by comprising oxygen and inevitable impurity elements. 1.8 ≦Nb≦11.0 0.05≦Bi≦6.5 Above The composition is the basic three-component composition [Pb
(Mg 1/3 Nb 2/3 )O 3 −PbTiO 3 −PbZrO 3 ] of Pb 10
Substituting atomic percent or less with Sr and adding SnZn, Bi, and Ni, and the basic four-component composition [(Mg 1/3 Nb 2/3 )O 3 −Pb(Ni 1/3 Nb 2/ 3 ) O3−
10 atomic% of Pb in PbTiO 3 −PbZrO 3 ]
This corresponds to the one in which Sn, Zn, and Bi are added. When the amount of Pb replaced by Sr exceeds 10 atomic %, the radial electromechanical coupling coefficient and piezoelectric constant decrease. Furthermore, the reason why Ti, Zr, Mg, and Nb are limited to the above range is that outside this range, the relative permittivity and piezoelectric constant become small. Other additives, SnO 2 , ZnO, Bi 2 O 3 and NiO in the three-component composition, and SnO 2 , ZnO and Bi 2 O 3 in the four-component composition, are each compound of one kind, two or three. Even if a combination of species is added, the dielectric constant, electromechanical coupling coefficient, and piezoelectric constant may be lower than those of a composition without additives, or the improvement effect is small. However, in a three-component composition, the above-mentioned 4
In the case of seed and four-component compositions, when the above-mentioned three types are added at the same time and the content of each element is within the above-mentioned range (including substitution for Mg in the case of Ni), improvements in each property are observed. If this condition is violated, some of the characteristics will deteriorate. The composition of the present invention can be manufactured by blending and forming oxides, carbonates, hydroxides, etc. of each element so as to have the above-mentioned composition, and then sintering the composition. In addition, Fe, Ca, Na,
Impurity elements such as Si and Ba may be mixed in. However, the content of these elements in the piezoelectric material composition is at a level not exceeding 0.005 wt%. Example 1 The basic four-component composition was αPb(Mg 1/3 Nb 2/3 )O 3
−βPb(Ni 1/3 Nb 2/3 )O 3 −γPbTiO 3 −δPbZrO 3 (However, α+β+γ+δ=1), PbO, ZrO 2 ,
TiO2 , MgO, NiO , Nb2O5 , SrCO3 , SnO2 ,
Each raw material of ZnO and Bi 2 O 3 was weighed so as to have the composition shown in 1 of Table 1, and thoroughly mixed using a ball mill. Note that 2 in Table 1 shows the blending amounts of elements other than oxygen and unavoidable impurity elements in weight %. The obtained mixed powder was calcined at 900 to 1100° C. for about 2 hours, and the calcined product was thoroughly ground and mixed again in a ball mill, and then an organic binder was mixed and granulated. This granulated powder is heated to a diameter of 20 mm with a pressure of approximately 1000 kg/cm 2.
mm and thickness of 2 mm, and baked at a temperature of 1200 to 1300°C for 2 hours. Silver electrodes were formed on both sides of the obtained disk-shaped sintered body, and polarization treatment was performed by applying a DC voltage of 2 kV/mm in silicone oil at 100°C. The piezoelectric properties of the porcelain obtained in this way are
It is shown in Table 2. In addition, ε T 330 in the table is the relative dielectric constant,
k r is the radial electromechanical coupling coefficient and d 31 is the piezoelectric constant.

【表】【table】

【表】【table】

【表】【table】

【表】 ○印:本発明の実施例の最大値、×印:同最小値
第1表において、試料No.1〜16は、αPb(Mg1/3
Nb2/3)O3−βPb(Ni1/3Nb2/3)O3−γPbTiO3
δPbZrO3のα、β、γ、δ(モル%)を変化させ
たものである。(但し、α+β+γ+δ=1) 各特性の試験結果からみて、 0.1≦α0.55 0.025≦δ≦0.6 0.01≦β≦0.28 0.3≦γ≦0.5 が適当である。この範囲外では、d31が小さくな
る。 試料No.17〜19はPbのSrによる置換量を変えた
ものであるが、Sr置換量が10原子%を越えると
比誘電率が大きくなるが逆にkrが低下し、結果と
してd31も小さくなる。 試料No.20〜38はSnO2、ZnO、Bi2O3の添加量を
変えたものであるが、εT 33/ε0、kr、d31ともに大
きいものを得るには、ZnO、SnO2、Bi2O3はそれ
ぞれモル%で、 0.1≦ZnO≦5 0.05≦Bi2O3≦5 0.1≦SnO2≦5 の範囲内にすることが必要であることがわかる。
また、これらの添加は1種あるいは2種のみ添加
しただけではεT 33/ε0、kr、d31のすべてが低下し、
これらすべてを大きくするためには3種同時に添
加する必要がある。 実施例 2 基本の3成分系組成Pb(Mg1/3Nb2/3)O3
PbTiO3−PbZrO3のPbの一部をSrで置換し、
NiO、SnO2、ZnO、Bi2O3を添加する場合におい
て上記組成を αPb(Mg1/3Nb2/3)O3 −γPbTiO3−δPbZrO3 (但し、α+γ+δ=1) と表わし、PbO、ZnO2、TiO2、MgO、Nb2O5
SrCO3、NiO、SnO2、ZnO、Bi2O3の各原料を第
2表の1に示す組成となるように秤量した。な
お、第2表の2には酸素および不可避不純物元素
以外の元素の配合量について重量%で示した。以
下、実施例1と同様の方法で混合、仮焼、成形、
焼成、を行い銀電極を形成した後、分極処理を施
し圧電特性を測定した。その特性を第2表の2中
に示した。
[Table] ○ mark: maximum value of the example of the present invention, × mark: same minimum value In Table 1, samples Nos. 1 to 16 have αPb (Mg 1/3
Nb 2/3 )O 3 −βPb(Ni 1/3 Nb 2/3 )O 3 −γPbTiO 3
The α, β, γ, and δ (mol%) of δPbZrO 3 are changed. (However, α+β+γ+δ=1) In view of the test results of each characteristic, 0.1≦α0.55 0.025≦δ≦0.6 0.01≦β≦0.28 0.3≦γ≦0.5 are appropriate. Outside this range, d 31 becomes small. Samples Nos. 17 to 19 are samples in which the amount of Pb replaced by Sr is changed, but when the amount of Sr substitution exceeds 10 at%, the relative dielectric constant increases, but conversely k r decreases, resulting in d 31 will also become smaller. Samples Nos . 20 to 38 are samples in which the amounts of SnO 2 , ZnO , and Bi 2 O 3 added are changed. 2 and Bi 2 O 3 are required to be in the ranges of 0.1≦ZnO≦5, 0.05≦Bi 2 O 3 ≦5, 0.1≦SnO 2 ≦5, respectively, in terms of mol%.
Furthermore, if only one or two of these are added, ε T 330 , k r , and d 31 all decrease,
In order to increase the size of all of these, it is necessary to add three types at the same time. Example 2 Basic three-component composition Pb (Mg 1/3 Nb 2/3 ) O 3
Part of Pb in PbTiO 3 −PbZrO 3 is replaced with Sr,
When adding NiO, SnO 2 , ZnO, and Bi 2 O 3 , the above composition is expressed as αPb(Mg 1/3 Nb 2/3 )O 3 −γPbTiO 3 −δPbZrO 3 (α+γ+δ=1), and PbO, ZnO2 , TiO2 , MgO, Nb2O5 ,
Each raw material of SrCO 3 , NiO, SnO 2 , ZnO, and Bi 2 O 3 was weighed so as to have the composition shown in 1 of Table 2. Incidentally, in Table 2, 2 shows the blending amounts of elements other than oxygen and inevitable impurity elements in weight %. Hereinafter, mixing, calcination, molding, and
After baking to form a silver electrode, polarization treatment was performed and piezoelectric properties were measured. Its properties are shown in Table 2.

【表】【table】

【表】【table】

【表】【table】

【表】 ○印:本発明の実施例の最大値、×印:同最小値
第2表の1において、試料No.30〜40はαPb
(Mg1/3Nb2/3)O3−γPbTiO3−δPbZrO3のα、
γ、δ(モル%)を変化させたものである(ただ
し、α+γ+δ1)。 試験結果からみて 0.1≦α≦0.55 0.3≦γ≦0.5 0.025≦δ≦0.6 が適当であり、この範囲外ではd31が小さくなつ
ている。 試料No.28〜29はPbのSrによる置換量を変えた
ものであるが、実施例1と同様Sr置換量が10原
子%を越えるとkrが低下し、結果としてd31も小
さくなる。 試料No.1〜27は、NiO、SnO2、ZnO、Bi2O3
添加量を変えたものであるが、εT 33/ε0、kr、d31
がとも共に大きいものを得るには、NiO、SnO2
ZnO、Bi2O3はそれぞれモル%で 0.1≦NiO≦5 0.1≦SnO2≦5 0.1≦ZnO≦ 0.05≦Bi2O3≦5 の範囲内にする必要があることがわかる。 また、これらの添加物は1種、或いは2種また
は3種の組み合わせで添加しただけではεT 33/ε0
kr、d31のすべてが低下し、これらすべてを大き
くするためには4種同時に添加する必要がある。 実施例1及び2で得られた焼結体では、焼結時
の化学組成変化は無視できる程度であり、配合組
成が焼結体組成と同等の値であつた。 以上の調査結果から求められた配合割合の適正
値から、焼結体の各元素の重量割合を求めると次
のとおりである。下記の各元素の範囲は、第1表
および第2表を合わせて、本発明の実施例(各表
の備考欄に記載)における最大値と最小値から決
定したものである。 57.0≦Pb≦62.5 0.01≦Ni≦2.0 4.0≦Ti≦7.5 Sr≦3.0 0.7≦Zr≦17.0 0.03≦Sn≦2.0 0.2≦Mg≦1.5 0.02≦Zn≦1.0 1.8≦Nb≦11.0 0.05≦Bi≦6.5 残量:0(酸素)及び不可避不純物元素 (発明の効果) 本発明の磁器組成物は、実施例にも示したとお
り、径方向電気機械結合係数、誘電率、および圧
電定数のすべてにおいて優れた特性を有し、冒頭
に述べた各種の用途向け材料として極めて有用な
ものである。
[Table] ○ mark: maximum value of the example of the present invention, × mark: same minimum value In 1 of Table 2, samples No. 30 to 40 are αPb
α of (Mg 1/3 Nb 2/3 )O 3 −γPbTiO 3 −δPbZrO 3 ,
γ and δ (mol%) are changed (however, α+γ+δ1). From the test results, 0.1≦α≦0.55, 0.3≦γ≦0.5, 0.025≦δ≦0.6 are suitable, and d 31 becomes small outside these ranges. Samples No. 28 to 29 are samples in which the amount of Pb replaced by Sr is changed, but as in Example 1, when the amount of Sr substitution exceeds 10 atomic %, k r decreases, and as a result, d 31 also decreases. Samples Nos. 1 to 27 have different amounts of NiO, SnO 2 , ZnO, and Bi 2 O 3 , but ε T 330 , k r , d 31
To obtain a large one, use NiO, SnO 2 ,
It can be seen that ZnO and Bi 2 O 3 need to be in the ranges of 0.1≦NiO≦5, 0.1≦SnO 2 ≦5, 0.1≦ZnO≦0.05≦Bi 2 O 3 ≦5. Furthermore, if these additives are added alone or in combination of two or three, ε T 330 ,
All of k r and d 31 decrease, and in order to increase them all, it is necessary to add four types at the same time. In the sintered bodies obtained in Examples 1 and 2, the change in chemical composition during sintering was negligible, and the blended composition was the same value as the sintered body composition. The weight proportions of each element in the sintered body are determined as follows from the appropriate values of the blending proportions determined from the above investigation results. The ranges of each element below are determined from the maximum and minimum values in Examples of the present invention (described in the notes column of each table) in Tables 1 and 2. 1.8 ≦Nb≦11.0 0.05≦Bi≦6.5 Remaining amount :0 (oxygen) and inevitable impurity elements (effects of the invention) As shown in the examples, the ceramic composition of the present invention has excellent properties in all of the radial electromechanical coupling coefficient, dielectric constant, and piezoelectric constant. It is extremely useful as a material for the various uses mentioned at the beginning.

Claims (1)

【特許請求の範囲】 1 各元素の含有量が重量%で下記の範囲にある
Pb、Ti、Zr、Mg、Nb、Ni、Sr、Sn、Zn、Bi
および酸素と不可避不純物から成ることを特徴と
する圧電材料用磁器組成物。 57.0≦Pb≦62.5 4.0≦Ti≦7.5 0.7≦Zr≦17.0 0.2≦Mg≦1.5 1.8≦Nb≦11.0 0.01≦Ni≦2.0 Sr≦3.0 0.03≦Sn≦2.0 0.02≦Zn≦1.0 0.05≦Bi≦6.5
[Claims] 1. The content of each element is in the following range in weight%.
Pb, Ti, Zr, Mg, Nb, Ni, Sr, Sn, Zn, Bi
and a porcelain composition for piezoelectric material, characterized by comprising oxygen and inevitable impurities. 0.02 ≦Zn≦1.0 0.05≦Bi≦6.5
JP63143297A 1988-06-09 1988-06-09 Piezoelectric material composition Granted JPH026364A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63143297A JPH026364A (en) 1988-06-09 1988-06-09 Piezoelectric material composition

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63143297A JPH026364A (en) 1988-06-09 1988-06-09 Piezoelectric material composition

Publications (2)

Publication Number Publication Date
JPH026364A JPH026364A (en) 1990-01-10
JPH0566896B2 true JPH0566896B2 (en) 1993-09-22

Family

ID=15335468

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63143297A Granted JPH026364A (en) 1988-06-09 1988-06-09 Piezoelectric material composition

Country Status (1)

Country Link
JP (1) JPH026364A (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8964361B2 (en) 2010-07-21 2015-02-24 Teradyne, Inc. Bulk transfer of storage devices using manual loading
US9001456B2 (en) 2010-08-31 2015-04-07 Teradyne, Inc. Engaging test slots
US9459312B2 (en) 2013-04-10 2016-10-04 Teradyne, Inc. Electronic assembly test system
US10775408B2 (en) 2018-08-20 2020-09-15 Teradyne, Inc. System for testing devices inside of carriers
US10845410B2 (en) 2017-08-28 2020-11-24 Teradyne, Inc. Automated test system having orthogonal robots
US10948534B2 (en) 2017-08-28 2021-03-16 Teradyne, Inc. Automated test system employing robotics
US10983145B2 (en) 2018-04-24 2021-04-20 Teradyne, Inc. System for testing devices inside of carriers
US11226390B2 (en) 2017-08-28 2022-01-18 Teradyne, Inc. Calibration process for an automated test system

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4749065B2 (en) 2004-08-25 2011-08-17 日本碍子株式会社 Electron emitter

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8964361B2 (en) 2010-07-21 2015-02-24 Teradyne, Inc. Bulk transfer of storage devices using manual loading
US9001456B2 (en) 2010-08-31 2015-04-07 Teradyne, Inc. Engaging test slots
US9459312B2 (en) 2013-04-10 2016-10-04 Teradyne, Inc. Electronic assembly test system
US10845410B2 (en) 2017-08-28 2020-11-24 Teradyne, Inc. Automated test system having orthogonal robots
US10948534B2 (en) 2017-08-28 2021-03-16 Teradyne, Inc. Automated test system employing robotics
US11226390B2 (en) 2017-08-28 2022-01-18 Teradyne, Inc. Calibration process for an automated test system
US10983145B2 (en) 2018-04-24 2021-04-20 Teradyne, Inc. System for testing devices inside of carriers
US10775408B2 (en) 2018-08-20 2020-09-15 Teradyne, Inc. System for testing devices inside of carriers

Also Published As

Publication number Publication date
JPH026364A (en) 1990-01-10

Similar Documents

Publication Publication Date Title
US6426018B1 (en) Piezoelectric ceramic compositions
JP3244027B2 (en) Piezoelectric ceramic composition
US5279996A (en) Piezoelectric ceramic composition
US6080327A (en) Piezoelectric ceramic composition
JPH0566896B2 (en)
JPH06191941A (en) Piezoelectric material
KR100296933B1 (en) Piezoelectric ceramic composition
JPH0558645A (en) Piezoelectric porcelain composition
JP2000294852A (en) Piezoelectric ceramics composition and piezoelectric buzzer and piezoelectric actuator utilizing the same
JPH0687652A (en) Piezoelectric material
JPH0558729A (en) Piezoelectric ceramic composition
JPH02303081A (en) Piezoelectric porcelain composition
JPH0524917A (en) Piezoelectric porcelain composition
JPH03137056A (en) Piezoelectric material
JPH0570225A (en) Piezoelectric ceramic composition
JP3117625B2 (en) Electric field induced strain material
JP3867320B2 (en) Piezoelectric ceramic composition
JPH0196973A (en) Manufacture of piezoelectric porcelain
JPH0350156A (en) Piezoelectric material
EP1231192A1 (en) Lead-free piezoelectric ceramic materials
JP3554397B2 (en) Piezoelectric material
JP3554395B2 (en) Piezoelectric material
JPH03122050A (en) Piezoelectric material
JPH03122049A (en) Piezoelectric material
KR100246241B1 (en) Piezoelectric ceramic composition

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees