JPH056603B2 - - Google Patents

Info

Publication number
JPH056603B2
JPH056603B2 JP61271482A JP27148286A JPH056603B2 JP H056603 B2 JPH056603 B2 JP H056603B2 JP 61271482 A JP61271482 A JP 61271482A JP 27148286 A JP27148286 A JP 27148286A JP H056603 B2 JPH056603 B2 JP H056603B2
Authority
JP
Japan
Prior art keywords
breakwater
soft ground
ground
present
soft
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP61271482A
Other languages
Japanese (ja)
Other versions
JPS63125715A (en
Inventor
Koichiro Ogura
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
UNYUSHO DAIYON KOWAN KENSETSU KYOKUCHO
Original Assignee
UNYUSHO DAIYON KOWAN KENSETSU KYOKUCHO
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by UNYUSHO DAIYON KOWAN KENSETSU KYOKUCHO filed Critical UNYUSHO DAIYON KOWAN KENSETSU KYOKUCHO
Priority to JP61271482A priority Critical patent/JPS63125715A/en
Publication of JPS63125715A publication Critical patent/JPS63125715A/en
Publication of JPH056603B2 publication Critical patent/JPH056603B2/ja
Granted legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A10/00TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE at coastal zones; at river basins
    • Y02A10/11Hard structures, e.g. dams, dykes or breakwaters
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Revetment (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

〔産業上の利用分野〕 本発明は、海底の軟弱地盤上に防波堤を構築す
る方法に関する。 〔従来の技術〕 我が国における防波堤は、比較的強固な地盤上
に石を敷き並べたマウンドの上に砂を中詰したコ
ンクリート函からなるケーソンを設置する混成式
防波堤が一般的である。 この混成式防波堤はケーソンを滑り出させよう
とする波力に対しては、ケーソン底面とマウンド
の摩擦力で抵抗し、ケーソンを転倒させようとす
る波力モーメントに対してはケーソン部の重量に
よるモーメントで抵抗するものである。 この為、前記混成式防波堤は重力式防波堤と呼
ばれているが、防波堤が安定する為には必然的に
大きな重量が必要となり、これを支えるマウンド
及び基礎地盤もそれに応じた支持力を有すること
が必要になる。従つて、岩盤あるいは砂地盤のよ
うに地盤の支持力強度が充分な場合は前記混成式
防波堤の施工は問題が少ないが、粘土質地盤等の
軟弱地盤の場合、支持力強度が不足するので、円
弧滑り等の破壊が生じることがあり、事前の支持
強合を増す方策が採られている。 この地盤改良工法には代表的なものとして床
堀・置換工法、深層混合処理工法、サンドコンパ
クシヨンパイル工法等がある。 〔発明が解決しようとする問題点〕 前記深層混合処理工法は、石灰やセメントのよ
うな安定剤を軟弱地盤中に注入混合し、これらの
化学的合結作用を利用して軟弱粘土性土を強化す
る方法である。前記サンドコンパクシヨン工法は
軟弱地盤中に振動あるいは衝撃荷重を用いて砂を
注入し、直径の大きい圧縮された砂杭(サンドパ
イル)を造成して地盤の強化を図る方法である。 前記混成式防波堤を建設する場合は、前記床
堀・置換工法、深層混合処理工法やサンドコンパ
クシヨンパイル工法が多く採用されているが、両
者とも第10図に示すように軟弱地盤10の深層
部11までの地盤改良を行い、その上にマウンド
11を築成し、ケーソン13を載置するようにな
つているので、建設期間が長くかかる他、建設工
費も非常に高額となる等の問題点があつた。 本発明はこのような事情に鑑みてなされたもの
で、軟弱地盤に防波堤を建設する場合において、
軟弱地盤の持つ粘着力を有効に利用し、建設期間
が短くてしかも建設工費の安い軟弱地盤に防波堤
を構築する方法を提供することを目的とする。 〔問題点を解決するための手段〕 前記目的に沿う本発明に係る軟弱地盤に防波堤
を構築する方法は、下部の接地板部と該接地板部
に一体的に連接された防波板部とからなる鉄筋コ
ンクリート製薄板構造の防波堤を予め製作し、設
置しようとする軟弱地盤上まで該防波堤を運搬し
て、該軟弱地盤上に直置きし、該軟弱地盤と前記
接地板部とを付着させて防波堤を構築するように
して構成されている。 ここに、前記防波板部は前記接地板部の中央部
に立設されているもの、2組の防波板部が前記接
地板部の前後に平行に立設されているもの、前記
地接板部の底には凸部が形成されているもの、前
記接地板部の底には透水性膜材が貼着されている
ものあるいは前記接地板部の底には楔部が形成さ
れているもの、いずれにおいては本発明は適用さ
れるものである。 〔作用〕 本発明においては、使用する防波堤は、下部の
接地板部と該接地板部に一体的に連接された防波
板部とからなる鉄筋コンクリート製薄板構造とな
つているので、全体的に軽量化される。従つて、
軟弱地盤上においても圧密沈下が少なく、円弧滑
り等が生じ難い。 そして、この防波堤を設置しようとする軟弱地
盤上まで該防波堤を運搬してその場に直置きして
いるので、軟弱地盤と前記防波堤の接地板部とを
付着し、これによつて該防波堤を軟弱地盤に固定
保持できる。 〔実施例〕 続いて、添付した図面を参照しつつ本発明を具
体化した実施例につき説明し、本発明の理解に供
する。 ここに、第1図は本発明の第1の実施例を適用
した軟弱地盤着底式防波堤の側面図、第2図は本
発明の第2の実施例を適用した軟弱地盤着底式防
波堤の側断面図、第3図は本発明の第3の実施例
を適用した軟弱地盤着底式防波堤の側断面図、第
4図は本発明の第4の実施例を適用した軟弱地盤
着底式防波堤の側断面図、第5図は本発明の第5
の実施例を適用した軟弱地盤着底式防波堤の側断
面図、第6図は本発明の第6の実施例を適用した
軟弱地盤着底式防波堤の側断面図、第7図は本発
明の第7の実施例を適用した軟弱地盤着底式防波
堤の側断面図、第8図は本発明の第8の実施例を
適用した軟弱地盤着底式防波堤の側断面図であ
る。 第1図に示すように本発明の第1の実施例に係
る軟弱地盤への防波堤構築方法に使用する軟弱地
盤着底式防波堤15は、鉄筋コンクリート製であ
つて、下部の接地板部16と該接地板部16に立
設される防波板部17とを有して構成され、全体
が軽量に形成されている。 そして、その全体の長さは前記接地板部16の
1.5倍程度となつている(以下の、実施例におい
ても同じ)が、この長さは波高、水深等によつて
変わるのであるから本発明はこの数字に限定され
るものではない。 使用にあつては、軟弱地盤18上の複数の前記
軟弱地盤着底式防波堤15を連接して配設する
が、接地板部16の接地面積は広くしかも全体重
量も軽いので単位面積当たりの荷重も小さいの
で、軟弱地盤18が沈下しにくい。 そして、この接地板部16の底の広い部分が軟
弱地盤18に付着状態で接していて、しかも接地
板部16の面積は広く更には全体重量も軽いの
で、図に矢印で示すように波の力を受けた場合、
図の破線で示すように転倒しようとするが接地板
部16の底が軟弱地盤18に粘着しているので転
倒に対して抵抗力が働く。 次に、第2図に示す本発明の第2の実施例に係
る軟弱地盤への防波堤構築方法に使用する軟弱地
盤着底式防波堤19について説明すると、該軟弱
地盤着底式防波堤19においては接地板部20の
上部の前後に防波板部21,22が取付られてい
る。なお、同一の構成要素については同一の番号
を付してその詳しい説明を省略する。 これによつて使用材料が増して全体の重量は増
すが、該防波板部21,22の端部近傍を板23
によつて連結することによつて内部に函体を形成
させて浮力を発生させることができ、大型起重機
等を用いずに曳航据付が可能となり、据付後は適
当個所に設けられた栓を抜いて内部に水を入れる
ことになる。 第3図に示す本発明の第3の実施例に係る軟弱
地盤への防波堤構築方法に使用する軟弱地盤着底
式防波堤24について説明すると、一方の防波板
部25には円形あるいは角形の開口部26が形成
されており、これによつて内部に水が流入し、波
の持つエネルギーを消費させることが可能であ
る。このように適当に開口部26を形成させたも
のであつても曳航時にはこれを塞ぐことによつて
浮力を利用することが可能となる。 第4図に本発明の第4の実施例に係る軟弱地盤
への防波堤構築方法に使用する軟弱地盤着底式防
波堤27を示すが、図に示すように両側部の防波
板部28,29が接地板部30の両端部に設けら
れている。これによつて図の矢印によつて示すよ
うに波の鉛直向きの力はなくなる。 しかも、大きな浮力が得られるので水深の浅い
海底においても据付が可能となる。 次に、第5図に本発明の第5の実施例に係る軟
弱地盤への防波堤構築方法に使用する軟弱地盤着
底式防波堤31を示すが、図に示すように下部の
接地板部32の底の両側に凸状物33,34が形
成されている。このように形成することによつて
底面の付着抵抗を向上させることができる他、凸
状部による受働土圧によつて滑動に抵抗すること
ができる。 第6図に本発明の第6の実施例に係る軟弱地盤
への防波堤構築方法に使用する軟弱地盤着底式防
波堤35を示すが、図に示すように下部の接地板
部36の周辺にスカート部37が取付られてお
り、滑動に対する抵抗力は前記軟弱地盤着底式防
波堤31と同様であるが、この軟弱地盤着底式防
波堤35においては接地板部36の周辺部におけ
る洗堀を防止する効果がある。 第7図に本発明の第7の実施例に係る軟弱地盤
への防波堤構築方法に使用する軟弱地盤着底式防
波堤38を示すが、図に示すように接地板部16
の下部には透水性膜材39が貼付けられている。
粘着力は地盤の表層強度によつて決まるが、表層
強度は圧密が進行すると共に大きくなるので、前
記透水性膜材39を貼付けることによつて圧密を
促進させることができる。なお、該透水性膜材は
透水性わえ圧密によつて排水される水が逃げ易
く、圧密促進に優れ地盤の安定性に効果がある。 第8図に本発明の第8の実施例に係る軟弱地盤
への防波堤構築方法に使用する軟弱地盤着底式防
波堤40が示されているが、図に示すように接地
板部41の下部が楔状となつている。 前記の如く第1〜第4及び第7の発明の実施例
に係る軟弱地盤着底式防波堤15,19,24,
27,38においては、接地板部の底が平面であ
るので、据付時に着地と同時に滑り出す現象があ
り、これを防止するのに前記の如く接地板部41
を楔形とするのが好ましい。 〔実施例〕 本発明に係る軟弱地盤着底式防波堤の作用効果
を確認するため、第9図に示すような軟弱地盤着
底式防波堤42を用意し、水平張力を作用させて
最大水平抵抗力、移動量等の測定を行つた。 前記軟弱地盤着底式防波堤42は接地板部43
(12B×0.75H×12.5Lm)の中央に防波板部を構
成する直立壁44(6.45Hm)を設け、これを保
持する為にバツトレス45,46が左右対象に
3.8m間隔で設けられている。そして、接地板部
43には左右夫々6ケ所づつ鋼杭建込も用の孔4
7,48を設けた。 下部の軟弱地盤49は土の比上Gs2.65、水中重
量ρt1.65t/m3、含水比ω40〜60%、組成は砂分10
〜25%、シルト分50〜65%、粘土分20〜35%であ
つた。 なお、前記軟弱地盤49は〜の4種類あつ
て〜は鉛直載荷重が異なる試験であつて、
は前記孔47,48に鋼杭50,51を使用した
ものであり、その結果を第1表に示す。
[Industrial Application Field] The present invention relates to a method of constructing a breakwater on soft ground on the seabed. [Prior Art] Breakwaters in Japan are generally hybrid breakwaters in which a caisson consisting of a concrete box filled with sand is installed on a mound of stones laid out on relatively strong ground. This hybrid breakwater resists the wave force that tends to cause the caisson to slide out, using the frictional force between the bottom of the caisson and the mound, and resists the wave force moment that attempts to overturn the caisson due to the weight of the caisson. It resists by moment. For this reason, the above-mentioned hybrid breakwater is called a gravity breakwater, but in order for the breakwater to be stable, it inevitably requires a large amount of weight, and the mound and foundation ground that support it must also have a corresponding supporting capacity. is required. Therefore, if the ground has sufficient bearing capacity, such as rock or sand, there are few problems in constructing the hybrid breakwater, but in the case of soft ground, such as clayey ground, the bearing capacity is insufficient. Fractures such as arcuate sliding may occur, so measures are being taken to increase support reinforcement in advance. Typical examples of this ground improvement method include the floor trench/replacement method, deep mixing method, and sand compaction pile method. [Problems to be solved by the invention] The above-mentioned deep mixing method injects and mixes stabilizers such as lime and cement into soft ground, and uses their chemical binding action to stabilize soft clay soil. This is a way to strengthen it. The sand compaction method is a method in which sand is injected into soft ground using vibration or impact loading to create compressed sand piles with a large diameter to strengthen the ground. When constructing the above-mentioned hybrid breakwater, the above-mentioned floor trench/replacement method, deep mixed treatment method, and sand compaction pile method are often adopted, but all of these methods are used in the deep part of the soft ground 10 as shown in Fig. 10. Since the ground is improved up to Mound 11, Mound 11 is built on top of it, and Caisson 13 is placed on top of it, the construction period is long and the construction costs are extremely high. It was hot. The present invention was made in view of these circumstances, and when constructing a breakwater on soft ground,
To provide a method for constructing a breakwater on soft ground that effectively utilizes the adhesive force of soft ground, requires a short construction period, and is inexpensive. [Means for Solving the Problems] A method for constructing a breakwater on soft ground according to the present invention in accordance with the above-mentioned object includes: a lower ground plate portion; a breakwater portion integrally connected to the ground plate portion; A breakwater with a thin plate structure made of reinforced concrete is manufactured in advance, and the breakwater is transported to the soft ground where it is to be installed, placed directly on the soft ground, and the ground plate portion is attached to the soft ground. It is constructed to construct a breakwater. Here, the above-mentioned wave-break plate part is installed in the central part of the above-mentioned ground plate part, the case where two sets of wave-break plate parts are installed in parallel in front and behind the above-mentioned ground plate part, and the above-mentioned ground plate part. A convex portion is formed on the bottom of the ground plate portion, a water-permeable membrane material is attached to the bottom of the ground plate portion, or a wedge portion is formed on the bottom of the ground plate portion. The present invention is applicable to any of the above. [Function] In the present invention, the breakwater used has a reinforced concrete thin plate structure consisting of a lower ground plate portion and a breakwater plate portion integrally connected to the ground plate portion. Lighter. Therefore,
There is little consolidation settlement even on soft ground, and arcuate slips are less likely to occur. Since the breakwater is transported to the soft ground where it is to be installed and placed directly on the spot, the soft ground and the ground plate part of the breakwater are attached, and this allows the breakwater to be installed. Can be fixed and held on soft ground. [Examples] Next, examples embodying the present invention will be described with reference to the attached drawings to provide an understanding of the present invention. Here, FIG. 1 is a side view of a soft ground type breakwater to which the first embodiment of the present invention is applied, and FIG. 2 is a side view of a soft ground type breakwater to which the second embodiment of the present invention is applied. 3 is a side sectional view of a soft ground type breakwater to which the third embodiment of the present invention is applied, and Figure 4 is a side sectional view of a soft ground type breakwater to which the fourth embodiment of the present invention is applied. The side sectional view of the breakwater, FIG. 5, is the fifth embodiment of the present invention.
FIG. 6 is a side sectional view of a soft ground type breakwater to which the sixth embodiment of the present invention is applied, and FIG. 7 is a side sectional view of a soft ground type breakwater to which the sixth embodiment of the present invention is applied. FIG. 8 is a side sectional view of a soft ground type breakwater to which the seventh embodiment of the present invention is applied. FIG. 8 is a side sectional view of a soft ground type breakwater to which the eighth embodiment of the present invention is applied. As shown in FIG. 1, a soft ground type breakwater 15 used in the method of constructing a breakwater on soft ground according to the first embodiment of the present invention is made of reinforced concrete, and has a lower ground plate part 16 and a ground plate part 16. It is comprised of a ground plate part 16 and a wave-proof plate part 17 which is installed upright, and the whole is formed to be lightweight. The entire length of the ground plate portion 16 is
The length is approximately 1.5 times (the same applies to the following examples), but since this length varies depending on wave height, water depth, etc., the present invention is not limited to this number. In use, a plurality of the above-mentioned soft ground type breakwaters 15 are arranged in a connected manner on the soft ground 18, but since the contact area of the ground plate portion 16 is wide and the overall weight is light, the load per unit area is reduced. The soft ground 18 is also small, so it is difficult for the soft ground 18 to sink. The wide part of the bottom of the ground plate 16 is in contact with the soft ground 18, and the area of the ground plate 16 is large and the overall weight is light, so the waves are If you receive force,
As shown by the broken line in the figure, the robot tries to fall, but since the bottom of the ground plate portion 16 is stuck to the soft ground 18, a resistance force acts against the fall. Next, the soft ground type breakwater 19 used in the method of constructing a breakwater on soft ground according to the second embodiment of the present invention shown in FIG. 2 will be explained. Wavebreak plate parts 21 and 22 are attached to the front and back of the upper part of the main plate part 20. Note that the same components are given the same numbers and detailed explanation thereof will be omitted. This increases the amount of material used and the overall weight;
By connecting them together, a box can be formed inside and buoyancy can be generated, making it possible to install by towing without using a large hoist, and after installation, the plugs installed at appropriate locations can be removed. This will allow water to enter inside. To explain the soft ground type breakwater 24 used in the method of constructing a breakwater on soft ground according to the third embodiment of the present invention shown in FIG. 3, one breakwater plate part 25 has a circular or square opening. A section 26 is formed, which allows water to flow into the interior and consume the energy of the waves. Even if the opening 26 is appropriately formed in this manner, it is possible to utilize the buoyancy by closing the opening 26 during towing. FIG. 4 shows a soft ground type breakwater 27 used in the method of constructing a breakwater on soft ground according to the fourth embodiment of the present invention, and as shown in the figure, breakwater plate parts 28, 29 on both sides are provided at both ends of the ground plate portion 30. This eliminates the vertical force of the wave, as shown by the arrow in the figure. In addition, the large buoyancy allows installation even on shallow seabeds. Next, FIG. 5 shows a soft ground type breakwater 31 used in the method of constructing a breakwater on soft ground according to the fifth embodiment of the present invention. Projections 33 and 34 are formed on both sides of the bottom. By forming it in this way, it is possible to improve the adhesion resistance of the bottom surface, and also to resist sliding due to the passive earth pressure exerted by the convex portion. FIG. 6 shows a soft ground type breakwater 35 used in the method of constructing a breakwater on soft ground according to the sixth embodiment of the present invention. 37 is attached, and its resistance to sliding is similar to that of the soft ground type breakwater 31, but in this soft ground type breakwater 35, scouring in the peripheral area of the ground plate part 36 is prevented. effective. FIG. 7 shows a soft ground type breakwater 38 used in the method of constructing a breakwater on soft ground according to the seventh embodiment of the present invention.
A water-permeable membrane material 39 is pasted to the lower part of.
The adhesive force is determined by the surface layer strength of the ground, and since the surface layer strength increases as consolidation progresses, consolidation can be promoted by pasting the water permeable membrane material 39. The water-permeable membrane material is water-permeable and allows water drained during consolidation to easily escape, and is excellent in promoting consolidation and is effective in stabilizing the ground. FIG. 8 shows a soft ground type breakwater 40 used in the method of constructing a breakwater on soft ground according to the eighth embodiment of the present invention. As shown in the figure, the lower part of the ground plate part 41 is It is wedge-shaped. As described above, the soft ground type breakwaters 15, 19, 24 according to the first to fourth and seventh embodiments of the invention,
In Nos. 27 and 38, since the bottom of the ground plate portion is flat, there is a phenomenon that the ground plate portion 41 starts to slide at the same time as landing on the ground during installation.
is preferably wedge-shaped. [Example] In order to confirm the effects of the soft ground type breakwater according to the present invention, a soft ground type breakwater 42 as shown in Fig. 9 was prepared, and horizontal tension was applied to the breakwater to increase the maximum horizontal resistance. , the amount of movement, etc. were measured. The soft ground type breakwater 42 has a ground plate portion 43.
(12B x 0.75H x 12.5Lm) is provided with an upright wall 44 (6.45Hm) in the center that constitutes a breakwater plate, and to hold it, buttresses 45 and 46 are symmetrical on the left and right sides.
They are placed at 3.8m intervals. The ground plate part 43 has holes 4 for installing steel piles in 6 places on each left and right sides.
7,48 were set up. The soft ground 49 at the bottom has a soil ratio of Gs 2.65, underwater weight ρt 1.65t/m 3 , water content ω 40-60%, and a composition of sand 10.
~25%, silt content 50-65%, and clay content 20-35%. In addition, the soft ground 49 has four types of ~, and ~ is a test with different vertical loads,
In this case, steel piles 50 and 51 were used in the holes 47 and 48, and the results are shown in Table 1.

【表】【table】

〔発明の効果〕〔Effect of the invention〕

本発明に係る軟弱地盤への防波堤構築方法は以
上の説明からも明らかなように、薄板構造によつ
て構成しているので、全体として重量を軽減で
き、従つて軟弱地盤の上に載置しても沈下、傾斜
等が少ない。 また、下部に接地板部が設けられ軟弱地盤に付
着力でもつて接合させているので、受ける波に対
して該軟弱地盤着底式防波堤が移動してりあるい
は傾斜したりすることがない。 更にはその建設に際しては軟弱地盤着底式防波
堤上に載置するだけで工事が完了するので、工事
期間の著しい短縮、工費の軽減を図ることができ
ることとなつた。 そして、その移動も極めて容易で、不必要な場
合は取外し、別の場合にその軟弱地盤着底式防波
堤を使用して新たな防波堤の建設ができることと
なつた。
As is clear from the above explanation, the method of constructing a breakwater on soft ground according to the present invention is constructed using a thin plate structure, so the overall weight can be reduced, and therefore it can be installed on soft ground. However, there is little subsidence or slope. Further, since the ground plate portion is provided at the lower part and is adhesively bonded to the soft ground, the soft ground type breakwater does not move or tilt due to the waves it receives. Furthermore, the construction can be completed by simply placing it on the soft ground type breakwater, which makes it possible to significantly shorten the construction period and reduce construction costs. It was also extremely easy to move, and it became possible to remove it when unnecessary and use it to construct a new breakwater in other cases.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の第1の実施例を適用した軟弱
地盤着底式防波堤の側面図、第2図は本発明の第
2の実施例を適用した軟弱地盤着底式防波堤の側
断面図、第3図は本発明の第3の実施例を適用し
た軟弱地盤着底式防波堤の側断面図、第4図は本
発明の第4の実施例を適用した軟弱地盤着底式防
波堤の側断面図、第5図は本発明の第5の実施例
を適用した軟弱地盤着底式防波堤の側断面図、第
6図は本発明の第6の実施例を適用した軟弱地盤
着底式防波堤の側断面図、第7図は本発明の第7
の実施例を適用した軟弱地盤着底式防波堤の側断
面図、第8図は本発明の第8の実施例を適用した
軟弱地盤着底式防波堤の側断面図、第9図は本発
明の作用効果を確認する為に行つた実験状態を示
す側面図、第10図は従来例に係る軟弱地盤に建
設した防波堤の側面図である。 〔符号の説明〕、15,19,24,27,3
1,35,38,40,42……軟弱地盤着底式
防波堤、16,20,30,32,36,41,
43……接地板部、17,21,22,25,2
8,29、……防波板部、18,49……軟弱地
盤、26……開口部、33,34……凸状物、3
7……スカート部、39……透水性膜材、44…
…直立壁(防波板部)。
FIG. 1 is a side view of a soft ground type breakwater to which the first embodiment of the present invention is applied, and FIG. 2 is a side sectional view of a soft ground type breakwater to which the second embodiment of the present invention is applied. , FIG. 3 is a side sectional view of a soft ground type breakwater to which the third embodiment of the present invention is applied, and FIG. 4 is a side sectional view of a soft ground type breakwater to which the fourth embodiment of the present invention is applied. 5 is a side sectional view of a soft ground type breakwater to which the fifth embodiment of the present invention is applied, and Figure 6 is a side sectional view of a soft ground type breakwater to which the sixth embodiment of the present invention is applied. FIG. 7 is a side sectional view of the seventh embodiment of the present invention.
FIG. 8 is a side sectional view of a soft ground type breakwater to which the eighth embodiment of the present invention is applied, and FIG. 9 is a side sectional view of a soft ground type breakwater to which the eighth embodiment of the present invention is applied. FIG. 10 is a side view showing the state of an experiment conducted to confirm the operation and effect, and FIG. 10 is a side view of a conventional breakwater constructed on soft ground. [Explanation of symbols], 15, 19, 24, 27, 3
1, 35, 38, 40, 42...Soft ground type breakwater, 16, 20, 30, 32, 36, 41,
43...Ground plate section, 17, 21, 22, 25, 2
8, 29, ... Wavebreak plate part, 18, 49 ... Soft ground, 26 ... Opening, 33, 34 ... Convex object, 3
7...Skirt part, 39...Water permeable membrane material, 44...
...Upright wall (breakwater plate part).

Claims (1)

【特許請求の範囲】 1 下部の接地板部と該接地板部に一体的に連接
された防波板部とからなる鉄筋コンクリート製薄
板構造の防波堤を予め製作し、設置しようとする
軟弱地盤上まで該防波堤を運搬して、該軟弱地盤
上に直置きし、該軟弱地盤と前記接地板部とを付
着させて防波堤を構築することを特徴とする軟弱
地盤への防波堤構築方法。 2 接地板部の底には凸部が設けられている請求
項第1項記載の軟弱地盤への防波堤構築方法。
[Scope of Claims] 1. A breakwater with a reinforced concrete thin plate structure consisting of a lower ground plate portion and a breakwater plate portion integrally connected to the ground plate portion is manufactured in advance, and extends over the soft ground where it is to be installed. A method for constructing a breakwater on soft ground, comprising transporting the breakwater, placing it directly on the soft ground, and attaching the ground plate portion to the soft ground to construct the breakwater. 2. The method for constructing a breakwater on soft ground according to claim 1, wherein a convex portion is provided on the bottom of the ground plate portion.
JP61271482A 1986-11-13 1986-11-13 Soft ground-landing type breakwater Granted JPS63125715A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61271482A JPS63125715A (en) 1986-11-13 1986-11-13 Soft ground-landing type breakwater

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61271482A JPS63125715A (en) 1986-11-13 1986-11-13 Soft ground-landing type breakwater

Publications (2)

Publication Number Publication Date
JPS63125715A JPS63125715A (en) 1988-05-28
JPH056603B2 true JPH056603B2 (en) 1993-01-27

Family

ID=17500658

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61271482A Granted JPS63125715A (en) 1986-11-13 1986-11-13 Soft ground-landing type breakwater

Country Status (1)

Country Link
JP (1) JPS63125715A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007321498A (en) * 2006-06-02 2007-12-13 Port & Airport Research Institute Artificial tideland and its preparation method

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5763445B2 (en) * 2011-06-28 2015-08-12 株式会社エスイー Breakwater structures and breakwaters

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4918164A (en) * 1972-06-10 1974-02-18
JPS5911004A (en) * 1982-07-12 1984-01-20 Oki Electric Ind Co Ltd Dielectric filter common device

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4918164A (en) * 1972-06-10 1974-02-18
JPS5911004A (en) * 1982-07-12 1984-01-20 Oki Electric Ind Co Ltd Dielectric filter common device

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007321498A (en) * 2006-06-02 2007-12-13 Port & Airport Research Institute Artificial tideland and its preparation method
JP4701412B2 (en) * 2006-06-02 2011-06-15 独立行政法人港湾空港技術研究所 Artificial tidal flat and its construction method

Also Published As

Publication number Publication date
JPS63125715A (en) 1988-05-28

Similar Documents

Publication Publication Date Title
CA1043581A (en) Quay structure
JP5787172B2 (en) Lifting method of breakwater
JPH0756140B2 (en) Retaining wall structure construction method and retaining wall structure
CN108999142A (en) The construction method of dome rectangular light-duty caisson and pile foundation combined type deep water breakwater
KR101380782B1 (en) Eco-composite type steel temporary construction and construction method thereof
JPH056603B2 (en)
JP2002121754A (en) Method for constructing underwater foundation
CN208965494U (en) The rectangular light-duty caisson of dome and pile foundation combined type breakwater
JPH0144852B2 (en)
CN207727558U (en) A kind of pile foundation quality control system
CN110656576A (en) Pier structure and construction method thereof
JP3682667B2 (en) Ground formation structure
CN109024470A (en) The rectangular light-duty caisson of dome and pile foundation combined type breakwater
JPH0536044Y2 (en)
CN220927806U (en) Anti foundation structure that sinks
CN217150381U (en) Earthquake-resistant building foundation
CN213143027U (en) Composite foundation structure and building thereof
JP2007169992A (en) Bearing power increasing method in extension or reconstruction of upper structure of existing building
CN215518843U (en) Steel-pipe pile structure of steel case roof beam
JPH06287965A (en) Foundation for weak ground, and method for constructing foundation in weak ground
CN210216052U (en) Composite structure for treating high-fill foundation containing soft soil layer
JP2021152313A (en) Embankment reinforcement structure and embankment structure
CN209636721U (en) A kind of shore protection of reinforced concrete structure
KR100487140B1 (en) Y-shaped structure element, construction methods of deep foundations and retaining structures by using the Y-shaped structure element
JP2868339B2 (en) Lightweight embankment and embankment creation method

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term