JPH05107123A - Device and method for measuring temperature - Google Patents
Device and method for measuring temperatureInfo
- Publication number
- JPH05107123A JPH05107123A JP3297785A JP29778591A JPH05107123A JP H05107123 A JPH05107123 A JP H05107123A JP 3297785 A JP3297785 A JP 3297785A JP 29778591 A JP29778591 A JP 29778591A JP H05107123 A JPH05107123 A JP H05107123A
- Authority
- JP
- Japan
- Prior art keywords
- light
- temperature
- transmitted
- fibers
- receiving means
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 238000000034 method Methods 0.000 title claims abstract description 14
- 239000013307 optical fiber Substances 0.000 claims abstract description 27
- 238000002834 transmittance Methods 0.000 claims description 16
- 230000005540 biological transmission Effects 0.000 claims description 8
- 239000000835 fiber Substances 0.000 abstract description 27
- 239000011521 glass Substances 0.000 abstract description 11
- 108091008695 photoreceptors Proteins 0.000 abstract 3
- 238000010586 diagram Methods 0.000 description 9
- 238000001228 spectrum Methods 0.000 description 9
- 238000009529 body temperature measurement Methods 0.000 description 4
- 238000012886 linear function Methods 0.000 description 4
- 230000031700 light absorption Effects 0.000 description 3
- 230000003287 optical effect Effects 0.000 description 3
- 230000008878 coupling Effects 0.000 description 2
- 238000010168 coupling process Methods 0.000 description 2
- 238000005859 coupling reaction Methods 0.000 description 2
- 238000009827 uniform distribution Methods 0.000 description 2
- 230000007423 decrease Effects 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
Landscapes
- Photometry And Measurement Of Optical Pulse Characteristics (AREA)
- Radiation Pyrometers (AREA)
- Measuring Temperature Or Quantity Of Heat (AREA)
Abstract
Description
【0001】[0001]
【産業上の利用分野】本発明は、温度変化によって透過
する光の透過波長を変化させる感温素子を用いて温度を
測定する温度測定装置および測定方法に関する。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a temperature measuring device and a measuring method for measuring a temperature by using a temperature sensitive element which changes a transmission wavelength of light transmitted by a temperature change.
【0002】[0002]
【従来の技術】従来のこの種の温度測定装置および測定
方法を図に基づいて説明する。図7は従来の温度測定装
置の外観図、図8は同装置による測定方法の概念図であ
る。これらの図において、AおよびBは2本の光ファイ
バを示し、ファイバAはLED(発光ダイオード)から
出射される出射光を感温素子16および反射膜18から
なる温度センサ15に導く出射用のファイバであり、温
度センサ15に導かれた光は反射膜18で反射されて入
射用の光ファイバB内に導かれフォトダイオードPDで
受光される。このような構成において、感温素子16か
らなる温度センサ15は、図9に示すように、温度
T1、T2、T3 と変化するのに対して光吸収端波長が変
化する。通常は、温度の上昇にともない長波長側へ光吸
収端波長が移動する。したがって、この光吸収端波長が
LEDから出射される光のスペクトルの中に含まれるよ
うに選択されていれば、温度センサ15からの透過光強
度は温度の上昇とともに減少する。そこで、温度センサ
15からの透過光の強さの変化をフォトダイオードPD
で検出することにより、温度を算出することができる。2. Description of the Related Art A conventional temperature measuring apparatus and measuring method of this type will be described with reference to the drawings. FIG. 7 is an external view of a conventional temperature measuring device, and FIG. 8 is a conceptual diagram of a measuring method by the device. In these drawings, A and B represent two optical fibers, and the fiber A is for emitting light emitted from an LED (light emitting diode) to a temperature sensor 15 including a temperature sensitive element 16 and a reflective film 18. Light that is a fiber and is guided to the temperature sensor 15 is reflected by the reflection film 18, guided into the optical fiber B for incidence, and received by the photodiode PD. In such a structure, as shown in FIG. 9, the temperature sensor 15 including the temperature sensitive element 16 changes in temperature at T 1 , T 2 , and T 3 while the light absorption edge wavelength changes. Normally, the light absorption edge wavelength moves to the longer wavelength side as the temperature rises. Therefore, if this light absorption edge wavelength is selected so as to be included in the spectrum of the light emitted from the LED, the transmitted light intensity from the temperature sensor 15 decreases as the temperature rises. Therefore, the change in the intensity of the transmitted light from the temperature sensor 15 is detected by the photodiode PD.
The temperature can be calculated by detecting with.
【0003】図10は感温素子を用いて温度を測定する
従来の測定方法の第2の例である。この例では、周波数
の異なる2つの発光ダイオードLED1、LED2からの
出射光をファイバA1、A2からオプティカルカプラ20
により1つにまとめて、温度センサ15に導き、温度セ
ンサ15を透過させた後、入射光としてファイバB内に
導き分光器21により波長分光させて2つのフォトダイ
オードPD1、PD2に受光させる。フォトダイオードP
D1 、フォトダイオードPD2 に受光された透過光の強
さを比較してこの比較値から温度測定を行っている。FIG. 10 shows a second example of a conventional measuring method for measuring temperature using a temperature sensitive element. In this example, the light emitted from the two light emitting diodes LED 1 and LED 2 having different frequencies is transmitted from the fibers A 1 and A 2 to the optical coupler 20.
Are led together to the temperature sensor 15 and transmitted through the temperature sensor 15, then guided into the fiber B as incident light and wavelength-split by the spectroscope 21 to be received by the two photodiodes PD 1 and PD 2 . .. Photodiode P
D 1 and the intensity of the transmitted light received by the photodiode PD 2 are compared and the temperature is measured from this comparison value.
【0004】[0004]
【発明が解決しようとする課題】しかるに、上記した第
1の例においては、ファイバA、温度センサ15および
ファイバBの相互間の結合効率が変化し、そのためにフ
ォトダイオードPDへの入射光量が変化したとき、その
変化と温度センサの温度変化による入射光量の変化とを
区別することができないという欠点があった。また、光
源のLED等の発光素子は温度の変化によって発光波長
が変化し、それによっても温度センサ15の透過率が変
動してしまうという欠点があった。また、第2の例では
2つの異なった波長入力の2つのLEDを使用してそれ
ぞれの透過光の比をとる方法によっているため、結合効
率が変化しても、2波長間の相対的な出射光量の比は変
化しないため、結果的に入射光量の比に影響を及ぼさず
に温度測定ができるという第1の例の欠点を一部補える
ものの、2つのLEDの安定性によっては、2つのLE
D間の相対的な出射光量が変動するため、これにともな
い入射光量の比にも変動が生じて温度測定が不確実にな
るという欠点があった。本発明は上記した従来の欠点に
鑑みなされたものであり、その目的とするところは、各
種の条件においても安定した温度測定が可能で、かつ精
度の高い温度測定ができる温度測定装置および測定方法
を提供することにある。However, in the above-mentioned first example, the coupling efficiency between the fiber A, the temperature sensor 15, and the fiber B changes, and therefore the amount of light incident on the photodiode PD changes. In that case, there is a drawback that the change cannot be distinguished from the change in the incident light amount due to the temperature change of the temperature sensor. Further, the light emitting element such as the LED of the light source has a drawback that the emission wavelength changes due to the temperature change, and the transmittance of the temperature sensor 15 also changes due to the change. In addition, in the second example, two LEDs with two different wavelength inputs are used to obtain the ratio of transmitted light, so that even if the coupling efficiency changes, the relative emission between the two wavelengths is performed. Since the ratio of the light amounts does not change, this partially compensates for the disadvantage of the first example in which the temperature can be measured without affecting the ratio of the incident light amounts, but depending on the stability of the two LEDs, two LEs can be used.
Since the relative amount of emitted light between D varies, the ratio of the amount of incident light also varies accordingly, which causes a drawback that the temperature measurement becomes uncertain. The present invention has been made in view of the above-mentioned conventional drawbacks, and an object thereof is to provide a temperature measuring device and a measuring method capable of performing stable temperature measurement even under various conditions and capable of highly accurate temperature measurement. To provide.
【0005】[0005]
【課題を解決するための手段】この目的を達成するため
に、本発明に係る温度測定装置は、発光手段が一端面に
配設された出射用光ファイバと、この出射用光ファイバ
の他端面に接合された温度変化によって光の透過波長を
変化させる感温素子と光を透過させる部材と透過した光
を反射させる反射膜とからなる温度センサと、前記反射
膜で反射した透過光のうち感温素子を透過した透過光を
入射させる第1の入射用の光ファイバと、光を透過させ
る部材を透過した透過光を入射させる第2の光ファイバ
と、これら第1および第2の光ファイバの一端側に配設
されこれら光ファイバ内を透過した透過光を受光する第
1および第2の受光手段と、これら光ファイバと受光手
段との間に配設され受光する透過光の所定の狭帯幅の波
長のみ通過させるフィルタと、前記第1および第2の受
光手段での受光量を比較する比較手段とを備えたもので
ある。また、本発明に係る温度測定方法は、発光手段か
ら発光された光を温度変化によって透過する光の透過波
長を変化させる感温素子内を透過させて第1の受光手段
に受光させると同時に、前記発光手段から発光された光
を透過させる部材内を透過させて第2の受光手段に受光
させ、これら第1および第2の受光手段に受光させる光
をフィルタを通過させて所定の狭帯幅の波長のみとし、
これら第1および第2の受光手段に受光された光量の比
較値を温度に対する透過率として温度を算出するもので
ある。In order to achieve this object, a temperature measuring apparatus according to the present invention comprises an emitting optical fiber having a light emitting means disposed on one end surface, and the other end surface of the emitting optical fiber. A temperature sensor consisting of a temperature sensitive element that changes the transmission wavelength of light due to a change in temperature due to a temperature change, a member that transmits light, and a reflective film that reflects the transmitted light, and a sensor of the transmitted light reflected by the reflective film. A first optical fiber for incidence which makes transmitted light transmitted through the temperature element incident, a second optical fiber which makes transmitted light transmitted through a member which transmits light enter, and a first optical fiber of these first and second optical fibers. First and second light receiving means arranged on one end side for receiving the transmitted light transmitted through these optical fibers, and a predetermined narrow band of the transmitted light received between the optical fibers and the light receiving means. Pass only wavelengths of width And filter, in which a comparison means for comparing the amount of light received by said first and second light receiving means. Further, the temperature measuring method according to the present invention allows the light emitted from the light emitting means to be transmitted through the temperature sensitive element for changing the transmission wavelength of the light transmitted by the temperature change and to be received by the first light receiving means, at the same time, The second light receiving means transmits the light emitted from the light emitting means and the second light receiving means receives the light, and the light received by the first and second light receiving means passes through the filter to have a predetermined narrow band width. Only the wavelength of
The temperature is calculated by using the comparison value of the amounts of light received by the first and second light receiving means as the transmittance with respect to the temperature.
【0006】[0006]
【作用】本発明においては、発光源である発光手段が1
つでよく、かつこの発光手段からの光を感温素子内を透
過させた光と感温素子内を透過させない光とに区分し、
さらにこれら透過光を狭帯幅の波長のみ透過させてこれ
ら2つの光の透過量の比較値から温度を算出するように
したので、発光手段の発光波長に変動が生じても両者の
透過量は同じような割合で変動する。また、感温素子内
を透過させた光の透過率の変化は温度に対して直線的な
関数の関係となる。In the present invention, the light emitting means as the light emitting source is
The light from the light emitting means can be divided into light that is transmitted through the temperature sensitive element and light that is not transmitted through the temperature sensitive element.
Further, since the transmitted light is transmitted only in the wavelength of the narrow band and the temperature is calculated from the comparison value of the transmission amounts of these two lights, even if the emission wavelength of the light emitting means changes, the transmission amount of both of them is reduced. Varies at a similar rate. Further, the change in the transmittance of the light transmitted through the temperature sensitive element has a linear function relationship with respect to the temperature.
【0007】[0007]
【実施例】以下、本発明の一実施例を図に基づいて説明
する。図1は本発明に係る温度測定装置の外観斜視図、
図2は同じく側面図、図3は同じく正面図、図4は同装
置による測定方法を説明するための概念図である。これ
らの図において、3本のファイバA、B、CのうちAは
出射用の光ファイバ、B、Cは入射用の光ファイバで、
これら両入射用光ファイバB、Cは同一の径で形成され
ている。これら光ファイバA、B、Cの端面に接合され
た温度センサ5は、感温素子6、ガラス7およびこれら
感温素子6、ガラス7の背面に蒸着された反射膜8とか
らなる。温度センサ5は感温素子6とガラス7とで上下
に分割され、出射用の光ファイバAは端面の中心線がこ
の分割線に位置するように配設され、2本の入射用光フ
ァイバのうち、ファイバBは感温素子6の領域に、また
ファイバCはガラス7の領域にそれぞれ位置するように
配設されている。An embodiment of the present invention will be described below with reference to the drawings. FIG. 1 is an external perspective view of a temperature measuring device according to the present invention,
2 is a side view of the same, FIG. 3 is a front view of the same, and FIG. 4 is a conceptual diagram for explaining a measuring method by the same apparatus. In these figures, A of three fibers A, B and C is an optical fiber for emission, B and C are optical fibers for incidence,
Both of the incident optical fibers B and C are formed with the same diameter. The temperature sensor 5 bonded to the end faces of the optical fibers A, B, and C is composed of a temperature sensitive element 6, a glass 7, and a reflective film 8 deposited on the back surface of the temperature sensitive element 6 and the glass 7. The temperature sensor 5 is vertically divided by the temperature sensitive element 6 and the glass 7, and the optical fiber A for emission is arranged so that the center line of the end face is located on this division line. Among them, the fiber B is arranged in the region of the temperature sensitive element 6, and the fiber C is arranged in the region of the glass 7.
【0008】出射用の光ファイバAの入り口端には、図
5(a)に示すような波長スペクトルを有する発光素子
であるLEDが設けられており、このLEDから出射さ
れた出射光は光ファイバA内から温度センサ5に導かれ
る。温度センサ5内に導かれた出射光は、感温素子6内
を透過して反射膜8において光路領域αを経て反射して
ファイバBに入射する入射光と、ガラス7を透過して反
射膜8において光路領域βを経て反射してファイバCに
入射する入射光とにそれぞれ導かれる。なお、ファイバ
Aからの出射光は等分布光で、ファイバB、Cへの入射
光も等分布光となる。ファイバB、Cの出口端には光の
波長帯λのうち、ある所定の狭帯幅の波長帯であるλF
のみを通過させる干渉フィルタ11と、この干渉フィル
タ11を通過した光を受光する受光素子であるフォトダ
イオードPD1 、フォトダイオードPD2がそれぞれ設
けられている。フォトダイオードPD1、フォトダイオ
ードPD2 で受光された光は電圧変換されて、比較回路
によりこれら電圧値が比較される。An LED, which is a light emitting element having a wavelength spectrum as shown in FIG. 5A, is provided at the entrance end of the optical fiber A for emission, and the emitted light emitted from this LED is the optical fiber. It is guided to the temperature sensor 5 from inside A. The outgoing light guided into the temperature sensor 5 passes through the temperature sensitive element 6, is reflected by the reflective film 8 via the optical path region α, and enters the fiber B, and the outgoing light is transmitted through the glass 7 and the reflective film. In FIG. 8, the incident light is reflected through the optical path region β and is incident on the fiber C. The emitted light from the fiber A is a uniform distribution light, and the incident light on the fibers B and C is also a uniform distribution light. At the exit ends of the fibers B and C, λ F, which is a wavelength band with a predetermined narrow band width of the light wavelength band λ
An interference filter 11 that allows only light to pass therethrough, and a photodiode PD 1 and a photodiode PD 2 that are light receiving elements that receive the light that has passed through this interference filter 11 are provided. The light received by the photodiodes PD 1 and PD 2 is voltage-converted, and these voltage values are compared by the comparison circuit.
【0009】以下、測定方法を説明する。図5(a)に
示すような波長スペクトルを有するLEDから発光され
た光はファイバA内を通過して出射光として温度センサ
5内に導かれる。温度センサ5内に導かれた出射光はそ
れぞれ感温素子6内を透過してファイバBに導かれる入
射光と、ガラス7内を透過してファイバCに導かれる2
つの入射光となる。ファイバCに入射した入射光はガラ
ス7内を透過したものであり温度による透過光変調を殆
ど受けず、図5(b)に示すようにLEDスペクトルと
同一のスペクトル波形を有する。すなわち、ファイバC
を通過する光は比較の基準となる参照光となる。一方、
ファイバBの入射光はそのときの温度で感温素子6内に
おいて透過光変調を受けた光で図5(c)に示すスペク
トル波形となる。そして、これら入射光は、それぞれ干
渉フィルタ11を通過することによりλF を中心とした
狭帯幅の波長として図5(d)、(e)に示すようなス
ペクトル波形の出力となり、フォトダイオードPD1お
よびフォトダイオードPD2で受光される。したがっ
て、フォトダイオードPD1で受光される光の出力は
P1、フォトダイオードPD2で受光される光の出力P2
となる。ここで、比較値P2/P1が干渉フィルタ11を
通過した波長での透過率とみなされ、感温素子6が温度
による透過率変動したときのある温度Tでの波長λF に
おける透過率と考えられる。The measuring method will be described below. Light emitted from an LED having a wavelength spectrum as shown in FIG. 5A passes through the fiber A and is guided into the temperature sensor 5 as outgoing light. The outgoing light guided into the temperature sensor 5 respectively passes through the temperature sensitive element 6 and is guided to the fiber B, and the outgoing light is transmitted through the glass 7 and guided to the fiber C 2.
It becomes one incident light. The incident light incident on the fiber C is transmitted through the glass 7 and hardly undergoes transmission light modulation due to temperature, and has the same spectrum waveform as the LED spectrum as shown in FIG. 5B. That is, the fiber C
The light that passes through serves as a reference light that serves as a reference for comparison. on the other hand,
The incident light on the fiber B is the light that is transmitted-light modulated in the temperature sensitive element 6 at the temperature at that time, and has a spectrum waveform shown in FIG. 5C. Then, each of these incident lights becomes an output of a spectrum waveform as shown in FIGS. 5D and 5E as a wavelength of a narrow band centering on λ F by passing through the interference filter 11, and the photodiode PD The light is received by 1 and the photodiode PD 2 . Therefore, the output of the light received by the photodiode PD 1 is P 1 , and the output of the light received by the photodiode PD 2 is P 2
Becomes Here, the comparison value P 2 / P 1 is regarded as the transmittance at the wavelength passed through the interference filter 11, and the transmittance at the wavelength λ F at the temperature T when the temperature sensitive element 6 changes in the transmittance due to the temperature. it is conceivable that.
【0010】したがって、波長λFにおける感温素子の
温度特性が判れば、波長λFでの光の透過率特性が判
り、これに基づいてλF における透過率(P2/P1)を
測定すれば温度が算出できる。図6は感温素子の温度特
性を調べて、これに基づいてλF における透過率と温度
との関係を表した図である。同図における特徴は、温度
変化に対する透過率のP2/P1が直線的な関数の関係と
なっている点にある。これは透過率を狭帯幅の波長λF
の出力の比較によって算出するようにしたことによるも
のである。このように透過率比較値と温度とが直線的な
関数の関係となっていることから、測定されるP2 /P
1から算出される温度はきわめて精度の高いものとな
る。また、透過率を感温素子内を透過した光とガラスを
透過した光の光量の相対的な比較値で行ったことによ
り、発光手段が1つであるので、発光手段の発光が不安
定となっても比較値の変動はない。Accordingly, knowing the temperature characteristics of the temperature-sensitive element at the wavelength lambda F, understand transmittance characteristics of light at the wavelength lambda F, measuring the transmittance (P 2 / P 1) in lambda F based on this Then the temperature can be calculated. FIG. 6 is a diagram showing the relationship between the transmittance and the temperature at λ F , based on the temperature characteristics of the temperature sensitive element investigated. The characteristic in the figure is that P 2 / P 1 of the transmittance with respect to temperature change has a linear function relationship. This is the transmittance of the narrow band wavelength λ F
This is because it is calculated by comparing the outputs of Since the transmittance comparison value and the temperature have a linear function relationship as described above, the measured P 2 / P
The temperature calculated from 1 is extremely accurate. In addition, since the transmittance is determined by a relative comparison value of the amounts of light that has passed through the temperature sensitive element and the light that has passed through the glass, since there is only one light emitting means, the light emission of the light emitting means is unstable. However, there is no change in the comparison value.
【0011】[0011]
【発明の効果】以上説明したように、本発明によれば透
過率を感温素子内を透過した光と光を透過させる部材を
透過した光の狭帯幅の波長の出力の比較値によっておこ
なうようにしたので、温度変化に対する比較値が直線的
な関数の関係となり、この測定される比較値から算出さ
れる温度はきわめて精度の高いものとなる。また、発光
手段が1つであるので、発光手段の発光が不安定となっ
ても比較値の変動はなく、このため安定した温度測定が
できる効果がある。As described above, according to the present invention, the transmittance is determined by the comparison value of the outputs of the narrow band wavelengths of the light transmitted through the temperature sensitive element and the light transmitted through the light transmitting member. As a result, the comparison value with respect to the temperature change has a linear function relationship, and the temperature calculated from the measured comparison value is extremely accurate. Further, since the number of light emitting means is one, even if the light emission of the light emitting means becomes unstable, the comparison value does not fluctuate, so that there is an effect that a stable temperature measurement can be performed.
【図1】本発明に係る温度測定装置の外観斜視図であ
る。FIG. 1 is an external perspective view of a temperature measuring device according to the present invention.
【図2】本発明に係る温度測定装置の側面図である。FIG. 2 is a side view of the temperature measuring device according to the present invention.
【図3】本発明に係る温度測定装置の正面図である。FIG. 3 is a front view of a temperature measuring device according to the present invention.
【図4】本発明に係る温度測定装置による測定方法を説
明するための概念図である。FIG. 4 is a conceptual diagram for explaining a measuring method by the temperature measuring device according to the present invention.
【図5】本発明に係る温度測定装置における光のスペク
トル波形の変化を示す図である。FIG. 5 is a diagram showing changes in the spectrum waveform of light in the temperature measuring device according to the present invention.
【図6】本発明に係る温度測定装置における感温素子の
波長λF での透過率と温度との関係を示した図である。FIG. 6 is a diagram showing the relationship between the transmittance and the temperature at the wavelength λ F of the temperature sensitive element in the temperature measuring device according to the present invention.
【図7】従来の温度測定装置の第1の例を示す外観斜視
図である。FIG. 7 is an external perspective view showing a first example of a conventional temperature measuring device.
【図8】従来の温度測定装置の第1の例による測定方法
を説明するための概念図である。FIG. 8 is a conceptual diagram for explaining a measuring method according to a first example of a conventional temperature measuring device.
【図9】一般的な感温素子の特性を示すスペクトル波形
図である。FIG. 9 is a spectrum waveform diagram showing characteristics of a general temperature sensitive element.
【図10】従来の温度測定装置の第2の例による測定方
法を説明する概念図である。FIG. 10 is a conceptual diagram illustrating a measuring method according to a second example of a conventional temperature measuring device.
5 温度センサ 6 感温素子 7 ガラス 8 反射膜 11 干渉フィルタ 5 Temperature Sensor 6 Temperature Sensing Element 7 Glass 8 Reflective Film 11 Interference Filter
Claims (2)
ファイバと、この出射用光ファイバの他端面に接合され
温度変化によって光の透過波長を変化させる感温素子と
光を透過させる部材と透過した光を反射させる反射膜と
からなる温度センサと、前記反射膜で反射した透過光の
うち感温素子を透過した透過光を入射させる第1の入射
用の光ファイバと、光を透過させる部材を透過した透過
光を入射させる第2の光ファイバと、これら第1および
第2の光ファイバの一端側に配設されこれら光ファイバ
内を透過した透過光を受光する第1および第2の受光手
段と、これら光ファイバと受光手段との間に配設され受
光する透過光の所定の狭帯幅の波長のみ通過させるフィ
ルタと、前記第1および第2の受光手段での受光量を比
較する比較手段とを備えたことを特徴とする温度測定装
置。1. An emitting optical fiber having a light emitting means disposed on one end face thereof, and a temperature sensitive element which is joined to the other end face of the emitting optical fiber and changes a transmission wavelength of the light according to a temperature change to transmit the light. A temperature sensor including a member and a reflective film that reflects the transmitted light; a first optical fiber for incidence that transmits the transmitted light that has passed through the temperature sensitive element among the transmitted light that is reflected by the reflective film; A second optical fiber that allows the transmitted light that has passed through the member that transmits the light to enter, and first and second optical fibers that are disposed on one end sides of the first and second optical fibers and that receive the transmitted light that has passed through these optical fibers. 2 light receiving means, a filter arranged between the optical fiber and the light receiving means and passing only the wavelength of a predetermined narrow band of the transmitted light to be received, and the amount of light received by the first and second light receiving means. The comparison means to compare A temperature measuring device characterized by being provided.
よって透過する光の透過波長を変化させる感温素子内を
透過させて第1の受光手段に受光させると同時に、前記
発光手段から発光された光を透過させる部材内を透過さ
せて第2の受光手段に受光させ、これら第1および第2
の受光手段に受光させる光をフィルタを通過させて所定
の狭帯幅の波長のみとし、これら第1および第2の受光
手段に受光された光量の比較値を温度に対する透過率と
して温度を算出することを特徴とする温度測定方法。2. The light emitted from the light emitting means is transmitted through the temperature sensitive element for changing the transmission wavelength of the light transmitted by the temperature change and is received by the first light receiving means, and at the same time, the light is emitted from the light emitting means. The second light-receiving means to receive the first light and the second light.
The light to be received by the light receiving means is passed through the filter to have only a wavelength of a predetermined narrow band width, and the temperature is calculated by using the comparison value of the amounts of light received by the first and second light receiving means as the transmittance with respect to the temperature. A temperature measuring method characterized by the above.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP3297785A JPH05107123A (en) | 1991-10-18 | 1991-10-18 | Device and method for measuring temperature |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP3297785A JPH05107123A (en) | 1991-10-18 | 1991-10-18 | Device and method for measuring temperature |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH05107123A true JPH05107123A (en) | 1993-04-27 |
Family
ID=17851142
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP3297785A Pending JPH05107123A (en) | 1991-10-18 | 1991-10-18 | Device and method for measuring temperature |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH05107123A (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2007309722A (en) * | 2006-05-17 | 2007-11-29 | Fujikura Ltd | Optical fiber sensor |
-
1991
- 1991-10-18 JP JP3297785A patent/JPH05107123A/en active Pending
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2007309722A (en) * | 2006-05-17 | 2007-11-29 | Fujikura Ltd | Optical fiber sensor |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US4703175A (en) | Fiber-optic sensor with two different wavelengths of light traveling together through the sensor head | |
US5318362A (en) | Non-contact techniques for measuring temperature of radiation-heated objects | |
US4671651A (en) | Solid-state optical temperature measuring device | |
US5446280A (en) | Split-spectrum self-referenced fiber optic sensor | |
JPH07325049A (en) | Detector of foreign matter material | |
KR102285677B1 (en) | Optical sensor | |
JP3971844B2 (en) | Optical device, photoelectric switch, fiber type photoelectric switch, and color identification sensor | |
GB2077421A (en) | Displacement sensing | |
US4865416A (en) | Optical sensing arrangements | |
US4195269A (en) | Two-way single fiber optical communication system | |
GB2115175A (en) | Fibre optics head featuring core spacing to block specular reflection | |
JPS6111637A (en) | Liquid body sensor | |
JPH05107123A (en) | Device and method for measuring temperature | |
GB2166237A (en) | Apparatus for measuring reflectivities of resonator facets of semiconductor laser | |
JPS62150117A (en) | Optical converter | |
JPH05107100A (en) | Method and device for detecting interface | |
US5349181A (en) | Fiber optic chemical sensor having specific channel connecting design | |
JPS61225627A (en) | Photometer | |
US20050094685A1 (en) | Simple and compact laser wavelength locker | |
US4947038A (en) | Process and arrangement for optically measuring a physical quantity | |
JPH04283683A (en) | Optoelectronic distance meter | |
JPS5861408A (en) | Transmission type optical coupler | |
JPS586431A (en) | Temperature measuring method using optical fiber | |
RU2272259C1 (en) | Fiber-optic thermometer | |
JPS5924397B2 (en) | light wave distance meter |