JPH0566220B2 - - Google Patents

Info

Publication number
JPH0566220B2
JPH0566220B2 JP62180687A JP18068787A JPH0566220B2 JP H0566220 B2 JPH0566220 B2 JP H0566220B2 JP 62180687 A JP62180687 A JP 62180687A JP 18068787 A JP18068787 A JP 18068787A JP H0566220 B2 JPH0566220 B2 JP H0566220B2
Authority
JP
Japan
Prior art keywords
die
container
helical gear
metal material
mandrel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP62180687A
Other languages
Japanese (ja)
Other versions
JPS6422442A (en
Inventor
Naonobu Kanamaru
Susumu Aoyama
Tsutomu Koike
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
MH Center Ltd
Original Assignee
Hitachi Ltd
MH Center Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd, MH Center Ltd filed Critical Hitachi Ltd
Priority to JP62180687A priority Critical patent/JPS6422442A/en
Publication of JPS6422442A publication Critical patent/JPS6422442A/en
Publication of JPH0566220B2 publication Critical patent/JPH0566220B2/ja
Granted legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21KMAKING FORGED OR PRESSED METAL PRODUCTS, e.g. HORSE-SHOES, RIVETS, BOLTS OR WHEELS
    • B21K1/00Making machine elements
    • B21K1/28Making machine elements wheels; discs
    • B21K1/30Making machine elements wheels; discs with gear-teeth
    • B21K1/305Making machine elements wheels; discs with gear-teeth helical

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Forging (AREA)

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、ヘリカルギアの塑性加工装置に係
り、さらに詳しくは、一製品物に加工された素材
を金型内にパンチにより順次押し込み、1回の金
型内通過でヘリカルギアを押出成形する塑性加工
装置に関する。
[Detailed Description of the Invention] [Industrial Application Field] The present invention relates to a helical gear plastic working device, and more specifically, the present invention relates to a plastic working device for a helical gear, and more specifically, a material processed into a single product is sequentially pushed into a mold by a punch, The present invention relates to a plastic processing device that extrudes a helical gear by passing through a mold twice.

〔従来の技術〕[Conventional technology]

従来、ねじれ歯を有するヘリカルギアを押出加
工により塑性成形する装置は、米国特許第
3605475号明細書及び同第3910091号明細書等で知
られている。
Conventionally, a device for plastically forming helical gears with helical teeth by extrusion was disclosed in U.S. Patent No.
It is known from specifications such as No. 3605475 and No. 3910091.

かかるヘリカルギア押出加工装置は、内壁面に
ヘリカルギア歯部を有するダイと、このダイと一
体化されたコンテナと、ダイ及びコンテナの軸線
上に配置したマンドレルと、金属素材をコンテナ
及びダイ内に押し込んでヘリカルギアを押出加工
するパンチとを組合わせたものから構成されてい
る。
Such a helical gear extrusion processing device includes a die having helical gear teeth on the inner wall surface, a container integrated with the die, a mandrel arranged on the axis of the die and the container, and a metal material inside the container and the die. It consists of a combination of a punch that pushes in and extrudes the helical gear.

〔発明が解決しようとする問題点〕 上記のような従来のヘリカルギアの押出加工装
置では、マンドレルとダイとの円周方向の相対的
回転が可能になつているものの、ダイとコンテナ
は一体化され、押し込まれる金属素材とダイとの
円周方向相対回転が不能になつているため、金属
素材のダイ内への押込みによつて金属素材の外周
面にねじれ歯を形成していく時、素材に軸方向の
流動(伸び)が生じ、これによつてダイ歯部のね
じれ角より小さいねじれ角の製品歯部を成形する
ように作用し、ダイ歯部と成形途中の素材歯部間
にリードギヤツプが発生する。これに伴いダイと
素材との各歯の片側面に大きな応力が発生し、こ
れが成形品歯部の左右に、弾性戻りを含めたダイ
歯部に対する圧力差を生じさせ、これによつてダ
イ歯部に対する焼付き、あるいはかじりが発生す
る要因となるほか、最悪の場合にはダイ歯部が破
損されてしまう問題があつた。
[Problems to be solved by the invention] In the conventional helical gear extrusion processing device as described above, relative rotation in the circumferential direction between the mandrel and the die is possible, but the die and the container are integrated. Since the metal material being pushed into the die and the die are unable to rotate relative to each other in the circumferential direction, when the metal material is pushed into the die to form twisted teeth on the outer peripheral surface of the metal material, the material Flow (elongation) in the axial direction occurs, which acts to form a product tooth with a helix angle smaller than the helix angle of the die tooth, and creates a lead gap between the die tooth and the material tooth that is being formed. occurs. As a result, a large stress is generated on one side of each tooth between the die and the material, which causes a pressure difference on the left and right sides of the molded product tooth, including elastic return, against the die tooth. In addition to causing seizure or galling of the parts, there was also the problem that, in the worst case, the die teeth could be damaged.

また、上記米国特許第3605475号では、押出加
工時の金属素材の軸方向の伸びを防止するため
に、マンドレルを使用せずに素材の中空部を非拘
束状態とし、素材内径側への材料の流動を許す方
式を採つている。
In addition, in the above-mentioned US Patent No. 3,605,475, in order to prevent the metal material from elongating in the axial direction during extrusion processing, the hollow part of the material is left in an unrestrained state without using a mandrel, and the material is allowed to flow toward the inner diameter of the material. A method that allows for flow is adopted.

この方式では、リードギヤツプを減少させ得る
効果があるものの、流動変形中の素材内外周面及
び軸方向からの三次元的拘束力が低下して精度の
良いヘリカル歯を得ることができないほか、ヘリ
カルギアの内径寸法精度も低下してしまう問題が
あつた。
Although this method has the effect of reducing the lead gap, the three-dimensional restraining force from the inner and outer peripheral surfaces of the material and the axial direction during flow deformation decreases, making it impossible to obtain highly accurate helical teeth. There was a problem in that the accuracy of the inner diameter dimension also decreased.

従つて、現在では、上記米国特許に開示される
如きヘリカルギアの塑性加工技術が見られるもの
の、ヘリカルギアを工業的に量産し得る技術は確
立されておらず、自動車、二輪車の変速機用を始
めとして多くの機械の回転伝達用主要部品である
にも拘らず、ホブ盤による切削加工でヘリカルギ
アを成形しているのが現状である。
Therefore, although plastic processing technology for helical gears such as the one disclosed in the above-mentioned US patent is currently available, the technology for industrially mass-producing helical gears has not been established, and it has not yet been established that helical gears can be used in transmissions for automobiles and motorcycles. Despite being a major part for transmitting rotation in many machines, helical gears are currently formed by cutting using hobbing machines.

〔発明の目的〕[Purpose of the invention]

本発明は上記のような問題点を解決するために
なされたもので、リードギヤツプの発生及びこれ
による金型と素材との焼付き、かじり等の発生を
なくし、ヘリカルギアの工業的量産を可能にした
ヘリカルギアの塑性加工装置を提供することを目
的とする。
The present invention was made to solve the above-mentioned problems, and eliminates the occurrence of lead gaps and the resulting seizure and galling between the mold and the material, and enables industrial mass production of helical gears. The purpose of the present invention is to provide a helical gear plastic processing device.

〔問題点を解決するための手段〕[Means for solving problems]

本発明に係るヘリカルギアの塑性加工装置は、
中心穴を有する金属素材が挿入される外形拘束用
コンテナと、このコンテナの下方に位置して円周
方向に相対回転可能に配置されたダイと、上記コ
ンテナとダイ内の中心軸線上に配置したマンドレ
ルと、このマンドレルと上記コンテナ及びダイ間
の隙間内に上記金属素材を順次押し込むパンチを
備え、上記ダイの内壁には、その上端部内面から
素材押出方向に行くにしたがいヘリカルギア歯形
に変化するアプローチ部及びこれに連設するヘリ
カルギア歯形の製品形状部を形成し、上記マンド
レルのコンテナ側には金属素材を拡径してヘリカ
ルギア成形に必要な断面積を設定する拡径部を形
成すると共に、上記ダイのアプローチ部に対向し
て素材外周部がアプローチ部により次第にヘリカ
ルギア歯形に流動変形される過程での実質的外径
縮小量があつても素材の水平面断面積が一定とな
るように素材内径を縮小変形させる内径成部を形
成し、さらに上記ダイの製品形状部に対向して成
形品の内径を正規寸法に設定する円柱部を形成し
たものである。
The helical gear plastic processing device according to the present invention includes:
A container for external restraint into which a metal material having a center hole is inserted, a die located below the container so as to be able to rotate relative to each other in the circumferential direction, and a die arranged on the central axis line between the container and the die. A mandrel and a punch for sequentially pushing the metal material into the gap between the mandrel, the container, and the die are provided, and the inner wall of the die has a helical gear tooth profile that changes from the inner surface of the upper end toward the material extrusion direction. An approach part and a product shape part of a helical gear tooth profile connected thereto are formed, and on the container side of the mandrel, an enlarged diameter part is formed by expanding the diameter of the metal material to set the cross-sectional area necessary for forming the helical gear. At the same time, the horizontal cross-sectional area of the material is kept constant even if there is a substantial reduction in the outer diameter during the process in which the outer circumference of the material is gradually flow-deformed into a helical gear tooth shape by the approach portion of the die, facing the approach portion of the die. An inner diameter portion is formed to reduce and deform the inner diameter of the material, and a cylindrical portion is further formed opposite to the product shape portion of the die to set the inner diameter of the molded product to a regular dimension.

〔発明の作用〕[Action of the invention]

本発明においては、パンチにより順次コンテナ
とマンドレルとの隙間内に押し込まれる金属素材
がマンドレルの拡径部を通過するときヘリカルギ
アの成形に必要な断面積に拡径され、そしてダイ
のアプローチ部とこれに対向する素材内径成形部
間を通過するとき、素材外周部はアプローチ部の
形状によつて不完全歯形から完全歯形へと流動変
形されると同時に、この歯形変形過程における実
質的な素材の外径縮小量に伴う流動材料は、アプ
ローチ部の拡大形状と逆の向きの縮径形状を有す
る内径成形部によつて吸収されることになり、こ
れによつて金属素材が軸方向に流動伸展されるの
を防止し、リードギヤツプの発生をなくすると共
に、コンテナとダイとが円周方向に相対回転可能
になつていることによつて素材とダイ間の焼付
き、かじり及び歯部の破損を発生を防止する。
In the present invention, when the metal material that is sequentially pushed into the gap between the container and the mandrel by a punch passes through the expanded diameter part of the mandrel, the diameter is expanded to the cross-sectional area necessary for forming the helical gear, and the metal material is expanded in diameter to the cross-sectional area necessary for forming the helical gear. When passing between the opposing inner diameter forming parts, the outer peripheral part of the material is fluidly deformed from an incomplete tooth profile to a complete tooth profile depending on the shape of the approach part, and at the same time, the material is substantially The flowing material that accompanies the reduction in the outer diameter is absorbed by the inner diameter forming part, which has a reduced diameter shape in the opposite direction to the enlarged shape of the approach part, thereby causing the metal material to flow and expand in the axial direction. In addition to preventing lead gaps from occurring, the container and die can rotate relative to each other in the circumferential direction, which prevents seizure, galling, and tooth damage between the material and the die. Prevent occurrence.

〔発明の実施例〕[Embodiments of the invention]

以下、本発明の一実施例を第1図乃至第5図に
ついて説明する。
An embodiment of the present invention will be described below with reference to FIGS. 1 to 5. FIG.

第1図は本発明に係るヘリカルギアの押出塑性
加工装置の全体構成を示す断面図、第2図は要部
の拡大断面図、第3図は金属素材を成形金型内に
押し込んでヘリカルギアを押出式に加工する状態
の断面図である。
Fig. 1 is a sectional view showing the overall configuration of a helical gear extrusion plastic processing device according to the present invention, Fig. 2 is an enlarged sectional view of the main parts, and Fig. 3 is a helical gear formed by pushing a metal material into a molding die. FIG.

第1図乃至第3図において、全体符号1で示す
ヘリカルギア成形用金型は、コンテナ2、ダイ3
及びマンドレル4を備えている。コンテナ2の中
央部には上下方向に貫通する素材外形拘束用の挿
入穴2aが形成されており、この穴2aは金属素
材5の外形を拘束するものである。
In FIGS. 1 to 3, a helical gear molding die designated by the general reference numeral 1 includes a container 2, a die 3,
and a mandrel 4. An insertion hole 2a for restricting the external shape of the metal material 5 is formed in the center of the container 2, passing through in the vertical direction, and this hole 2a restricts the external shape of the metal material 5.

上記ダイ3は、これに金属素材5を押し込むこ
とによつて素材外周にねじれ歯を形成するための
もので、ボルスタ等の固定部7に垂直に取り付け
た複数のガイドロツド8に上下動可能に支持した
支持プレート9の取付穴9aに回転可能に嵌合さ
れ、このダイ3の上面にはコンテナ2が軸線を一
致して重ね合わされ、そして、これらコンテナ2
及びダイ3は、それぞれの外周に形成した鍔部2
b及び鍔部3aを、ボルト10により支持プレー
ト9に固定したリング状のホルダ11によつて支
持プレート9に円周方向に相対回転し得るよう保
持されている。また、上記支持プレート9は、こ
れと固定部7間にガイドロツド8と同心に配置し
た圧縮ばね12によつて常時上方へ付勢されてい
る。
The die 3 is used to form twisted teeth on the outer periphery of the material by pushing the metal material 5 into it, and is supported so as to be movable up and down on a plurality of guide rods 8 vertically attached to a fixed part 7 such as a bolster. The container 2 is rotatably fitted into the mounting hole 9a of the support plate 9, and the containers 2 are superimposed on the upper surface of the die 3 with their axes aligned.
and the die 3 have a flange 2 formed on the outer periphery of each
b and the flange 3a are held by a ring-shaped holder 11 fixed to the support plate 9 with bolts 10 so as to be rotatable relative to the support plate 9 in the circumferential direction. Further, the support plate 9 is always urged upward by a compression spring 12 disposed coaxially with the guide rod 8 between the support plate 9 and the fixed portion 7.

また、上記ダイ3は、コンテナ2の素材挿入穴
2aより僅かに大きい径の円筒穴31を有し、こ
の円筒穴31の内壁にはヘリカルギアのねじれ歯
を成形する歯部32が所望のねじれ角で形成され
ている。上記歯部32は、第2図に示すように金
属素材5の押出方向(第2図の矢印X方向)に行
くにしたがい円筒穴31の内面から中心方向へ直
線的に拡大されるアプローチ部(歯変形過程部)
32aと、このアプローチ部32aの下端に連設
され完全なヘリカルギア歯形を成形する製品形状
部32bとからなり、そして、上記アプローチ部
32aの領域における位置〜の断面形状は、
第4図に示す〜のように円筒穴31の内面か
ら中心方向へ行くにしたがい歯溝幅の寸法dが成
形歯のインボリユート曲線に応じて減少する形状
になつている。これにより、素材5がアプローチ
部32aに沿つて流動変形され始める時のアプロ
ーチ部32a始端部分(に相当する部分)の曲
げ剛性を高め、かつ素材5のヘリカルギア歯への
流動変形がスムーズに移行し得るようになつてい
る。
Furthermore, the die 3 has a cylindrical hole 31 with a slightly larger diameter than the material insertion hole 2a of the container 2, and the inner wall of this cylindrical hole 31 has a tooth portion 32 for forming a helical gear torsion tooth to create a desired twist. formed of corners. As shown in FIG. 2, the tooth portion 32 has an approach portion (an approach portion) that expands linearly from the inner surface of the cylindrical hole 31 toward the center as it goes in the direction of extrusion of the metal material 5 (direction of arrow X in FIG. 2). tooth deformation process)
32a, and a product-shaped portion 32b that is connected to the lower end of the approach portion 32a and forms a complete helical gear tooth profile, and the cross-sectional shape of the area of the approach portion 32a is as follows:
As shown in FIG. 4, the tooth groove width d decreases from the inner surface of the cylindrical hole 31 toward the center in accordance with the involute curve of the molded tooth. This increases the bending rigidity of the starting end portion (corresponding to the approach portion 32a) of the approach portion 32a when the material 5 begins to be fluidly deformed along the approach portion 32a, and the fluid deformation of the material 5 to the helical gear teeth smoothly transitions. It is becoming possible to do so.

上記コンテナ2の素材挿入穴2a及びダイ3の
円筒穴31の中心軸線上に配置されたマンドレル
4は、コンテナ2の素材挿入穴2aに位置し金属
素材5の中心穴5aが嵌合するガイド用の円柱部
41と、この円柱部41の下端にテーパ部42を
介して連設されダイ3の円筒穴31内に位置する
と共に金属素材5をヘリカルギア成形に必要な断
面積に設定する拡径部43と、この拡径部43の
下端にダイ3の歯部アプローチ部32aに対向し
て連設され金属素材5の外周がダイ3の歯部32
により円から順次ヘリカルギアに流動変形される
過程で金属素材5の実質的外径の縮小に応じて素
材内径を縮小方向へ拘束支持する素材内径成形部
44と、この素材内径成形部44の下端にダイ3
の歯製品形状部32bに対向して連設され成形さ
れるヘリカルギアの正規内径寸法を設定する円柱
部45とから構成されている。
A mandrel 4 arranged on the central axis of the material insertion hole 2a of the container 2 and the cylindrical hole 31 of the die 3 is a guide that is located in the material insertion hole 2a of the container 2 and into which the center hole 5a of the metal material 5 fits. a cylindrical part 41, and an enlarged diameter which is connected to the lower end of this cylindrical part 41 via a taper part 42, is located inside the cylindrical hole 31 of the die 3, and sets the metal material 5 to the cross-sectional area necessary for helical gear forming. portion 43, and the outer periphery of the metal material 5 is connected to the lower end of this enlarged diameter portion 43 facing the tooth approach portion 32a of the die 3.
A material inner diameter forming part 44 that restrains and supports the inner diameter of the material in the reduction direction as the substantial outer diameter of the metal material 5 is reduced in the process of being sequentially flow-deformed from a circle to a helical gear, and a lower end of the material inner diameter forming part 44. ni die 3
A cylindrical part 45 is provided in series to face the tooth product shaped part 32b, and sets the normal inner diameter dimension of the helical gear to be molded.

第1図及び第3図において、13はスライダ1
4の下面にホルダ15により支持した円筒状のパ
ンチで、このパンチ13はコンテナ2及びダイ3
間の隙間内に金属素材5を押し込むためのもので
あり、スライダ14に対しては円周方向に回転し
得る支持構造になつている。
1 and 3, 13 is the slider 1
This punch 13 is a cylindrical punch supported by a holder 15 on the lower surface of the container 2 and the die 3.
This is for pushing the metal material 5 into the gap between them, and has a support structure that can rotate in the circumferential direction with respect to the slider 14.

次に、上記のように構成された金型1を利用し
てヘリカルギアを押出成形する場合について説明
する。
Next, a case will be described in which a helical gear is extruded using the mold 1 configured as described above.

まず、第1図に示すように所定の厚さ寸法及び
外径を有する中空の金属素材5をコンテナ2の穴
2a内に挿入し、かつ金属素材5の中心穴5aを
マンドレル4の円柱部41に嵌合した状態で、ス
ライダ14を矢印A方向に下降動作させる。これ
によりパンチ13が金属素材5の上端に係合し
て、さらに下降されると、コンテナ2、ダイ3及
びマンドレル4を含めた支持プレート9全体が圧
縮ばね12に抗して下降され、ダイ3及びマンド
レル4の下端面が固定部7に設置した受台16の
上面に当接した段階でコンテナ2、ダイ3及びマ
ンドレル4の下降が停止する。
First, as shown in FIG. In the fitted state, the slider 14 is moved downward in the direction of arrow A. As a result, when the punch 13 engages with the upper end of the metal material 5 and is further lowered, the entire support plate 9 including the container 2, die 3 and mandrel 4 is lowered against the compression spring 12, and the die 3 When the lower end surface of the mandrel 4 comes into contact with the upper surface of the pedestal 16 installed on the fixed part 7, the container 2, the die 3, and the mandrel 4 stop descending.

かかる状態でスライダ14の矢印A方向への前
進により、パンチ13がストローク一杯に下降さ
れると、金属素材はコンテナ2とマンドレル4間
の隙間内を矢印Xに示す押出方向に押し込まれ、
第3図の符号5′に示す如くコンテナ2とダイ3
の両者間にまたがつた位置まで押し込まれる。
In this state, when the punch 13 is lowered to its full stroke by advancing the slider 14 in the direction of the arrow A, the metal material is pushed into the gap between the container 2 and the mandrel 4 in the extrusion direction shown by the arrow X.
Container 2 and die 3 as shown by reference numeral 5' in FIG.
It is pushed into the position where it straddles between the two.

金属素材がパンチ13によつてコンテナ2から
ダイ3内に押し込まれる時、金属素材5′はマン
ドレル4内の拡径部43によつて拡径され、ヘリ
カルギア成形に必要な断面積に設定される。そし
て下端側外周部はダイ3のねじれ歯成形用歯部3
2のアプローチ部32aに差しかかり、金属素材
5′に対しねじれ歯を成形し始める。この時の金
属素材5′の外周部の材料変形状態は第2図の
で示すアプローチ部32aの断面形状に相当した
ものとなる。
When the metal material is pushed into the die 3 from the container 2 by the punch 13, the diameter of the metal material 5' is expanded by the enlarged diameter portion 43 in the mandrel 4, and the cross-sectional area is set to be necessary for forming a helical gear. Ru. The lower end side outer periphery is the twisted tooth forming tooth part 3 of the die 3.
2, and begins to form the twisted teeth on the metal material 5'. At this time, the material deformation state of the outer peripheral portion of the metal material 5' corresponds to the cross-sectional shape of the approach portion 32a shown in FIG.

最初の金属素材5′に対しパンチ13にストロ
ーク一杯の押込みが完了したならば、パンチ13
を上昇させ、次の金属素材5を第1図に示す如く
コンテナ2内に挿入し、再びパンチ13を下降し
て該金属素材5をコンテナ2内に押し込む。以下
同様にして金属素材5をコンテナ2内にパンチ1
3により順次押し込むことにより、金属素材5は
ダイ3とマンドレル4との隙間内を矢印X方向に
順次移動し、ダイ3とマンドレル4との隙間内を
通過する間に、金属素材5はその外周にねじれ歯
を有するヘリカルギアに塑性加工されることにな
る。
When the punch 13 has completed the full stroke of the first metal material 5', the punch 13
is raised, the next metal material 5 is inserted into the container 2 as shown in FIG. 1, and the punch 13 is lowered again to push the metal material 5 into the container 2. In the same manner, punch 1 the metal material 5 into the container 2.
3, the metal material 5 moves sequentially in the direction of the arrow X within the gap between the die 3 and the mandrel 4, and while passing through the gap between the die 3 and the mandrel 4, the metal material 5 moves around the outer periphery. This will be plastically worked into a helical gear with twisted teeth.

即ち、金属素材5がダイ3のアプローチ部32
aを通過する時、金属素材5の外周部は円から
徐々に完全なねじれ歯形に流動変化され、そして
製品形状部32bとこれに対向するマンドレル4
の素材内径成形部44間を通過した時、素材外周
部には、第5図に示すように完全なねじれ歯17
aが形成されると共に、その内径17bは内径成
形部44によつて所定の径に形成されたヘリカル
ギア17が成形されることになる。このヘリカル
ギア17は受台16内に落下する。
That is, the metal material 5 is in the approach portion 32 of the die 3.
When passing through a, the outer periphery of the metal material 5 is gradually changed from a circle to a perfect helical tooth shape, and the product shape part 32b and the mandrel 4 opposite thereto are formed.
When the material passes between the inner diameter forming portions 44, the outer circumference of the material has completely twisted teeth 17 as shown in FIG.
a is formed, and the helical gear 17 whose inner diameter 17b is formed to a predetermined diameter by the inner diameter forming portion 44 is formed. This helical gear 17 falls into the pedestal 16.

ここで、パンチ13により上方から順次押し込
まれる金属素材5がダイ3の歯部32のアプロー
チ部32aとこれに対向するマンドレル4の素材
内径成形部44間を通過する時、金属素材5の外
周部はアプローチ部32aの上端から下端方向へ
行くにしたがい不完全歯形から完全歯形へと流動
変形されると同時に、この歯変形過程における実
質的な素材5の外径縮小量に伴う流動材料は、ア
プローチ部32aの拡大傾斜と逆の縮径傾斜とな
る素材内径成形部44によつて吸収され、金属素
材5がマンドレル4の軸方向に流動伸展されるの
を防止する。
Here, when the metal material 5 sequentially pushed in from above by the punch 13 passes between the approach portion 32a of the tooth portion 32 of the die 3 and the material inner diameter forming portion 44 of the mandrel 4 opposing this, the outer circumference of the metal material 5 is fluidly deformed from an incomplete tooth profile to a complete tooth profile as it goes from the upper end to the lower end of the approach portion 32a, and at the same time, the fluid material accompanying the substantial outer diameter reduction of the material 5 in this tooth deformation process It is absorbed by the material inner diameter forming portion 44 which has a diameter reduction slope opposite to the expansion slope of the portion 32a, and prevents the metal material 5 from flowing and expanding in the axial direction of the mandrel 4.

即ち、金属素材5の外周部が円からねじれ歯に
流動変形されることによる金属素材5の水平面で
の断面積の減少を、金属素材5の内径側を拘束す
るマンドレル4の内径成形部44の径寸法を傾斜
アプローチ部32aの断面形状変化に応じて縮径
変化させることにより吸収し、金型内における素
材流動変形域の全体にわたり素材5の水平面での
断面積を一定に保持する。
That is, the inner diameter forming portion 44 of the mandrel 4 that restrains the inner diameter side of the metal material 5 prevents the decrease in the cross-sectional area of the metal material 5 in the horizontal plane due to the flow deformation of the outer peripheral portion of the metal material 5 from a circle to a twisted tooth. The diameter is absorbed by reducing the diameter according to the change in the cross-sectional shape of the inclined approach portion 32a, and the cross-sectional area of the material 5 on the horizontal plane is kept constant throughout the material flow deformation region within the mold.

第6図は金型内のヘリカルギア成形過程におけ
る各部水平面での断面積が一定であることを示す
説明図である。
FIG. 6 is an explanatory diagram showing that the cross-sectional area of each part in the horizontal plane during the helical gear forming process in the mold is constant.

第6図Aは第3図のA−A線に沿う面での
金属素材5の断面を示し、第6図Bは第3図の
B−B線に沿う面での変形途中の素材断面であ
り、また、第6図Cは第3図のC−C線に沿
う面での完成品の断面図を示す。
6A shows a cross section of the metal material 5 along line A-A in FIG. 3, and FIG. 6B shows a cross section of the material in the middle of deformation along line B-B in FIG. 6C shows a cross-sectional view of the completed product taken along the line C--C in FIG. 3.

この各図から明らかなようにマンドレル4の拡
径部43で拡径された素材5の断面積SAと、変
形途中の素材断面積SB及び完成歯車の断面積Sと
はSA=SB=Sとなる。但し、それぞれの内径
φdA、φdB、φdCの間は、φdA>φdB>φdCの関係にあ
る。
As is clear from these figures, the cross-sectional area S A of the material 5 whose diameter has been expanded by the expanded diameter part 43 of the mandrel 4, the cross-sectional area S B of the material in the middle of deformation, and the cross-sectional area S of the completed gear are S A = S B =S. However, the relationship between the inner diameters φ dA , φ dB , and φ dC is φ dA > φ dB > φ dC .

従つて、素材5の軸方向への材料伸展が防止さ
れ、しかもダイ3のアプローチ部32aから完全
な歯形を成形する製品形状部32bへの途中でも
素材外周に成形された不完全歯形のリードとこれ
に接するダイ歯形部のリード間にギヤツプが発生
することがない。さらに、素材外周に成形された
歯形部の進行方向とこれに対応するダイ3の歯部
とのリード誤差がなくなり、素材外周には完全な
ねじれ歯が形成されることになる。
Therefore, material expansion in the axial direction of the material 5 is prevented, and even on the way from the approach portion 32a of the die 3 to the product shape portion 32b where a perfect tooth shape is formed, the lead of the incomplete tooth shape formed on the outer periphery of the material is prevented. A gap does not occur between the leads of the die tooth profile that are in contact with this. Furthermore, there is no lead error between the advancing direction of the tooth profile formed on the outer periphery of the material and the corresponding tooth portion of the die 3, and perfect twisted teeth are formed on the outer periphery of the material.

また、パンチ13により押し込まれる金属素材
5がダイ3の歯部32を流動変形しながら通過す
る時、歯部32のねじれ角によつてダイ3との間
に相対的な回転力が生じる。即ち、ダイ3が固定
状態にあると考えると、1個の金属素材5が押込
みによつてダイ3の歯部32に差しかかれば、素
材全体が歯部32のねじれリードによつて回転さ
れざるを得ない。この状態では素材の大半がコン
テナ2中にあるから、もしダイ3とコンテナ2が
一体であつたり、ダイ3とコンテナ2間の回転方
向運動が制約されていると、コンテナ2と素材間
の摩擦抵抗に打ち勝つて素材が回転しなければな
らない。この時、素材5の一部はダイ3のアプロ
ーチ部32aに差しかかつたのみであるため、素
材5の回転によつてアプローチ部32aに極端な
応力を発生させ、素材5を不必要に変形させる
か、あるいはダイ3の歯部32を破損させる結果
となる。
Further, when the metal material 5 pushed in by the punch 13 passes through the tooth portion 32 of the die 3 while being fluidly deformed, a relative rotational force is generated between the metal material 5 and the die 3 due to the helix angle of the tooth portion 32. That is, assuming that the die 3 is in a fixed state, if one metal material 5 approaches the teeth 32 of the die 3 by pushing, the entire material will not be rotated by the twisted leads of the teeth 32. I don't get it. In this state, most of the material is in the container 2, so if the die 3 and the container 2 are integrated or the rotational movement between the die 3 and the container 2 is restricted, the friction between the container 2 and the material The material must overcome resistance and rotate. At this time, since a part of the material 5 is only about to reach the approach portion 32a of the die 3, the rotation of the material 5 generates extreme stress in the approach portion 32a, causing unnecessary deformation of the material 5. Otherwise, the teeth 32 of the die 3 may be damaged.

しかるに、本実施例にあつては、コンテナ2、
ダイ3及びマンドレル4、パンチ13は互いに回
転可能に支持されているから、上述する問題が全
く発生することがなく、精度の高いヘリカルギア
を塑性加工することができるのである。
However, in this embodiment, container 2,
Since the die 3, mandrel 4, and punch 13 are rotatably supported relative to each other, the above-mentioned problems do not occur at all, and it is possible to plastically process a helical gear with high precision.

また、ダイ3のねじれ歯成形用歯部32のアプ
ローチ部32aを第4図の〜に示すような素
材の押出方向に上り勾配で傾斜する断面形状にす
ることにより、素材へのねじれ歯の成形を無理な
く高精度になし得るほか型加工が簡単になり、歯
部32の剛性を高めることができ、型寿命も向上
し得る。
Furthermore, by forming the approach portion 32a of the tooth portion 32 for forming twisted teeth of the die 3 into a cross-sectional shape that slopes upward in the extrusion direction of the material as shown in ~ in Fig. 4, it is possible to form twisted teeth on the material. This can be done easily and with high precision, and mold machining can be simplified, the rigidity of the teeth 32 can be increased, and the life of the mold can also be improved.

〔発明の効果〕〔Effect of the invention〕

以上のように本発明によれば、中心穴を有する
金属素材が挿入される外形拘束用コンテナ及びそ
の下方に連なるダイを円周方向に相対回転可能に
配置すると共に、コンテナとダイ内の中心軸線上
にマンドレルを配置し、金属素材をパンチにより
マンドレルとコンテナ及びダイ間の隙間内に順次
押し込むことによりヘリカルギアを成形する金型
であつて、ダイの内壁にその内面から素材押出方
向に行くにしたがいヘリカルギア歯形に変化する
アプローチ部及びこれに連設する完全なヘリカル
ギア歯形の製品形状部を形成し、さらにマンドレ
ルには金属素材を拡径してヘリカルギア成形に必
要な断面積を設定する拡径部をコンテナ側に位置
して形成すると共に、ダイのアプローチ部に対向
して素材外周部がアプローチ部により次第にヘリ
カルギア歯形に流動変形される過程での実質的外
径縮小量があつても素材の水平面断面積が一定と
なるように素材内径を縮小変形させる内径成形部
を形成し、かつ上記ダイの製品形状部に対向して
成形品の内径を正規寸法に設定する円柱部を形成
したものであるから、リードギヤツプの発生及び
これによるダイ歯部と素材との焼付き、かじり等
の発生を防止できると共に、ヘリカルギアの工業
的量産が容易となる効果がある。
As described above, according to the present invention, the outer shape restraining container into which a metal material having a center hole is inserted and the die connected below the container are arranged so as to be relatively rotatable in the circumferential direction, and the central axis between the container and the die is A mold for forming a helical gear by arranging a mandrel on a line and sequentially pushing the metal material into the gap between the mandrel, the container, and the die using a punch. Accordingly, an approach part that changes to a helical gear tooth profile and a product shape part of a complete helical gear tooth profile are formed connected to this, and the diameter of the metal material is expanded on the mandrel to set the cross-sectional area necessary for forming the helical gear. In addition to forming the enlarged diameter part on the container side, there is a substantial reduction in the outer diameter in the process where the outer peripheral part of the material is gradually flow-deformed into a helical gear tooth profile by the approach part, facing the approach part of the die. Also, an inner diameter forming part is formed to reduce and deform the inner diameter of the material so that the horizontal cross-sectional area of the material is constant, and a cylindrical part is formed opposite to the product shape part of the die to set the inner diameter of the molded product to a regular dimension. Therefore, it is possible to prevent the occurrence of lead gaps and the occurrence of seizure and galling between the die teeth and the material due to this, and it is also effective in facilitating the industrial mass production of helical gears.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明に係るヘリカルギア塑性加工装
置の一例を示す断面図、第2図はその要部の拡大
断面図、第3図は金属素材を金型内に押し込んで
ヘリカルギアを押出加工する状態を示す断面図、
第4図はダイ歯部のアプローチ部の変化状態を示
す説明図、第5図は成形されたヘリカルギアの一
部切欠側面図、第6図A〜Cは本発明の実施例に
おける素材の流動変形過程の水平断面積状態を示
す説明図である。 1……金型、2……コンテナ、2a……素材拘
束用の挿入穴、3……ダイ、31……円筒穴、3
2……ヘリカルギア歯形成形用の歯部、32a…
…アプローチ部、32b……製品形状部、4……
マンドレル、43……拡径部、44……素材内径
成形部、45……円柱部。
Fig. 1 is a sectional view showing an example of a helical gear plastic processing device according to the present invention, Fig. 2 is an enlarged sectional view of the main parts thereof, and Fig. 3 is an extrusion process of a helical gear by pushing a metal material into a mold. A sectional view showing a state in which
Fig. 4 is an explanatory diagram showing the changing state of the approach portion of the die tooth portion, Fig. 5 is a partially cutaway side view of the molded helical gear, and Figs. 6 A to C are flow diagrams of the material in the embodiment of the present invention. FIG. 3 is an explanatory diagram showing the horizontal cross-sectional area state during the deformation process. 1... Mold, 2... Container, 2a... Insertion hole for material restraint, 3... Die, 31... Cylindrical hole, 3
2...Tooth portion for helical gear tooth formation, 32a...
...Approach section, 32b...Product shape section, 4...
Mandrel, 43... Expanded diameter part, 44... Material inner diameter forming part, 45... Cylindrical part.

Claims (1)

【特許請求の範囲】[Claims] 1 中心穴を有する金属素材が挿入される外形拘
束用コンテナと、このコンテナの下方に位置して
円周方向に相対回転可能に配置されたダイと、上
記コンテナとダイ内の中心軸線上に配置したマン
ドレルと、このマンドレルと上記コンテナ及びダ
イ間の隙間内に上記金属素材を順次押し込むパン
チを備え、上記ダイの内壁には、その上端部内面
から素材押出方向に行くにしたがいヘリカルギア
歯形に変化するアプローチ部及びこれに連設する
ヘリカルギア歯形の製品形状部を形成し、上記マ
ンドレルのコンテナ側には金属素材を拡径してヘ
リカルギア成形に必要な断面積を設定する拡径部
を形成すると共に、上記ダイのアプローチ部に対
向して素材外周部がアプローチ部により次第にヘ
リカルギア歯形に流動変形される過程での実質的
外径縮小量があつても素材の水平面断面積が一定
となるように素材内径を縮小変形させる内径成部
を形成し、さらに上記ダイの製品形状部に対向し
て成形品の内径を正規寸法に設定する円柱部を形
成したことを特徴とするヘリカルギアの塑性加工
装置。
1. A container for external restraint into which a metal material having a center hole is inserted, a die located below this container and arranged so as to be relatively rotatable in the circumferential direction, and arranged on the center axis of the container and the die. A punch is provided for sequentially pushing the metal material into the gap between the mandrel, the container, and the die. An approach part to be formed and a product shape part of a helical gear tooth profile connected thereto are formed, and an enlarged diameter part is formed on the container side of the mandrel to enlarge the diameter of the metal material and set the cross-sectional area necessary for forming the helical gear. At the same time, the horizontal cross-sectional area of the material remains constant even if there is a substantial reduction in the outer diameter during the process in which the outer periphery of the material faces the approach portion of the die and is gradually transformed into a helical gear tooth shape by the approach portion. The plasticity of the helical gear is characterized in that an inner diameter part is formed to reduce and deform the inner diameter of the material, and a cylindrical part is formed opposite to the product shape part of the die to set the inner diameter of the molded product to a regular dimension. Processing equipment.
JP62180687A 1987-07-20 1987-07-20 Plastic working equipment for helical gear Granted JPS6422442A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62180687A JPS6422442A (en) 1987-07-20 1987-07-20 Plastic working equipment for helical gear

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62180687A JPS6422442A (en) 1987-07-20 1987-07-20 Plastic working equipment for helical gear

Publications (2)

Publication Number Publication Date
JPS6422442A JPS6422442A (en) 1989-01-25
JPH0566220B2 true JPH0566220B2 (en) 1993-09-21

Family

ID=16087551

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62180687A Granted JPS6422442A (en) 1987-07-20 1987-07-20 Plastic working equipment for helical gear

Country Status (1)

Country Link
JP (1) JPS6422442A (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2632620B2 (en) * 1992-01-14 1997-07-23 大岡技研株式会社 Gear products
JP5109091B2 (en) * 2008-10-20 2012-12-26 中部冷間株式会社 Lock ring manufacturing method and cold forging die
JP5722971B2 (en) * 2013-09-27 2015-05-27 昭和電工株式会社 Forging method
CN105033039A (en) * 2015-07-08 2015-11-11 重庆民发汽车配件有限责任公司 Gear ring inner diameter enlarging tool

Also Published As

Publication number Publication date
JPS6422442A (en) 1989-01-25

Similar Documents

Publication Publication Date Title
JPH0525578B2 (en)
US5363714A (en) Gear product
US4542573A (en) Method of producing a hydrodynamic seal
US20100294388A1 (en) Elbow material, and production device and production method thereof
EP1625902B1 (en) Method and device for manufacturing bolt, screw rolling die used therefor, and multiple screw bolt
JP2008126231A (en) Forging apparatus and forging method
JPH0566220B2 (en)
JP2007245220A (en) Forging device
US7677073B2 (en) Method of manufacturing tooth profile part
JPH0767591B2 (en) Tool for producing hollow article and method for producing the same
JP2755716B2 (en) Forging of double row ball bearing outer ring material
JP5246588B2 (en) Gear manufacturing apparatus and method
JP3541433B2 (en) Helical pinion gear and method and apparatus for manufacturing the same
JP2002282992A (en) Gear forging apparatus
JPH0452042A (en) Plastic working device for helical gear
JP4665879B2 (en) Gear forging device and gear forging method
JPH01150427A (en) Apparatus for producing helical ring gear
JPH11147158A (en) Simultaneous formation of inner and outer gears and forming apparatus used for the same
JP2828146B2 (en) Extrusion molding method and apparatus for helical gear having shaft hole
JP4161889B2 (en) Cylindrical component, molding apparatus and molding method
JPH0452043A (en) Plastic working device for helical internal gear
JPH1110274A (en) Helical gear, production method and producing device therefor
JPH08252647A (en) Forging equipment of gear having twisted tooth
RU2016685C1 (en) Device for manufacturing articles with ring corrugations
JPH1094850A (en) Method and device for forming gear

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees