JPH0566159A - Temperature measuring device - Google Patents

Temperature measuring device

Info

Publication number
JPH0566159A
JPH0566159A JP25430891A JP25430891A JPH0566159A JP H0566159 A JPH0566159 A JP H0566159A JP 25430891 A JP25430891 A JP 25430891A JP 25430891 A JP25430891 A JP 25430891A JP H0566159 A JPH0566159 A JP H0566159A
Authority
JP
Japan
Prior art keywords
incident
light
temperature
optical fiber
optical
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP25430891A
Other languages
Japanese (ja)
Inventor
Tomotaka Takahashi
知隆 高橋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Graphtec Corp
Original Assignee
Graphtec Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Graphtec Corp filed Critical Graphtec Corp
Priority to JP25430891A priority Critical patent/JPH0566159A/en
Publication of JPH0566159A publication Critical patent/JPH0566159A/en
Pending legal-status Critical Current

Links

Landscapes

  • Measuring Temperature Or Quantity Of Heat (AREA)
  • Radiation Pyrometers (AREA)

Abstract

PURPOSE:To stabilize temperature measurement and improve the precision of temperature measurement. CONSTITUTION:In a temperature sensitive element 7 adhered to the end surface of a light emitting optical fiber 2, the wavelength transmittance of a transmitted light is changed by a temperature change. A reflecting film 8 evaporated on the back surface of the temperature sensitive element 7 reflects the emitted light from the light emitting optical fiber 2. The reflected emitted light forms an incident light and enters to two incident optical fibers 3, 4. Since the incident optical fibers 3, 4 are provided in the optical path area of the incident light, the transmitted light of the same intensity enters to the optical fibers 3, 4. The transmitted lights are collected to one by an optical binder, and received by a photodiode, and the temperature is measured by its optical quantity.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、出射用光ファイバと入
射用光ファイバとを並列に並べ感温素子を透過する出射
光を反射部材で反射させて入射用光ファイバに導入させ
る反射透過方式の温度測定装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a reflection / transmission system in which an outgoing optical fiber and an incoming optical fiber are arranged in parallel and outgoing light transmitted through a temperature sensitive element is reflected by a reflecting member and introduced into the incoming optical fiber. Temperature measuring device.

【0002】[0002]

【従来の技術】従来の反射透過方式の温度測定装置を図
に基づいて説明する。図7は従来の温度測定装置の外観
斜視図、図8は同装置による測定方法を説明するための
概念図、図9は同じく要部側断面図、図10は同じく要
部正面図である。これらの図において、2は出射用光フ
ァイバ、3は入射用光ファイバ、7はこれら両ファイバ
の端面に接合された温度変化に対して透過光波長が変化
する感温素子、8は感温素子7の背面に蒸着された反射
膜である。出射用光ファイバ2の入り口端にはLED
(発光ダイオード)が配設され、このLEDから出射さ
れた出射光Lは出射用ファイバ2を通り感温素子7内に
出射される。感温素子内に出射された出射光Lは反射膜
8で反射して入射光lとなり入射光ファイバ3内に導入
される。感温素子7内において出射光Lおよび入射光l
は温度変化に応じてその透過光波長が変化する。この透
過光波長の変化にともない、ある温度での出射光強度と
入射光強度の関係が決まってくる。したがって、入射光
ファイバ3の出口端に配設されたフォトダイオードPD
で受光される光強度を検出することにより、温度測定を
行っている。
2. Description of the Related Art A conventional reflection / transmission type temperature measuring device will be described with reference to the drawings. FIG. 7 is an external perspective view of a conventional temperature measuring device, FIG. 8 is a conceptual diagram for explaining a measuring method by the device, FIG. 9 is a side sectional view of the same, and FIG. 10 is a front view of the same. In these figures, 2 is an output optical fiber, 3 is an input optical fiber, 7 is a temperature-sensitive element in which the wavelength of transmitted light changes with temperature change, which is joined to the end faces of these fibers, and 8 is a temperature-sensitive element. 7 is a reflective film deposited on the back surface of 7. LED at the entrance end of the output optical fiber 2
A (light emitting diode) is provided, and the emitted light L emitted from this LED passes through the emitting fiber 2 and is emitted into the temperature sensitive element 7. The emitted light L emitted into the temperature sensitive element is reflected by the reflection film 8 to become incident light 1 which is introduced into the incident optical fiber 3. Outgoing light L and incident light l in the temperature sensitive element 7
The wavelength of the transmitted light changes depending on the temperature change. Along with this change in the transmitted light wavelength, the relationship between the emitted light intensity and the incident light intensity at a certain temperature is determined. Therefore, the photodiode PD arranged at the exit end of the incident optical fiber 3
The temperature is measured by detecting the intensity of light received at.

【0003】[0003]

【発明が解決しようとする課題】ところで、屈折率の異
なる媒質の境界面に入射した光線は、いわゆるスネルの
法則にしたがって屈折する。そしてその屈折角度は両者
の屈折率により決まる。出射用光ファイバ2のファイバ
コア2aから半導体ドープドガラスからなる感温素子7
内に出射した出射光Lは図9に示すように屈折角度θを
有して拡散する。この屈折角度θは、屈折率が1.59
のファイバコア2aと屈折率が1.55の半導体ドープ
ドガラスを用いた場合、18.82°となる。この屈折
角度θで拡散した出射光L2 は反射膜8に到達すると面
積αの光路領域となる。一方、この出射光L2の反射膜
8における光路領域面積αに対して、入射光l1として
入射用光ファイバ3に入射する出射光L1 の光路領域の
面積はβに相当する。したがって、出射用の光ファイバ
2から出射された出射光量に対して、入射用光ファイバ
3に入射される入射光量はきわめて少なくなり、このた
めに入射光の透過光強度は小さいものとなり、これにと
もないフォトダイオードPDで受光される透過光の感度
も小さくなり、温度測定の精度が低くなる欠点があっ
た。この欠点を補うために、出射用の光ファイバを増や
し、それに応じてLEDを増やして、出射光量を増やす
ことが提案されたが、各々のLEDの安定性によって入
射光量が大きく左右され、安定した温度測定ができない
という欠点があった。本発明は上記した従来の欠点に鑑
みなされたものであり、その目的とするところは、精度
が高く、かつ安定した温度測定が行える温度測定装置を
提供することにある。
By the way, a light ray incident on the boundary surface of a medium having a different refractive index is refracted according to the so-called Snell's law. The refraction angle is determined by the refraction indexes of both. From the fiber core 2a of the emitting optical fiber 2 to the temperature sensitive element 7 made of semiconductor-doped glass
The emitted light L emitted inward has a refraction angle θ and is diffused as shown in FIG. This refraction angle θ has a refractive index of 1.59.
When the fiber core 2a and the semiconductor-doped glass having a refractive index of 1.55 are used, the angle is 18.82 °. When the outgoing light L 2 diffused at the refraction angle θ reaches the reflective film 8, it becomes an optical path region having an area α. On the other hand, the area of the optical path region of the outgoing light L 2 in the reflection film 8 is β, which corresponds to the area of the optical path region of the outgoing light L 1 that enters the optical fiber 3 for incidence as the incoming light l 1 . Therefore, the amount of incident light incident on the incident optical fiber 3 is extremely smaller than the amount of emitted light emitted from the emitting optical fiber 2, which reduces the transmitted light intensity of the incident light. As a result, the sensitivity of the transmitted light received by the photodiode PD also decreases, and the temperature measurement accuracy decreases. In order to make up for this drawback, it has been proposed to increase the number of optical fibers for emission and accordingly increase the number of LEDs to increase the amount of emitted light. It has the drawback that it cannot measure temperature. The present invention has been made in view of the above-mentioned conventional drawbacks, and an object of the present invention is to provide a temperature measuring device with high accuracy and capable of stable temperature measurement.

【0004】[0004]

【課題を解決するための手段】この目的を達成するため
に、本発明は、並列に並べた出射用光ファイバおよび入
射用光ファイバと、これら両ファイバの端面に接合され
た温度変化に対して透過光波長が変化する感温素子と、
この感温素子の背面に配設されて前記出射光ファイバか
らの出射光を前記入射光ファイバへ入射光として導入す
る反射部材とからなり、入射光の出力の変化から温度を
測定する温度測定装置であって、前記入射光の光路領域
内に複数の入射用光ファイバを配設して、これら複数の
入射用光ファイバへ導いた複数の入射光を光結合する結
合手段を備えたものである。
In order to achieve this object, the present invention is directed to an output optical fiber and an input optical fiber arranged in parallel, and to a temperature change bonded to the end faces of these fibers. A temperature-sensitive element whose transmitted light wavelength changes,
A temperature measuring device, which is disposed on the back surface of the temperature-sensitive element and includes a reflecting member that introduces the light emitted from the emission optical fiber into the incident optical fiber as the incident light, and measures the temperature from the change in the output of the incident light. A plurality of incident optical fibers are arranged in the optical path region of the incident light, and a coupling means for optically coupling the plurality of incident lights guided to the plurality of incident optical fibers is provided. ..

【0005】[0005]

【作用】本発明においては、入射光の光路領域内に複数
の入射用光ファイバを配設してこれら複数の入射用光フ
ァイバへ導いた複数の入射光を光結合する結合手段を備
えたものであり、入射光量が多く導かれることとなる。
In the present invention, a plurality of incident optical fibers are arranged in the optical path region of the incident light, and a coupling means for optically coupling the plurality of incident light guided to the plurality of incident optical fibers is provided. Therefore, a large amount of incident light is guided.

【0006】[0006]

【実施例】以下、本発明の一実施例を図に基づいて説明
する。図1は本発明に係る温度測定装置の外観斜視図、
図2は同装置によって測定する測定方法を説明する概念
図、図3は同じく正面図、図4は従来の装置と本発明に
係る装置における入射光量の比較図である。これらの図
において、従来技術と同一の構成については同一の符号
を付し、詳細な説明は省略する。本発明の特徴とすると
ころは従来の入射用光ファイバ3の他に同一機能および
同一形状の入射用光ファイバ4を入射用光ファイバ3お
よび出射用光ファイバ2と並列に配設した点にある。こ
れら3本の光ファイバ2、3および4はスリーブ5によ
って束ねられている。そして、新たに配設した入射用光
ファイバ4は、出射用光ファイバ2からの出射光が反射
膜8で反射して入射光となった光路領域内に配設されて
いる。すなわち、入射用光ファイバ4に導入される入射
光に対応した反射膜8上の光路領域である図中β2 が出
射光の反射膜8上での光路領域であるα内に位置するよ
うに入射用光ファイバ4が配設されている。
An embodiment of the present invention will be described below with reference to the drawings. FIG. 1 is an external perspective view of a temperature measuring device according to the present invention,
FIG. 2 is a conceptual diagram for explaining a measuring method for measuring with the same device, FIG. 3 is a front view of the same, and FIG. 4 is a comparison diagram of incident light amounts in a conventional device and a device according to the present invention. In these figures, the same components as those of the conventional technique are designated by the same reference numerals, and detailed description thereof will be omitted. The feature of the present invention resides in that, in addition to the conventional incident optical fiber 3, an incident optical fiber 4 having the same function and shape is arranged in parallel with the incident optical fiber 3 and the outgoing optical fiber 2. .. These three optical fibers 2, 3 and 4 are bundled by a sleeve 5. The newly arranged incident optical fiber 4 is arranged in the optical path region where the outgoing light from the outgoing optical fiber 2 is reflected by the reflective film 8 and becomes incident light. That is, β 2 in the drawing, which is the optical path region on the reflection film 8 corresponding to the incident light introduced into the incident optical fiber 4, is positioned within α which is the optical path region on the reflection film 8 for the outgoing light. An incident optical fiber 4 is provided.

【0007】このように配設された両入射用光ファイバ
3、4には反射膜8で反射した入射光が導入される。両
入射用光ファイバ3、4はオプティカルカプラ9によっ
て1本のファイバとしてフォトダイオードPDに導かれ
る。したがって、フォトダイオードPDに導かれる入射
光の透過強度は、図4に示すように1本の入射用ファイ
バを使用した従来と比較して約2倍の感度が得られる。
図4は従来と本実施例との比較の図であり、縦軸に入射
光の光強度を横軸に温度をそれぞれ取ったものであり、
破線16は従来を、実線15が本実施例の温度変化に対
する光強度特性を示している。また、光ファイバを3本
とし、スリーブで束ねることにより、機械的強度も増す
とともに、束ねたファイバに対して感温素子を垂直に接
合し易くなるので、加工性も向上する。
The incident light reflected by the reflecting film 8 is introduced into both the incident optical fibers 3 and 4 arranged as described above. The optical fibers 3 and 4 for both incidences are guided to the photodiode PD as one fiber by the optical coupler 9. Therefore, as for the transmission intensity of the incident light guided to the photodiode PD, as shown in FIG. 4, about twice the sensitivity is obtained as compared with the conventional one using one incident fiber.
FIG. 4 is a diagram for comparison between the conventional example and this example, in which the vertical axis represents the light intensity of incident light and the horizontal axis represents temperature.
The broken line 16 shows the conventional one, and the solid line 15 shows the light intensity characteristic with respect to the temperature change of this embodiment. Further, by using three optical fibers and bundling them with a sleeve, the mechanical strength is increased, and the temperature-sensitive element is easily joined vertically to the bunched fibers, so that the workability is also improved.

【0008】図5は本発明に係る温度測定装置の第2の
実施例を示す正面図である。この実施例では、入射用光
ファイバ3、4を2本使用することについては第1の実
施例と同一である。本実施例では3本のファイバを1列
に並べ中央に出射用光ファイバ2を配置し、断面矩形状
のスリーブ20で束ねたものである。このようにするこ
とにより、ファイバの設置条件が変わったときに適宜選
択することが可能である。図6は本発明に係る温度測定
装置の第3の実施例を示す正面図である。この実施例で
は入射用光ファイバ30を6本使用して、これら入射用
光ファイバ30を出射用光ファイバ2の周囲に円環状に
配設してスリーブ31によって束ねたものである。入射
用光ファイバ30を増やしたことにより、増やしたファ
イバ30の数に比例して入射光の透過強度はそれだけ増
すと共に、ファイバ全体の機械的強度も増すこととな
る。なお、これら実施例では入射用光ファイバを2本と
6本の例を示したが、これに限定されず、入射光の光路
領域の範囲であれば適宜入射用光ファイバの数を選択し
て、必要とする入射光の光強度を得ることができる。
FIG. 5 is a front view showing a second embodiment of the temperature measuring device according to the present invention. In this embodiment, the use of two incident optical fibers 3 and 4 is the same as in the first embodiment. In this embodiment, three fibers are arranged in a row and the optical fiber 2 for emission is arranged at the center and bundled by a sleeve 20 having a rectangular cross section. By doing so, it is possible to appropriately select when the installation condition of the fiber changes. FIG. 6 is a front view showing a third embodiment of the temperature measuring device according to the present invention. In this embodiment, six incident optical fibers 30 are used, and these incident optical fibers 30 are annularly arranged around the emission optical fiber 2 and bundled by a sleeve 31. By increasing the number of the incident optical fibers 30, the transmission intensity of the incident light is increased in proportion to the increased number of the fibers 30, and the mechanical strength of the entire fiber is also increased. Although the number of the incident optical fibers is two and six in these examples, the number of the incident optical fibers is not limited to this, and the number of the incident optical fibers may be appropriately selected within the range of the optical path region of the incident light. The required light intensity of the incident light can be obtained.

【0009】[0009]

【発明の効果】以上説明したように本発明によれば、入
射光の光路領域内に複数の入射用光ファイバを配設し
て、これら複数の入射用光ファイバへ導いた複数の入射
光を光結合するようにしたので、構造が簡易でありなが
ら、入射光の光強度を増すことができ、しかもこれら入
射光はいずれも感温素子を通過したものであるので、入
射光の感度が向上する。また、入射光の光源を1つとし
ているので、光源の不安定による出射光の光量の変動が
少なく、このため入射光の光量に与える影響も少ないの
で、安定した温度測定が可能である。また、ファイバを
複数本とすることにより機械的強度が保たれると同時に
感温素子に垂直に接合することが容易となるため、加工
性においてもすぐれている等の効果がある。
As described above, according to the present invention, a plurality of incident optical fibers are arranged in the optical path region of the incident light, and a plurality of incident light guided to the plurality of incident optical fibers are provided. Since it is optically coupled, the intensity of the incident light can be increased while the structure is simple, and since all of these incident lights pass through the temperature sensitive element, the sensitivity of the incident light is improved. To do. Further, since only one light source for incident light is used, fluctuations in the light amount of the emitted light due to instability of the light source are small, and therefore the light amount of the incident light is not affected so that stable temperature measurement is possible. Further, by using a plurality of fibers, the mechanical strength can be maintained, and at the same time, it becomes easy to join the temperature-sensitive element vertically, and therefore, the workability is also excellent.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明に係る温度測定装置の第1の実施例の外
観斜視図である。
FIG. 1 is an external perspective view of a first embodiment of a temperature measuring device according to the present invention.

【図2】本発明に係る温度測定装置の第1の実施例によ
る測定方法を説明する概念図である。
FIG. 2 is a conceptual diagram illustrating a measuring method according to a first embodiment of a temperature measuring device according to the present invention.

【図3】本発明に係る温度測定装置の第1の実施例の要
部正面図である。
FIG. 3 is a front view of the essential portions of the first embodiment of the temperature measuring device according to the present invention.

【図4】従来の装置と本発明に係る装置における入射光
量の比較図である。
FIG. 4 is a comparison diagram of the amount of incident light in the conventional device and the device according to the present invention.

【図5】本発明に係る温度測定装置の第2の実施例の正
面図である。
FIG. 5 is a front view of a second embodiment of the temperature measuring device according to the present invention.

【図6】本発明に係る温度測定装置の第3の実施例の正
面図である。
FIG. 6 is a front view of a third embodiment of the temperature measuring device according to the present invention.

【図7】従来の温度測定装置の外観斜視図である。FIG. 7 is an external perspective view of a conventional temperature measuring device.

【図8】従来の温度測定装置による測定方法を説明する
ための概念図である。
FIG. 8 is a conceptual diagram for explaining a measuring method using a conventional temperature measuring device.

【図9】従来の温度測定装置の要部側断面図である。FIG. 9 is a side sectional view of a main part of a conventional temperature measuring device.

【図10】従来の温度測定装置の要部正面図である。FIG. 10 is a front view of a main part of a conventional temperature measuring device.

【符号の説明】[Explanation of symbols]

2 出射用光ファイバ 3 入射用光ファイバ 4 入射用光ファイバ 7 感温素子 8 反射膜 9 オプティカルカプラ 30 入射用光ファイバ 2 Optical fiber for emission 3 Optical fiber for incidence 4 Optical fiber for incidence 7 Thermosensitive element 8 Reflective film 9 Optical coupler 30 Optical fiber for incidence

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 並列に並べた出射用光ファイバおよび入
射用光ファイバと、これら両ファイバの端面に接合され
た温度変化に対して透過光波長が変化する感温素子と、
この感温素子の背面に配設されて前記出射光ファイバか
らの出射光を前記入射光ファイバへ入射光として導入す
る反射部材とからなり、入射光の出力の変化から温度を
測定する温度測定装置において、前記入射光の光路領域
内に複数の入射用光ファイバを配設して、これら複数の
入射用光ファイバへ導いた複数の入射光を光結合する結
合手段を備えたことを特徴とする温度測定装置。
1. An outgoing optical fiber and an incoming optical fiber arranged in parallel, and a temperature sensitive element which is joined to the end faces of these fibers and whose transmitted light wavelength changes with temperature change.
A temperature measuring device, which is disposed on the back surface of the temperature-sensitive element and includes a reflecting member that introduces the light emitted from the emission optical fiber into the incident optical fiber as the incident light, and measures the temperature from the change in the output of the incident light. In the above, a plurality of incident optical fibers are arranged in the optical path region of the incident light, and a coupling means for optically coupling the plurality of incident lights guided to the plurality of incident optical fibers is provided. Temperature measuring device.
JP25430891A 1991-09-06 1991-09-06 Temperature measuring device Pending JPH0566159A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP25430891A JPH0566159A (en) 1991-09-06 1991-09-06 Temperature measuring device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP25430891A JPH0566159A (en) 1991-09-06 1991-09-06 Temperature measuring device

Publications (1)

Publication Number Publication Date
JPH0566159A true JPH0566159A (en) 1993-03-19

Family

ID=17263192

Family Applications (1)

Application Number Title Priority Date Filing Date
JP25430891A Pending JPH0566159A (en) 1991-09-06 1991-09-06 Temperature measuring device

Country Status (1)

Country Link
JP (1) JPH0566159A (en)

Similar Documents

Publication Publication Date Title
US4475789A (en) Optical fiber power tap
US4381137A (en) Optical fiber mode separation systems
US4213677A (en) Light coupling and branching device using light focusing transmission body
US3756688A (en) Metallized coupler for optical waveguide light source
US5399876A (en) Optical point level sensor with lens
US6249626B1 (en) Multimode fiber optical power monitoring tap for optical transmission systems
US9971109B1 (en) Optical element with light-splitting function
US5666448A (en) Variable splitting optical coupler
US4325638A (en) Electro-optical distance measuring apparatus
EP0079944B1 (en) Fiber optic interferometer
SU1179402A1 (en) Smoke transducer
JPS6111637A (en) Liquid body sensor
JPS63132139A (en) Liquid refractive index meter
JPH0566159A (en) Temperature measuring device
KR100361441B1 (en) tap coupler
US6041150A (en) Multipass cavity sensor for measuring a tissue-equivalent radiation dose
JP2001174655A (en) Element for bi-directional communication optical module and its inspecting method
TWM572463U (en) Optical fiber module
JPS57194324A (en) Optical temperature measuring device
SU1425473A1 (en) Temperature-sensitive element
JPH05107123A (en) Device and method for measuring temperature
JPH0258677B2 (en)
SU1755123A1 (en) Fiber-optics refractometer
JP2003202262A (en) Optical monitor
JPH02171629A (en) Light waveguide type temperature sensor