JPH0566729B2 - - Google Patents

Info

Publication number
JPH0566729B2
JPH0566729B2 JP59074169A JP7416984A JPH0566729B2 JP H0566729 B2 JPH0566729 B2 JP H0566729B2 JP 59074169 A JP59074169 A JP 59074169A JP 7416984 A JP7416984 A JP 7416984A JP H0566729 B2 JPH0566729 B2 JP H0566729B2
Authority
JP
Japan
Prior art keywords
wiring
path
length
semiconductor device
impedance
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP59074169A
Other languages
Japanese (ja)
Other versions
JPS60218856A (en
Inventor
Mamoru Fuse
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
Nippon Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Electric Co Ltd filed Critical Nippon Electric Co Ltd
Priority to JP7416984A priority Critical patent/JPS60218856A/en
Publication of JPS60218856A publication Critical patent/JPS60218856A/en
Publication of JPH0566729B2 publication Critical patent/JPH0566729B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Design And Manufacture Of Integrated Circuits (AREA)
  • Internal Circuitry In Semiconductor Integrated Circuit Devices (AREA)

Description

【発明の詳細な説明】 (技術分野) 本発明は配線経路網間を任意のインピーダンス
比率に構成できる布線構造の半導体装置に関す
る。
DETAILED DESCRIPTION OF THE INVENTION (Technical Field) The present invention relates to a semiconductor device having a wiring structure in which a wiring route network can be configured to have an arbitrary impedance ratio.

(発明の背景) 半導体集積回路では各回路素子間を接続する配
線長に自づと長短が生じ、インピーダンスの異な
る複数個の配線経路網ができる。
(Background of the Invention) In a semiconductor integrated circuit, the length of wiring connecting circuit elements naturally varies in length, creating a plurality of wiring route networks with different impedances.

第1図aおよびbは、異なる配線長を持つ2つ
の配線経路網およびその等価回路をそれぞれ示す
図である。これは最も単純な例であるが、点Aか
ら点Bに向う配線長より点Cに向う配線長
ACの方が長いために、点Aから見たそれぞれの
配線抵抗RbおよびRc間にもRb<Rcの違いが生
じる。このような配線経路網で点BおよびCから
点Aに向つてそれぞれ電流I0が流れ込む場合を想
定すると、点BおよびC間にはI0(Rc−Rb)に相
当する電位差が発生することとなる。この電位差
はアナログ回路では差動増幅回路の平衝を乱した
り、誤動作、シヨクオン雑音の発生その他歪率劣
化など回路機能を著しく低下させる。
FIGS. 1a and 1b are diagrams respectively showing two wiring route networks having different wiring lengths and their equivalent circuits. This is the simplest example, but the wire length from point A to point B is greater than the wire length from point A to point B.
Since AC is longer, a difference Rb<Rc also occurs between the respective wiring resistances Rb and Rc as seen from point A. Assuming that current I 0 flows from points B and C toward point A in such a wiring route network, a potential difference equivalent to I 0 (R c - R b ) will occur between points B and C. I will do it. In analog circuits, this potential difference disturbs the balance of the differential amplifier circuit, significantly degrades the circuit function by causing malfunctions, generation of shock-on noise, and deterioration of distortion rate.

このように、アナログ半導体集積回路では配線
長の長短によるインピーダンスの相違が無視でき
ない場合がしばしば存在する。配線長を異にする
2つの配線経路網のインピーダンスを等しくする
には、配線長の長い方の配線幅を太くし、短い方
を細くすればよいが、量産技術上新らたな問題点
が生まれる。
As described above, in analog semiconductor integrated circuits, there are often cases where the difference in impedance due to the length of the wiring cannot be ignored. In order to equalize the impedance of two wiring route networks with different wiring lengths, it is possible to make the wiring width of the longer wiring wider and the shorter wiring narrower, but this poses a new problem in terms of mass production technology. to be born.

第2図は異なる配線幅を備えた2つの配線経路
網の従来の布線構造図を示すもので、配線経路網
はそれぞれ第1図のものに対応する。この布線構
造では、配線長の線幅を細く、配線長の
線幅を太くする。しかしながら、この布線構造で
は、近傍に他の回路配線1,2および3が存在す
ると、それぞれ点線で囲つて示したように、規定
幅に満たない配線部分長4,5および6ができ、
複雑なパターンを持つようになる。
FIG. 2 shows a conventional wiring structure diagram of two wiring route networks with different wiring widths, each of which corresponds to the one shown in FIG. In this wiring structure, the line width of the wiring length is made thin and the line width of the wiring length is made thick. However, in this wiring structure, if other circuit wirings 1, 2, and 3 exist in the vicinity, wiring portion lengths 4, 5, and 6 that are less than the specified width are created, as shown by the dotted lines, respectively.
It will have a complex pattern.

半導体装置の量産技術面から見れば、一つの半
導体基板面に幾種類もの線幅の配線経路網が布線
されることは本質的に好ましいことではない。何
故ならば、線幅の細い配線は太い配線よりもエツ
チング精度およびパターニング精度の影響を強く
受ける。すなわち、例えば7〜8μmの線幅の細
い配線と20μm程度の線幅の太い配線を一つの半
導体基板上に同時に形成しようとすると、エツチ
ングおよびパターニングのバラツキにより2つの
配線は何れもマスク上の配線幅よりもズレた線幅
に形成される。しかし、ズレ幅のマスク上の配線
幅に対する比率は、線幅7〜8μmの細い配線の
方が太い20μm線幅の配線のものより遥かに大き
な値を持つ。ましてやフイールド酸化膜に段差が
ある場合ではこの傾向は一層加速される。従つて
配線幅を違えることによつて配線インピーダンス
を互いに補正しようとする第2図の如き布線構造
は、半導体装置の量産化に際し、布線インピーダ
ンスの整合バラツキが大きく不都合であり、望ま
しくない。通常のアナログ半導体集積回路では、
上述のように差動増幅器のオフセツト問題に端を
発する2つの配線経路網間のインピーダンス整合
の他に配線長を異にする複数個の配線経路網を任
意のインピーダンス比率を持たせて構成する必要
性もしばしば発生するので、エツチングおよびパ
ターニングのバラツキの影響を受けない量産的布
線構造の実現が強く要望されている。
From the viewpoint of mass production technology of semiconductor devices, it is essentially not desirable to have wiring route networks having various line widths laid out on one semiconductor substrate surface. This is because wires with narrow line widths are more affected by etching accuracy and patterning accuracy than thick wires. In other words, if you try to simultaneously form, for example, a thin line with a line width of 7 to 8 μm and a thick line with a line width of about 20 μm on one semiconductor substrate, both of the two lines will overlap with the line on the mask due to variations in etching and patterning. The line width is deviated from the line width. However, the ratio of the deviation width to the wiring width on the mask has a much larger value for a thin wiring with a line width of 7 to 8 μm than for a thick wiring with a line width of 20 μm. This tendency is further accelerated when the field oxide film has a step difference. Therefore, the wiring structure shown in FIG. 2, in which the wiring impedances are mutually corrected by varying the wiring widths, is undesirable because it causes large variations in the wiring impedance matching when mass-producing semiconductor devices. In a normal analog semiconductor integrated circuit,
As mentioned above, in addition to impedance matching between two wiring path networks, which originates from the offset problem of differential amplifiers, it is necessary to configure multiple wiring path networks with different wiring lengths with arbitrary impedance ratios. Therefore, it is strongly desired to realize a mass-produced wiring structure that is not affected by variations in etching and patterning.

(発明の目的) 本発明の目的は、配線長を異にする複数個の配
線経路網を任意のインピーダンス比率に構成でき
る量産的布線構造を備えた半導体装置を提供する
ことである。
(Object of the Invention) An object of the present invention is to provide a semiconductor device having a mass-produced wiring structure that can configure a plurality of wiring route networks having different wiring lengths to have an arbitrary impedance ratio.

(発明の構成) 本発明の半導体装置は、フイールド絶縁膜上の
長い配線長の配線経路網の少なくともその一つ
が、他の短い配線長の配線経路網における経路配
線と線幅をそれぞれ等しくする複数個の配線路の
並列接続で形成されることを含んで構成される。
(Structure of the Invention) In the semiconductor device of the present invention, at least one of the wiring route networks having a long wiring length on a field insulating film has a plurality of wirings whose line widths are equal to those of other wiring route networks having a short wiring length. It is formed by connecting two wiring paths in parallel.

(発明の効果) 本発明によれば、フイールド絶縁膜上の長い配
線長の配線経路網は複数個の配線路からなる並列
回路を含ん形成されるので、他の短い配線長の配
列経路網に対し、インピーダンスを等しく設定し
て形成することも、また規定比率に設定して形成
することも自由に行うことができる。また並列接
続される配線路のそれぞれは、他の短い配線長の
配線経路網の経路配線を基準として、これと等し
い線幅に設定されているので、エツチングおよび
パターニング精度によるマスク上の配線幅とのズ
レ割合を等しくして形成できる。従つて半導体装
置の量産歩止りを飛躍的に向上させることが可能
である。以下図面を参照して本発明を詳細に説明
する。
(Effects of the Invention) According to the present invention, a wiring path network with a long wiring length on a field insulating film is formed including a parallel circuit consisting of a plurality of wiring paths. On the other hand, it is possible to freely set the impedance to be equal or to set the impedance to a specified ratio. In addition, each of the wiring paths connected in parallel is set to have the same line width as that of the other short wiring route network as a reference, so the wiring width on the mask due to etching and patterning accuracy is It can be formed by making the deviation ratios equal. Therefore, it is possible to dramatically improve the mass production yield of semiconductor devices. The present invention will be described in detail below with reference to the drawings.

(実施例の説明) 第3図は本発明半導体装置における配線経路網
の一実施例を示す布線構造図で、第1図に対応し
異なる配線長およびをそれぞれ備えた2
つの配線経路網を含む。本実施例では、長い配線
長の配線経路網は、短い配線長の配線経
路網の経路配線幅Wと線幅を等しくする3本の配
線路の並列接続で形成され、短い配線長と等
しいインピーダンスを持つように設定される。従
つて点Aから点BおよびCを見たときのインピー
ダンスは等しく、第1図aにおけるが如きオフセ
ツト電圧が布線によつて生ずることはない。また
2つの配線経路網を形成する配線の線幅は全て等
しいので、エツチングおよびパターニングのバラ
ツキによる影響を均一に受けることとなり、両者
のインピーダンス比1:1をほぼ正確に保ちつつ
量産することが可能である。もちろん並列接続す
る配線路の個数は任意に選択し得るものである。
(Explanation of Embodiment) FIG. 3 is a wiring structure diagram showing an embodiment of the wiring path network in the semiconductor device of the present invention.
Contains two wiring path networks. In this embodiment, the wiring route network with a long wiring length is formed by parallel connection of three wiring paths whose line widths are equal to the route wiring width W of the wiring route network with a short wiring length, and the impedance is equal to that of the short wiring length. is set to have . Therefore, the impedances seen from point A to points B and C are equal, and no offset voltage as in FIG. 1a is caused by the wiring. In addition, since the line widths of the wiring that form the two wiring route networks are all the same, they are uniformly affected by variations in etching and patterning, making it possible to mass-produce while maintaining an almost exactly 1:1 impedance ratio between the two. It is. Of course, the number of wiring paths connected in parallel can be arbitrarily selected.

また、第4図、第5図、第6図および第7図は
それぞれ本発明における配線経路網の他の実施例
を示す布線構造図である。第4図では点Aから見
た点B、CおよびDのインピーダンスを、インピ
ーダンス・マツチングの必要性のない配線お
よびの存在の下にそれぞれ等しく設定する場
合の布線構造が示され、第5図では近傍に他の回
路の配線が布線され第4図の布線構造がとり得な
い場合の布線構造が示されている。このように本
来経路配線幅全体を等しくする代わりに、その一
部分のみを並列接続線路に形成してもよい。また
第6図は短い配線長の配線経路網を点線のように
真直ぐ延ばす代わりに、故意にう回させ配線長を
長くした場合の一実施例である。このように配線
経路網双方の配線長を考慮し、最も適切な線幅の
布線構造を選択することができる。この布線構造
は両者のインピーダンス比率を任意に設定する場
合に有効である。また第7図はダミー配線10,
11または他の回路の配線12,13および14
を近傍に沿わせた布線構造を示すもので、エツチ
ングおよびパターニングのバラツキによるインピ
ーダンス変動への影響をより一層軽減させること
ができる。
Further, FIGS. 4, 5, 6, and 7 are wiring structure diagrams showing other embodiments of the wiring route network according to the present invention. FIG. 4 shows a wiring structure in which the impedances of points B, C, and D as seen from point A are set equal under the presence of wiring that does not require impedance matching, and FIG. 4 shows a wiring structure in which the wiring structure of FIG. 4 cannot be used because the wiring of another circuit is wired nearby. In this way, instead of making the entire route wiring width equal, only a portion thereof may be formed as a parallel connection line. Further, FIG. 6 shows an example in which the wiring route network having a short wiring length is intentionally detoured to lengthen the wiring length instead of extending straight as shown by the dotted line. In this way, it is possible to select the wiring structure with the most appropriate line width by considering the wiring lengths of both wiring route networks. This wiring structure is effective when the impedance ratio between the two is arbitrarily set. In addition, FIG. 7 shows the dummy wiring 10,
11 or other circuit wiring 12, 13 and 14
This shows a wiring structure in which the wires are placed along the vicinity, and the influence on impedance fluctuations due to variations in etching and patterning can be further reduced.

以上詳細に説明したように、本発明半導体装置
はエツチングおよびパターニング精度による影響
を軽減して、配線インピーダンスを任意の比率に
設定して量産化できるので、オフセツトを特に問
題とするアナログ半導体集積回路装置において卓
効を奏し得る。
As explained in detail above, the semiconductor device of the present invention reduces the effects of etching and patterning accuracy, and can be mass-produced by setting the wiring impedance to an arbitrary ratio. It can be very effective in

【図面の簡単な説明】[Brief explanation of the drawing]

第1図aおよびbは、異なる配線長を持つ2つ
の配線経路網およびその等価回路をそれぞれ示す
図、第2図は異なる配線幅を備えた2つの配線経
路網の従来の布線構造図、第3図は本発明半導体
装置における配線経路網の一実施例を示す布線構
造図、第4図、第5図、第6図および第7図は本
発明における配線経路網の一実施例を示すそれぞ
れの布線構造図である。 ,,、……配線経路網の配線長、
Rb,Rc……配線抵抗、I0……回路電流、1,2,
3,7,8,9,12,13,14……他の回路
配線、W……基準配線幅、10,11……ダミー
配線。
Figures 1a and b are diagrams showing two wiring route networks with different wiring lengths and their equivalent circuits, respectively; Figure 2 is a conventional wiring structure diagram of two wiring route networks with different wiring widths; FIG. 3 is a wiring structure diagram showing one embodiment of the wiring path network in the semiconductor device of the present invention, and FIGS. 4, 5, 6, and 7 show one example of the wiring path network in the present invention. FIG. ,,,... Wiring length of wiring route network,
R b , R c ... Wiring resistance, I 0 ... Circuit current, 1, 2,
3, 7, 8, 9, 12, 13, 14...Other circuit wiring, W...Reference wiring width, 10, 11...Dummy wiring.

Claims (1)

【特許請求の範囲】 1 短い配線長の第1の配線路と、この第1の配
線路に直列接続された長い配線長の第2の配線路
を有する半導体装置において、前記第2の配線路
が前記第1の配線路の線幅と等しい線幅の複数の
配線を並列接続して設け且つ前記第1の配線路と
インピーダンス整合されていることを特徴とする
半導体装置。 2 配線路の並列接続した配線を等間隔で配置し
且つ配線路の外側に前記配線間の間隔と等しい間
隔を介して設けたダミー配線又は他の回路配線路
を備えた特許請求の範囲第1項記載の半導体装
置。
[Scope of Claims] 1. In a semiconductor device having a first wiring path with a short wiring length and a second wiring path with a long wiring length connected in series to the first wiring path, the second wiring path 1. A semiconductor device comprising: a plurality of interconnects having a line width equal to that of the first interconnect path connected in parallel, and impedance matched with the first interconnect path. 2. Claim 1, which comprises a wiring path in which parallel-connected wirings are arranged at equal intervals, and dummy wiring or other circuit wiring path is provided outside the wiring path at intervals equal to the spacing between the wirings. 1. Semiconductor device described in Section 1.
JP7416984A 1984-04-13 1984-04-13 Semiconductor device Granted JPS60218856A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7416984A JPS60218856A (en) 1984-04-13 1984-04-13 Semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7416984A JPS60218856A (en) 1984-04-13 1984-04-13 Semiconductor device

Publications (2)

Publication Number Publication Date
JPS60218856A JPS60218856A (en) 1985-11-01
JPH0566729B2 true JPH0566729B2 (en) 1993-09-22

Family

ID=13539380

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7416984A Granted JPS60218856A (en) 1984-04-13 1984-04-13 Semiconductor device

Country Status (1)

Country Link
JP (1) JPS60218856A (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
NL8901822A (en) * 1989-07-14 1991-02-01 Philips Nv INTEGRATED CIRCUIT WITH CURRENT DETECTION.

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS52106693A (en) * 1976-03-05 1977-09-07 Hitachi Ltd Integrated circuit
JPS5667937A (en) * 1979-11-07 1981-06-08 Nec Corp Semiconductor system
JPS5717146A (en) * 1980-07-04 1982-01-28 Fujitsu Ltd Wiring for semiconductor element

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS52106693A (en) * 1976-03-05 1977-09-07 Hitachi Ltd Integrated circuit
JPS5667937A (en) * 1979-11-07 1981-06-08 Nec Corp Semiconductor system
JPS5717146A (en) * 1980-07-04 1982-01-28 Fujitsu Ltd Wiring for semiconductor element

Also Published As

Publication number Publication date
JPS60218856A (en) 1985-11-01

Similar Documents

Publication Publication Date Title
JPH0548010B2 (en)
JP2944442B2 (en) Digital-to-analog converter
JPH0566729B2 (en)
JP3406865B2 (en) Connection structure
JP3169883B2 (en) Semiconductor integrated circuit device and method of arranging functional cells thereof
JP3028420B2 (en) Semiconductor integrated device
JP3221675B2 (en) Integrated circuit with current detection
JP3316447B2 (en) Integrated circuit
JP2854181B2 (en) Semiconductor device
JPH0524666B2 (en)
JP3714412B2 (en) Weighting capacity circuit
JP2934132B2 (en) Semiconductor integrated circuit
JPH0249535B2 (en) HANDOTAISOCHI
KR20090108391A (en) Method for forming resistor pattern of a semiconductor device
US7049698B1 (en) Semiconductor integrated circuit having transistor with reduced resistance
TW579576B (en) Semiconductor circuit
JPH01209760A (en) Semiconductor device and acoustic equipment using same
JPS6127691A (en) Internal wiring structure of magnetoresistance element
JPH0823072A (en) Semiconductor device
JPH0442827B2 (en)
JP2901280B2 (en) Semiconductor device
JPH06120223A (en) Semiconductor integrated circuit device
JP2005197762A (en) Ic resistor array
JPS59104159A (en) Resistance row voltage dividing circuit
JPH01304748A (en) Ecl gate array