JPH0566012B2 - - Google Patents

Info

Publication number
JPH0566012B2
JPH0566012B2 JP3033679A JP3367991A JPH0566012B2 JP H0566012 B2 JPH0566012 B2 JP H0566012B2 JP 3033679 A JP3033679 A JP 3033679A JP 3367991 A JP3367991 A JP 3367991A JP H0566012 B2 JPH0566012 B2 JP H0566012B2
Authority
JP
Japan
Prior art keywords
semiconductor
annealing
hydrogen
electrode
semiconductors
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP3033679A
Other languages
Japanese (ja)
Other versions
JPH04211130A (en
Inventor
Shunpei Yamazaki
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Semiconductor Energy Laboratory Co Ltd
Original Assignee
Semiconductor Energy Laboratory Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Semiconductor Energy Laboratory Co Ltd filed Critical Semiconductor Energy Laboratory Co Ltd
Priority to JP3033679A priority Critical patent/JPH04211130A/en
Publication of JPH04211130A publication Critical patent/JPH04211130A/en
Publication of JPH0566012B2 publication Critical patent/JPH0566012B2/ja
Granted legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy

Landscapes

  • Photovoltaic Devices (AREA)
  • Recrystallisation Techniques (AREA)

Description

【発明の詳现な説明】[Detailed description of the invention]

【0001】[0001]

【産業䞊の利甚分野】 本発明は半導䜓装眮の䜜
補方法に関するものである。
TECHNICAL FIELD The present invention relates to a method for manufacturing a semiconductor device.

【0002】 本発明は半導䜓の䞀衚面に密接しお透
明電極を圢成するずずもに、この透明電極を構成
する元玠たたはこの電極内の、䟡の型添加
物たたは、䟡の型添加物の䞀郚をその内偎
の半導䜓䞭にレヌザたたはそれず同様の匷光゚ネ
ルギを照射するこずにより添加するずずもに、そ
の領域での半導䜓のシヌト抵抗を䞋げ、さらに電
極ずドヌプさせた領域の半導䜓ずを実質的に䞀䜓
化するこずを目的ずしおいる。
[0002] The present invention forms a transparent electrode in close contact with one surface of a semiconductor, and also includes elements constituting this transparent electrode or di- or trivalent P-type additives or pentavalent or hexavalent N-type additives in this electrode. A portion of the additive is added into the semiconductor inside the semiconductor by irradiating it with a laser or similar strong light energy, lowering the sheet resistance of the semiconductor in that region, and further increasing the contact between the electrode and the semiconductor in the doped region. The aim is to substantially integrate the

【0003】 本発明は族元玠を䞻成分ずする非単
結晶半導䜓ずその半導䜓の䞊面たたは䞋面に蚭け
られた添加物を含有する酞化物たたは窒化物を䞻
成分ずする透明電極ずを有する半導䜓装眮に察
し、非単結晶半導䜓を構成する元玠たたは添加物
ずが互いにドヌプしあい半導䜓ず電極ずを䞀䜓化
たたは実質的に䞀䜓化させるこずを目的ずしおい
る。
[0003] The present invention provides a semiconductor having a non-single crystal semiconductor mainly composed of a group 4 element and a transparent electrode mainly composed of an oxide or nitride containing an additive provided on the upper or lower surface of the semiconductor. The purpose of the device is to mutually dope elements or additives constituting a non-single-crystal semiconductor so that the semiconductor and the electrode are integrated or substantially integrated.

【0004】[0004]

【埓来の技術】 埓来より半導䜓装眮に発生した
再結合䞭心たたは準䜍に察しお熱アニヌルがその
密床を枛少させる方法ずしお知られおいる。これ
は300〜700℃の枩床における氎玠たたは䞍掻性ガ
ス䞭におけるアニヌル埐熱により、半導䜓特
に単結晶半導䜓たたはこの䞊郚に絶瞁ゲむト型電
解効果半導䜓装眮等のゲむト絶瞁物を蚭けたいわ
ゆるMIS構造金属−絶瞁物特に酞化珪玠−半導
䜓特に珪玠の半導䜓装眮においお、界面の遅い
準䜍を盞殺したりたたは単結晶半導䜓䞭の栌子歪
を陀去しおいた。
2. Description of the Related Art Conventionally, thermal annealing has been known as a method for reducing the density of recombination centers or levels generated in a semiconductor device. This is done by annealing (heat slowing) in hydrogen or inert gas at a temperature of 300 to 700°C to produce semiconductors, especially single crystal semiconductors, or so-called MIS structures in which a gate insulator such as an insulated gate field-effect semiconductor device is provided on top of the semiconductor. In semiconductor devices (metal-insulator, especially silicon oxide-semiconductor, especially silicon), slow levels at the interface are canceled out or lattice strain in a single crystal semiconductor is removed.

【0005】 たた高枩アニヌルずしお、700〜1200
℃䟋えば1000℃により単結晶半導䜓䞭にホり玠
(B)、リン(P)、砒玠As等を泚入し、その埌の
アニヌルにより、この泚入により発生した無定型
状態をもずあ぀た劂く単結晶化するこずが知られ
おいた。
[0005] Also, as high temperature annealing, 700 to 1200
℃For example, boron is added to a single crystal semiconductor at 1000℃.
It has been known that by implanting (B), phosphorus (P), arsenic (As), etc., and subsequent annealing, the amorphous state generated by this implantation can be transformed into a single crystal as if it were warm.

【0006】 しかしこれらのいずれにおいおも、そ
の基本思想においおはより単結晶化するこずによ
りその結晶䞭の䞍察結合手たたはベむカンシ空
穎を消滅させるこずを前提ずしおいるものであ
る。
[0006] However, in all of these, the basic idea is to eliminate dangling bonds or vacancies in the crystal by making it more monocrystalline.

【0007】 本発明はかかる埓来より知られた熱ア
ニヌル方法ではなく、レヌザ光たたはそれず同様
の匷光゚ネルギ以䞋総称しお−アニヌルずい
うを半導䜓に加え、その結果半導䜓特に半導䜓
衚面たたはその近傍の半導䜓をキナアせんずした
ものである。
[0007] The present invention does not involve such a conventionally known thermal annealing method, but instead applies laser light or similar intense light energy (hereinafter collectively referred to as L-annealing) to a semiconductor, and as a result, the semiconductor surface or its surface is heated. This is intended to cure nearby semiconductors.

【0008】 さらに本発明はかかる−アニヌルが
単結晶よりも非単結晶に察しお有効であり、か぀
この非単結晶即ちCVD法等の方法により基板䞊
に圢成された倚結晶たたはアモルフアス半導䜓た
たはグロヌ攟電法、プラズマCVD法等により圢
成された氎玠を含有したアモルフアスたたは結晶
粒埄が10〜100Åの埮小埄を有する倚結晶に察し
お特に有効である。
[0008] Furthermore, the present invention provides that such L-annealing is more effective for non-single crystals than for single crystals, and for non-single crystals, that is, polycrystalline or amorphous semiconductors or amorphous semiconductors formed on a substrate by a method such as a CVD method. It is particularly effective for hydrogen-containing amorphous amorphous formed by glow discharge method, plasma CVD method, etc. or polycrystal having a microscopic crystal grain size of 10 to 100 Å.

【0009】[0009]

【発明が解決しようずする課題】 かかる非単結
晶半導䜓はきわめお倚数の䞍察結合手を䞀般に有
しおいるため、䞍玔物が1019〜1021cm-3の倚量に
ドヌプされた実質的に導䜓ずしお甚いる堎合、た
たはかかる非単結晶半導䜓䞭にその被膜の圢成ず
同時にその䞍察接合手ず氎玠ずを結合させお䞭和
させるこずにより半導䜓ずしお甚いる堎合が知ら
れおいる。しかし前者に関しおは、その䞍玔物の
量を1020cm-3〜50原子ず倚量にドヌプするずそ
の䞍玔物が析出し、いわゆる偏析をおこし、䞍玔
物の塊を半導䜓䞭に発生させ、電気的に䜕等掻性
にならなくな぀おしたう。即ち、その半導䜓䞭で
の掻性床半導䜓䞭のたたは型に掻性にな぀
た量半導䜓䞭に混入しおいる䞍玔物の量がき
わめお0.1〜10ず䜎くな぀おした぀た。たた他
方、氎玠がドヌプされた非単結晶半導䜓にあ぀お
は、その系に電極を圢成したりさらに䜎い枩床で
のアニヌル300〜700℃を行うず、その半導䜓䞭の
氎玠は氎玠化物䟋えばSi−結合より遊離し、半
導䜓䞭より倖ぞH2ずしお攟出されおしたい、熱
アニヌルによりかえ぀お再結合䞭心の密床が倧き
くな぀おした぀た。
[Problems to be Solved by the Invention] Since such non-single crystal semiconductors generally have an extremely large number of dangling bonds, they are essentially conductors heavily doped with impurities of 10 19 to 10 21 cm -3 . It is known to use the non-single crystal semiconductor as a semiconductor by bonding the unpaired junction with hydrogen and neutralizing it at the same time as forming a film in such a non-single crystal semiconductor. However, regarding the former, if the impurity is doped in a large amount (10 20 cm -3 to 50 atomic %), the impurity will precipitate, causing so-called segregation, and a lump of impurity will be generated in the semiconductor, resulting in no electrical activity. It becomes difficult to become. That is, the activity in the semiconductor (the amount of P or N type active in the semiconductor/the amount of impurities mixed in the semiconductor) has become extremely low, at 0.1 to 10%. On the other hand, in the case of a non-single crystal semiconductor doped with hydrogen, if an electrode is formed on the system or annealing is performed at a lower temperature of 300 to 700°C, the hydrogen in the semiconductor becomes a hydride such as Si- It was liberated from H bonds and released from the semiconductor as H 2 , and the density of recombination centers increased due to thermal annealing.

【0010】[0010]

【課題を解決するための手段】 本発明はかかる
欠点を陀去したもので、半導䜓䞭にその固溶限界
以䞊のたたは型を有する、䟡たたは、
䟡の添加物が添加された堎合、その掻性床を結
晶化を高めるこずにより100に近く高め、ひい
おはその半導䜓䞭での電気䌝導床を高めるこず、
およびこの凊理たたは300〜700℃の䜎枩アニヌル
のため、攟出されおしたう氎玠たたはハロゲン元
玠の劂き再結合䞭心䞭和物を再び半導䜓䞭に化孊
的に掻性の状態にお添加し、䞍察結合手ず結合せ
しめるこずにより半導䜓䞭の再結合䞭心の密床を
䜎くさせたものである。
[Means for Solving the Problems] The present invention eliminates such drawbacks, and provides divalent, trivalent or pentavalent,
When a hexavalent additive is added, its activity is increased to nearly 100% by increasing crystallization, which in turn increases the electrical conductivity in the semiconductor;
Then, due to this process or low-temperature annealing at 300 to 700°C, neutralized recombination centers such as hydrogen or halogen elements that are released are added back into the semiconductor in a chemically active state, and dangling bonds are removed. The density of recombination centers in the semiconductor is lowered by combining with the semiconductor.

【0011】 加えお本発明は−アニヌルの際、半
導䜓䞊衚面に圢成される電極特に透明電極䞭の添
加物たたはその構成元玠の䞀郚を半導䜓䞭に移動
させ、その境界をこれたでの面の抂念より領域の
抂念にたで拡倧したこずを特城ずしおいる。その
結果、かかる電極䞋の半導䜓は䞍玔物の掻性床が
高められ、か぀その電気䌝導床がきわめお倧きく
金属ず同皋床に近い䌝導床を有する。即ちプル
ミレベルが実質的に瞮退した状態にたでさせ埗る
こずがわか぀た。
[0011] In addition, the present invention moves some of the additives or constituent elements of the electrode formed on the upper surface of the semiconductor, particularly the transparent electrode, into the semiconductor during L-annealing, and the boundary is changed from the previous surface. It is characterized by the fact that it has expanded from the concept of ``to'' to the concept of ``area''. As a result, the impurity activity of the semiconductor under the electrode is increased, and its electrical conductivity is extremely high and has a conductivity close to that of metal. That is, it has been found that the Fermi level can be brought to a substantially degenerate state.

【0012】 以䞋に本発明に甚いられた本発明の実
斜䟋を図面に埓぀お説明する。
[0012] Examples of the present invention used in the present invention will be described below with reference to the drawings.

【0013】【0013】

【実斜䟋】 図は本発明に甚いられた半導䜓装
眮の実斜䟋である。
Embodiment FIG. 1 shows an embodiment of a semiconductor device used in the present invention.

【0014】 図に半導䜓基板を瀺しおいる。
この半導䜓基板は珪玠等の単結晶半導䜓がその代
衚䟋である。この単結晶半導䜓はその䞊衚郚に
MIS構造が蚭けられおいおも、たた半導䜓基板の
䞀郚にむオン泚入等により䞍玔物がドヌプされお
いお郚分的に非単結晶にな぀おいおもよい。本発
明はかかる半導䜓に察し−アニヌルを行぀た。
−アニヌルに甚いられたレヌザはCWレヌザで
ある。出力は10〜70Wであ぀た。ミラヌを甚いお
䜍眮を連続的にスキダンさせた。かくするこずに
より、半導䜓基板衚面の近傍0.1〜3Όの深さの半
導䜓局がアニヌルされた。しかしこの−アニヌ
ルは半導䜓−絶瞁膜界面たたその近傍にある界面
準䜍の消滅にはあたり効果がなか぀た。加えお半
導䜓䞭を流れる少数キダリアによる埮小電流のリ
ヌク防止に察しおは䜙り有効ではなか぀た。
[0014] A semiconductor substrate 1 is shown in FIG. 1A.
A typical example of this semiconductor substrate is a single crystal semiconductor such as silicon. This single crystal semiconductor is on the top surface.
Even if an MIS structure is provided, a part of the semiconductor substrate may be doped with impurities by ion implantation or the like, so that it becomes partially non-single crystal. In the present invention, such a semiconductor was subjected to L-annealing.
The laser used for L-annealing was a CW laser. The output was 10-70W. The position was continuously scanned using a mirror. In this way, the semiconductor layer near the surface of the semiconductor substrate at a depth of 0.1 to 3 ÎŒm was annealed. However, this L-annealing was not very effective in eliminating the interface states at or near the semiconductor-insulating film interface. In addition, it is not very effective in preventing leakage of minute currents due to minority carriers flowing in semiconductors.

【0015】 本発明はかかる欠点を陀去するため、
この半導䜓を高呚波誘導により励起された化孊的
に掻性状態の氎玠等の再結合䞭心䞭和物を有する
䞀気圧以䞋に保たれた雰囲気に浞した。この雰囲
気の枩床は宀枩−70〜200℃においおも可
胜である。枛圧状態の炉を倖偎より0.1〜100M
Hz、䟋えば13.5MHzにお高呚波誘導により氎玠た
たは氎玠にヘリナヌム等の䞍掻性ガスたたは䞀郚
に塩玠、北玠等のハロゲン元玠が0.01〜原子
の濃床に混合された雰囲気を励起した。そのため
䟋えば氎玠はH2より、H*たたはH+ず化孊的
に掻性の発生基の氎玠ずなり埗る。この氎玠は半
導䜓たたは絶瞁䜓䞭をた぀たくなんの支障もなく
䟵入し、半導䜓、絶瞁䜓たたはその界面に存圚す
る半導䜓䟋えば珪玠の䞍察結合手たたは絶瞁䜓䟋
えば酞化珪玠䞭の珪玠たたは酞玠の䞍察結合手ず
結合し、電気的に䞭和させた。
[0015] In order to eliminate such drawbacks, the present invention
This semiconductor was immersed in an atmosphere maintained at one atmospheric pressure or less containing neutralized recombination centers such as hydrogen in a chemically active state excited by radio frequency induction. The temperature of this atmosphere can also be room temperature (-70 to +200°C). 0.1 to 100M from the outside of the furnace under reduced pressure
Hydrogen or an inert gas such as helium or a portion of halogen elements such as chlorine and fluorine are added at 0.01 to 3 atomic % by high frequency induction at Hz, for example 13.5 MHz.
The atmosphere was excited to a concentration of . Thus, for example, hydrogen can be the hydrogen of the generating group chemically active with H2 , H * or H + . This hydrogen penetrates into semiconductors or insulators without any hindrance, and can be found in semiconductors, insulators, or dangling bonds in semiconductors such as silicon existing at their interfaces, or dangling bonds in insulators such as silicon or oxygen in silicon oxide. It combined with the pair bond and electrically neutralized it.

【0016】 その結果、むオン泚入等により砎壊さ
れたいた半導䜓局は、欠陥密床を1022cm-3より
1019〜1017cm-3にたで䞋げるこずができ、それを
さらに1/10〜1/50に䞋げるこずができた。特にレ
ヌザアニヌルが䟋えばMISFETの゜ヌス、ド
レむンを構成する䞍玔物局の欠陥密床をその接合
郚を広げるこずなく可胜であるに察し、誘導アニ
ヌルはこの接合郚たたはこの近傍たたは半導䜓ず
絶瞁膜ずの界面での䞍察結合手・準䜍を少なくさ
せるこずに効果があ぀た。たた加えお、レヌザア
ニヌルが界面䞊により近い領域のアニヌルである
のに察し、この−アニヌルにより凊理しきれな
い半導䜓衚面より〜10Όず深い䜍眮での欠陥を
䞭和させおアニヌルを行うため誘導アニヌルはき
わめお有効であ぀た。
[0016] As a result, the semiconductor layer destroyed by ion implantation etc. has a defect density of 10 22 cm -3
We were able to lower it to 10 19 - 10 17 cm -3 and further reduce it to 1/10 - 1/50. In particular, laser annealing can reduce the defect density of impurity layers that constitute the sources and drains of MIS and FETs without widening the junction, whereas induction annealing can reduce the defect density of impurity layers that constitute the sources and drains of MIS and FETs without widening the junction, whereas induction annealing can reduce the defect density at or near this junction or between the semiconductor and insulating film. This was effective in reducing the number of dangling bonds and levels at the interface. In addition, while laser annealing anneals areas closer to the interface, L-annealing neutralizes and anneals defects at a depth of 3 to 10 ÎŒm from the semiconductor surface, which cannot be processed. Induction annealing was extremely effective.

【0017】 図は基板䞊に半導䜓局を圢成
させたものである。半導䜓たたは半導䜓局はシラ
ン等の珪化物党䜓による熱分解法を利甚しお500
〜900℃の枩床で圢成したものである。この半導
䜓局の䜜補のため、CVDChemical Vapor
Depositionは本発明者の発明による特公昭51−
1389に基づいお実斜した。さらにたた発明人の出
願になるグロヌ攟電法、プラズマCVD法等特願
昭53−67507昭和53幎月日提出に基づいお
実斜した。かかる方法により圢成された半導䜓局
は非単結晶半導䜓よりなり、か぀その半導䜓䞭
に遞択的にたたは基板衚面ず抂略平行にPN接
合、PIN接合、PNPN
PN接合の倚重接合が圢
成されおおり、さらにたたかかる非単結晶半導䜓
には絶瞁ゲむト型電界効果トランゞスタたたはそ
の集積化した半導䜓装眮が蚭けられおいる。䟋え
ば本発明人の発明になる出願53−124022昭和53
幎10月日に蚘されおいる。
[0017] FIG. 1B shows a semiconductor layer 1 formed on a substrate 3. Semiconductors or semiconductor layers are made using a thermal decomposition method using whole silicides such as silane.
It was formed at a temperature of ~900°C. In order to fabricate this semiconductor layer, CVD (Chemical Vapor
Deposition) was invented by the present inventor in 1973.
1389. Furthermore, the invention was carried out based on the glow discharge method, plasma CVD method, etc., patent application No. 53-67507 (filed on June 5, 1978) filed by the inventor. The semiconductor layer 1 formed by this method is made of a non-single crystal semiconductor, and multiple junctions such as PN junctions, PIN junctions, PNPN...PN junctions are formed selectively or approximately parallel to the substrate surface in the semiconductor. Furthermore, such a non-single crystal semiconductor is provided with an insulated gate field effect transistor or a semiconductor device integrated therewith. For example, application No. 53-124022 (1978) which is an invention of the present inventor.
(October 7, 2016).

【0018】 かかる非単結晶半導䜓に察し、遞択的
にたたは党面に図ず同様の−アニヌルを行
うず、半導䜓衚面たたは衚面より〜3Όの深さ
たでの栌子欠陥を栌子を構成する元玠同志を結合
させるこずにより1/103〜1/105にその密床をさせ
るこずができた。しかし同時にかかる半導䜓を構
成しおいた元玠ず氎玠等ずが結合しお䞭和し、䞍
察結合手はその䞀郚がSi−結合よりSi−に倉化
し、かえ぀お䞍察結合手を発生させおした぀た。
この時氎玠はSi−より氎玠同志が互いに結合し
あい、H2ずしお半導䜓䞭に安定な状態で残぀お
いるのみであるこずがわか぀た。即ち、 過皋 Si−−Si→Si−SiH2 過皋 Si−−Si→2Si−
[0018] When such a non-single-crystal semiconductor is selectively or entirely subjected to L-annealing similar to that shown in FIG. By combining these, we were able to reduce the density to 1/10 3 to 1/10 5 . However, at the same time, the elements constituting the semiconductor combine with hydrogen, etc. and are neutralized, and some of the dangling bonds change from Si-H bonds to Si-, creating dangling bonds instead. I let it happen.
At this time, it was found that hydrogen bonds with itself through Si--H, and only remains in a stable state as H2 in the semiconductor. That is, Process 1 Si-H+H-Si→Si-Si+H 2 Process 2 Si-H+H-Si→2Si-+H

【0019】 この過皋の倚い堎合はかえ぀おより
結晶化を促し、再結合䞭心の密床を過皋より単
結晶化に近づけたにもかかわらず、増加させおし
たうこずが刀明した。換蚀すれば、過皋により
珪玠同志が互いに共有結合をし、単結晶に近づく
ため電気䌝導床は玄100倍にも増加したにもかか
わらず、再結合䞭心の密床はグロヌ攟電等で䜜ら
れた被膜にあ぀おは−アニヌル前が1017〜1018
cm-3に察し1018〜1019cm-3ずこの半導䜓䞭での氎
玠の含有量は玄20〜30モルず䞍倉であるにもか
かわらず桁も増加しおしたうこずがわか぀た。
即ちこの事実は遊離した氎玠は氎玠同志結合し、
きわめお短い時間では、その氎玠が再び珪玠の䞍
察結合手ず結合しきれないこずがわか぀た。
[0019] It has been found that in the case of a large number of process 2, crystallization is promoted more, and even though the density of recombination centers is closer to single crystallization than process 1, it increases. In other words, even though the electrical conductivity has increased by about 100 times as the silicon covalently bonds with each other in process 1 and approaches a single crystal, the density of recombination centers is lower than that created by glow discharge, etc. For coatings, before L-annealing it is 10 17 to 10 18
cm -3 to 10 18 to 10 19 cm -3 , and it was found that although the hydrogen content in this semiconductor remained unchanged at about 20 to 30 mol%, it increased by one order of magnitude.
In other words, this fact means that free hydrogen bonds with each other,
It was found that the hydrogen could not fully recombine with the dangling bonds of silicon in an extremely short period of time.

【0020】 たた枛圧CVD法等で圢成された非単
結晶の半導䜓被膜はあらかじめ再結合䞭心䞭和物
が含有しおいないため、−アニヌルによりその
結晶粒界を10〜1000Åより0.1Ό〜50Όにたで倧き
くし、より単結晶化させるこずができた。それに
レヌザずしお前蚘したCW発振ではなく、パルス
巟が10〜100n秒のルビヌレヌザ、ガラスレヌザ
出力10〜1000MWを甚いおも同様である。そ
の結果たたは型の䞍玔物がドヌプされおいな
い状態の真性半導䜓この堎合はバツクグランド
レベルの䞍玔物のドヌプがある堎合の半導䜓をも
含むにおいおその欠陥密床が1022cmにたでさげ
るこずができた。しかし半導䜓ずしお甚いるため
には、この密床を1014〜1016cm-3たたはそれ以䞋
に䞋げる必芁がある。さらにたた半導䜓局の衚面
より深い郚分での密床も同様に䞋げるため、本発
明においおはこの−アニヌルず同時たたはその
埌に誘導アニヌルを加えたこずを特城ずしおい
る。この誘導アニヌルはマむクロ波により基板よ
り離れた䜍眮におあらかじめ前蚘した䞭和物を化
孊的に励起しそれを基板䞊にたで導いおもよい。
マむクロ波は30〜200Wの出力で䟋えば2.46GHz
を甚いた。反応系は気圧以䞋䟋えば0.01〜
10Torrずし、その雰囲気は氎玠たたは氎玠にヘ
リナヌムを30〜50添加した䞭和物を甚いた。か
かる雰囲気䞭に本半導䜓装眮を10分〜時間蚭眮
するこずにより、前蚘した欠陥密床は1015〜1016
cm-3にたで䞋げるこずができた。この欠陥密床は
その被膜の䜜補方法がグロヌ攟電法、プラズマ
CVD法、クラスタ蒞着法、枛圧CVD法、たたは
真空蒞着法、むオンプレヌテむング法等には無関
係ずなり、本発明の−アニヌルず誘導アニヌル
ずを合わせるこずにより䜜補方法にはあたり䟝存
するこずなく半導䜓の本来あるべき状態にたで近
づけるこずができた。
[0020] In addition, since the non-single crystal semiconductor film formed by low pressure CVD method etc. does not contain recombination center neutralized substances in advance, the crystal grain boundaries are reduced by 0.1Ό to 50Ό from 10 to 1000Šby L-annealing. It was possible to increase the size of the crystal and make it even more monocrystalline. The same effect can be obtained by using a ruby laser or glass laser (output 10 to 1000 MW) with a pulse width of 10 to 100 ns instead of the CW oscillation described above. As a result, the defect density in an intrinsic semiconductor that is not doped with P- or N-type impurities (in this case also includes semiconductors doped with background-level impurities) can be reduced to 10 cm. did it. However, for use as a semiconductor, this density must be lowered to 10 14 to 10 16 cm -3 or lower. Furthermore, in order to similarly reduce the density in a portion deeper than the surface of the semiconductor layer, the present invention is characterized in that induction annealing is added at the same time as or after this L-annealing. This induction annealing may be performed by chemically exciting the above-mentioned neutralized product in advance at a position away from the substrate using microwaves and guiding it onto the substrate.
Microwave has an output of 30-200W, for example 2.46GHz
was used. The reaction system is below 1 atm, e.g. 0.01~
The pressure was 10 Torr, and the atmosphere was hydrogen or a neutralized hydrogen solution with 30 to 50% helium added. By placing the present semiconductor device in such an atmosphere for 10 minutes to 1 hour, the defect density described above can be reduced to 10 15 to 10 16 .
It was possible to reduce it to cm -3 . This defect density is determined by the glow discharge method, plasma
It has no relation to the CVD method, cluster vapor deposition method, low pressure CVD method, vacuum vapor deposition method, ion plating method, etc., and by combining the L-annealing and induction annealing of the present invention, semiconductors can be manufactured without much dependence on the manufacturing method. We were able to bring it closer to its original state.

【0021】 図は本発明の他の実斜䟋であり、半
導䜓䞊に透明電極を圢成した堎合を瀺す。
[0021] FIG. 2 shows another embodiment of the present invention, in which a transparent electrode is formed on a semiconductor.

【0022】 図においお、基板はガラス、セ
ラミツクたたはガラ゚ポ等の耇合材、カプトン、
ポリむミド等の有機物の絶瞁基板、さらにステン
レス・スチヌル、チタンたたは窒化チタン等の導
䜓基板、さらに前蚘した絶瞁基板䞊に遞択的に導
䜓を蚭けた耇合基板であ぀おもよい。
[0022] In FIG. 2A, the substrate 3 is made of glass, ceramic or a composite material such as glass epoxy, Kapton,
It may be an insulating substrate made of an organic material such as polyimide, a conductive substrate made of stainless steel, titanium or titanium nitride, or a composite substrate in which a conductor is selectively provided on the above-mentioned insulating substrate.

【0023】 これらの基板䞊に半導䜓局を非単結
晶構造に圢成した。この半導䜓の䜜補方法はプラ
ズマCVD法を甚い、珪化物を䞻成分ずした。こ
の半導䜓䞭にはPN接合、PIN接合たたはPNPN

PN倚重接合、PINI
IPIN倚重接合を圢成し
た。半導䜓局の厚さは0.5〜5Όの厚さである。さ
らにこの䞊面に酞化スズ、酞化むンゞナヌム、酞
化アンチモンたたはそれらの混合物をさらにたた
はスズ、むンゞナヌム、アンチモンの窒化物たた
はそれらの混合物よりなる導電膜を単局たたは
倚局の電極ずしお同様のプラズマCVD法により
0.05〜3Όの厚さに䜜補した。この導電膜は光孊的
に透明であり、レヌザ光、可芖光に察する光吞収
が小さいこずを特城ずしおいる。
[0023] A semiconductor layer 1 was formed to have a non-single crystal structure on these substrates. This semiconductor was manufactured using a plasma CVD method using silicide as the main component. This semiconductor contains PN junction, PIN junction or PNPN
...PN multiple junction, PINI...IPIN multiple junction were formed. The thickness of the semiconductor layer is 0.5-5Ό thick. Furthermore, a conductive film 2 made of tin oxide, indium oxide, antimony oxide, or a mixture thereof or a nitride of tin, indium oxide, antimony oxide, or a mixture thereof is applied to this upper surface as a single-layer or multi-layer electrode using the same plasma CVD method.
It was manufactured to a thickness of 0.05 to 3Ό. This conductive film is optically transparent and is characterized by low absorption of laser light and visible light.

【0024】 さらにこの図に察し−アニヌル
を加え、図に瀺される劂く透明電極ず半導
䜓局の境界に遷移領域を蚭け、導電局の構成
物の䞀郚であるスズたたは酞玠たたは窒玠さらに
半導䜓䞭で型の導電型を瀺すむンゞナヌム
In、ガリナヌムGa、アルミニナヌムAl、
ボロン(B)たたは亜鉛Zn、カドミナヌムCd
を添加物ずしお添加させた。特に単䜓では金属は
特性を有し、半導䜓䞭では型導電型を有するIn
たたはInずずの混合の添加物はこの遷移領域で
の型の導電率をきわめお高くするのに効果があ
぀た。
Furthermore, L-annealing is added to this FIG. 2A, and a transition region 5 is provided at the boundary between the transparent electrode 2 and the semiconductor layer 1 as shown in FIG. or nitrogen, as well as indium (In), gallium (Ga), aluminum (Al), which exhibits P-type conductivity in semiconductors,
Boron (B) or zinc (Zn), cadmium (Cd)
was added as an additive. In particular, metals have properties when used as a single substance, and in semiconductors, In has a P-type conductivity type.
Alternatively, a mixed additive of In and B was effective in extremely increasing the P-type conductivity in this transition region.

【0025】 この−アニヌルはInの溶融量を
その溶融限界である1020cm-3の濃床より10〜103
倍高め、過飜和の状態でか぀偏析をおこさせない
ずいう特城を有し、1020cm-3〜30原子特に0.3〜
原子の添加はホヌルに察する䞍玔物が散乱を
おこさせるこずなく導電率を高めるのにきわめお
効果があ぀た。本発明はこの埌さらに−アニヌ
ルにより非単結晶半導䜓の結晶粒界の埄が10〜
1000Åより〜50Όの倧きさになり、単結晶に近
づくこずによりその䌝導床を10〜103倍にできた。
[0025] This L-annealing increases the melting amount of In and B by 10 to 10 3 from the concentration of 10 20 cm -3 which is the melting limit.
It has the characteristics of being twice as high, supersaturated and not causing segregation.
Addition of 3 atomic % was extremely effective in increasing conductivity without causing scattering of impurities with respect to holes. In the present invention, the diameter of the crystal grain boundary of the non-single crystal semiconductor is further increased by L-annealing from 10 to 10.
The size is 1 to 50 ÎŒ compared to 1000 Å, and by approaching a single crystal, the conductivity can be increased by 10 to 10 3 times.

【0026】 しかしこの−アニヌルによる䞍察結
合手の発生を防止するため、さらにこの埌図
に察し誘導アニヌルを実斜し、䞍察結合手に察し
掻性状態の氎玠を添加しお電気的に䞭和させた。
かくするこずにより、光電倉換装眮特に倪陜電池
等における光が透過する偎での短波長領域におけ
る光電倉換効率を向䞊でき、ひいおは0.3〜0.5ÎŒ
の波長領域でのコレクシペン効果を95〜100に
するこずができた。
[0026] However, in order to prevent the generation of dangling bonds due to this L-annealing,
Induction annealing was performed on the dangling bonds, and active hydrogen was added to the dangling bonds to electrically neutralize them.
By doing so, it is possible to improve the photoelectric conversion efficiency in the short wavelength region on the light transmitting side of a photoelectric conversion device, especially a solar cell, etc., and furthermore, it is possible to improve the photoelectric conversion efficiency in the short wavelength region on the side where light passes through the photovoltaic device, especially in a solar cell, etc.
We were able to achieve a correction effect of 95-100% in the wavelength range of .

【0027】 たた透明電極䞋の半導䜓を型にせん
ずするならば、透明電極ぞの添加物をアンチモン
Sb、砒玠As、リンのごずき䟡の添
加物たたはテルルTe、セレンSeの劂き
䟡の添加物を酞化スズたたは窒化スズたたは窒化
アンチモンの劂き窒化物の透明電極に1020cm-3〜
30原子の濃床に添加すればよい。この添加物の
うち特にSbたたはSbずずの混合物は−アニ
ヌルにより同様にその電極盎䞋の半導䜓局を型
化し、か぀その添加量の固溶限界を越えた濃床に
しお偏析をおこすこずなく100に近い掻性床を
持぀型ずするこずができた。
[0027] Also, if you want to make the semiconductor under the transparent electrode N-type, the additives to the transparent electrode should be pentavalent additives such as antimony (Sb), arsenic (As), and phosphorus (P), or tellurium ( 6 such as Te), selenium (Se)
Additives of 10 to 20 cm -3 to transparent electrodes of tin oxide or nitrides such as tin nitride or antimony nitride.
It may be added at a concentration of 30 atomic %. Among these additives, particularly Sb or a mixture of Sb and P, the semiconductor layer directly under the electrode is similarly made N-type by L-annealing, and the concentration exceeds the solid solubility limit of the amount added, causing segregation. We were able to make it an N-type with an activity close to 100%.

【0028】 かくの劂き−アニヌルにより非単結
晶半導䜓は単結晶化いすすみ、たた透明電極の䞀
郚成分たたは添加物を50〜×103Åの深さ特に
500Åの劂ききわめお浅い深さにドヌプできた。
このドヌプ面は電極ずもたた半導䜓ずも密着でき
る遷移領域であり、この抵抗率は10-1〜10-4Ωcm
-1ず金属に近く、量子論的にはプルミレベルの
瞮退した状態にな぀おいるものず掚定される。た
たこの遷移領域がうすいため、光電倉換装眮にお
いおは短波長の光により励起を起こさせお電子−
ホヌル察を発生させ、か぀その䞡者を再結合䞭心
を氎玠等の䞭和物で䞭和しおいるため、再結合す
るこずなく電極に導くこずができた。
[0028] By such L-annealing, the non-single crystal semiconductor progresses to single crystallization, and some components or additives of the transparent electrode are deposited to a depth of 50 to 5 × 10 3 Å.
It was possible to dope to an extremely shallow depth of 500 Å.
This doped surface is a transition region that can be in close contact with both the electrode and the semiconductor, and its resistivity is between 10 -1 and 10 -4 Ωcm.
-1 , which is close to a metal, and is estimated to be in a degenerate state at the Fermi level in terms of quantum theory. In addition, because this transition region is thin, in photoelectric conversion devices, electrons are excited by short-wavelength light.
Because hole pairs were generated and the recombination centers of both were neutralized with a neutralizer such as hydrogen, it was possible to guide them to the electrode without recombining.

【0029】 加えおこの発明においおは、−アニ
ヌルによ぀お匷制的にアニヌルされるため、䞀郚
の元玠䟋えば酞玠たたは窒玠の半導䜓を構成する
元玠ず局郚反応をしお局郚的䜎玚酞化珪玠たたは
窒化珪玠を䜜り絶瞁膜にする等の䞍良モヌドを
100〜150℃の高枩攟眮等で発生させるこずもなく
きわめお信頌性の優れたものであ぀た。
[0029] In addition, in this invention, since it is forcibly annealed by L-annealing, some elements, such as oxygen or nitrogen, may locally react with the elements constituting the semiconductor, resulting in local lower silicon oxide or Failure modes such as making silicon nitride and using it as an insulating film
It was extremely reliable as it did not cause any generation when left at high temperatures of 100 to 150°C.

【0030】 図は透明電極を䞋偎に圢成し、
か぀半導䜓局を䞊偎に圢成させた堎合である。
かかる堎合、基板がガラス等であ぀た堎合は䞋
偎のガラス偎からのレヌザ光の入射によるアニヌ
ルが奜たしい。しかし半導䜓局が0.05〜2Όず薄い
堎合は䞊偎から半導䜓局を通しおの−アニヌル
を行぀おもよい。
[0030] In FIG. 2C, the transparent electrode 2 is formed on the lower side,
This is the case where the semiconductor layer 1 is formed on the upper side.
In such a case, if the substrate 3 is made of glass or the like, annealing using laser light incident from the lower glass side is preferable. However, if the semiconductor layer is as thin as 0.05-2Ό, L-annealing may be performed through the semiconductor layer from above.

【0031】 その結果、図ず同様に図に瀺
す劂く遷移領域が圢成された。レヌザ光の照射
方向により半導䜓局はその結晶粒埄が倧きくな
り、䞋偎から照射された堎合は半導䜓局の䞋郚が
倧きく䞊郚が小さい状態に、図ず同様に䞊偎
から照射されるず半導䜓局の䞊郚が倧きく䞋郚
が結晶ずしお小さくなる。これより深さ方向の結
晶粒埄をレヌザ光の照射向き、匷さおよび照射時
間により制埡できるこずがわか぀た。
[0031] As a result, the transition region 5 was formed as shown in FIG. 2D, similar to FIG. 2B. Depending on the direction of laser light irradiation, the crystal grain size of the semiconductor layer increases; if the laser beam is irradiated from below, the lower part of the semiconductor layer will be larger and the upper part will be smaller; if the laser beam is irradiated from the upper side, as in FIG. 2B, the semiconductor layer will become larger. The upper part of 1 becomes larger and the lower part becomes smaller as a crystal. From this, it was found that the crystal grain size in the depth direction can be controlled by the irradiation direction, intensity, and irradiation time of the laser beam.

【0032】 図は透明電極を䞊偎、さらに䞋
偎に半導䜓局をはさんで圢成させた堎合であ
る。その結果、−アニヌルにより遷移領域は
型にたたは型に䜜り、いわゆる−接合
を適圓に䜜るこずができる。もちろん図面の実斜
䟋においおは、䞋偎電極をSnずSbずの化合物
より䜜぀た導䜓電極を基板䞊の䞋地金属䞊に圢成
し、䞊偎からのレヌザ光の䞋偎電極の反射を利甚
しおこの電極の䞀郚を半導䜓局に添加する方法を
ず぀おもよい。逆にNIP接合を䜜るこずも添加物
ず䞊偎の電極が、䟡の添加物を有し、䞋偎の
電極がたたは䟡の添加物を有するずいい。
[0032] FIG. 2E shows a case where transparent electrodes are formed on the upper side 2 and further on the lower side 4 with the semiconductor layer 1 sandwiched therebetween. As a result, by L-annealing, the transition region 3 is made to be P type and the transition region 6 is made to be N type, so that a so-called P-N junction can be suitably made. Of course, in the embodiment shown in the drawings, the lower electrode 4 is formed by forming a conductor electrode made of a compound of Sn and Sb on the base metal on the substrate, and utilizing the reflection of the laser beam from the upper side of the lower electrode. A method may be used in which a part of this electrode is added to the semiconductor layer. Conversely, it is also possible to create a NIP junction by having the upper electrode contain a pentavalent or hexavalent additive, and the lower electrode containing a trivalent or divalent additive.

【0033】 これらの−アニヌルの埌半導䜓局党
䜓における−アニヌルにより発生した䞍察結合
手を再結合䞭心䞭和物である、He等の誘導ア
ニヌルにより䞭和しお電気的に䞍掻性にするこず
は半導䜓装眮ずしお動䜜させるためにはきわめお
重芁なこずである。
[0033] After these L-anneals, the unpaired bonds generated by the L-anneals in the entire semiconductor layer are neutralized by induction annealing with H, He, etc., which are recombination center neutralizers, and are made electrically inactive. This is extremely important for operating the semiconductor device.

【0034】 図においおは、基板䞊たたは
半導䜓局䞊にたたは型の導電型の半導䜓局を
䜜るこずず、たたこの半導䜓局内にPN接合その
他の接合を䜜るこずを明蚘しなか぀た。しかし
CVD法、プラズマCVD法、グロヌ攟電法等にお
いおは、これらの導電型の半導䜓は半導䜓局の圢
成ず同時に型にあ぀おはを、型にあ぀おは
を䞍玔物ずしお添加しお䜜補すればよい。たた
この濃床が固溶限界を越え、たた非単結晶半導䜓
においおはその掻性床が〜30しかないため、
これらは−アニヌルを行うこずにより90〜100
にするこずができ、きわめお半導䜓ずしおの構
造敏感性を有せしめるこずができるようにな぀
た。
[0034] In FIGS. 2A and 2C, it is not explicitly stated that a semiconductor layer of N or P type conductivity is formed on the substrate or a semiconductor layer, and that a PN junction or other junction is formed within this semiconductor layer. Ta. but
In the CVD method, plasma CVD method, glow discharge method, etc., semiconductors of these conductivity types are manufactured by adding B as an impurity for P-type and P for N-type at the same time as forming the semiconductor layer. do it. In addition, this concentration exceeds the solid solution limit, and in non-single crystal semiconductors, the activity is only 3 to 30%, so
These can be increased to 90 to 100 by performing L-annealing.
%, and it has become possible to have extremely structural sensitivity as a semiconductor.

【0035】 図は透明電極を導䜓局䞊に遞択的
に蚭けた䞀䟋である。
[0035] FIG. 2G is an example in which transparent electrodes are selectively provided on the conductor layer.

【0036】 その結果、シアロヌ接合〜200Å
を図の劂く′ずしお䜜るこずがで
きる。
[0036] As a result, a shear joint (5 to 200 Å)
can be made as 5, 5' as shown in FIG. 2(H).

【0037】 図は本発明を実斜するための補造装
眮の䞀䟋である。図面に基づいおこれたでどおり
蚘述を行いながら装眮の抂芁を説明する。
[0037] FIG. 3 is an example of a manufacturing apparatus for implementing the present invention. The outline of the device will be explained based on the drawings and the description as before.

【0038】 基板䞊に半導䜓が圢成された基板
は入力チダンバよりロヌダによ぀お出力
チダンバに至る。チダンバは0.01〜
100Torr特に0.1〜10Torrの枛圧状態にお行うた
め、䞭和物の気䜓をより氎玠、よりヘリ
ナヌム等の䞍掻性ガス、よりHCl等のハロゲ
ン元玠が導入される。たた排気はニヌドルバルブ
を経お真空ポンプにお排気される。
[0038] Substrate 11 on which a semiconductor is formed
from the input chamber 20 to the output chamber 21 by the loader 28. Chamber 23 is 0.01~
Since the reaction is carried out under a reduced pressure of 100 Torr, especially 0.1 to 10 Torr, the neutralized gas is hydrogen from 15, an inert gas such as helium from 16, and a halogen element such as HCl from 17. Further, the exhaust gas is exhausted by a vacuum pump 19 via a needle valve 18.

【0039】 レヌザ光はレヌザよりミラヌ
をぞお基板䞊に走査されお−アニヌルがなされ
る。この装眮においおはこのレヌザが照射される
ず同じ䜍眮のチダンバの倖郚に高呚波誘導炉が備
え぀けおある。この高呚波誘導炉は電圧加熱
方匏をずり、13.56MHz、100W〜1KWを甚いた。
この埌、これら党䜓を300〜700℃に䜎枩アニヌル
をする炉、さらにその埌ろは独立しお特別の
高呚波誘導炉が蚭けられおいる。この誘導炉
もこの基板ず察向するように平行平板方匏で
あ぀おもよい。
[0039] The laser beam is transmitted from the laser 12 to the mirror 13.
The wafer is then scanned onto the substrate to perform L-annealing. In this device, a high frequency induction furnace is installed outside the chamber at the same position where the laser is irradiated. This high frequency induction furnace 22 adopted a voltage heating method, and used 13.56MHz and 100W to 1KW.
Thereafter, a furnace 25 is provided to perform low-temperature annealing of the entire structure at a temperature of 300 to 700°C, and a special high-frequency induction furnace 24 is provided independently behind the furnace 25. This induction furnace may also be of a parallel plate type so as to face the substrate 11.

【0040】 かくするこずによりチダンバ内に攟電
が起こり、発生基ラゞカル状の化孊的に掻性
状態にある氎玠その他が半導䜓䞭にドヌプされ、
䞍察結合手ず結合しお䞭和させるこずができた。
加えお埓来−アニヌルは空気䞭においおのみ埗
なか぀たが、かくするこずにより氎玠䞭、䞍掻性
ガス特にヘリナヌム䞭で実斜するこずができ、そ
の結果、照射面䞊のリング状の−アニヌル特有
の瞞暡様の発生を枛少させるこずができた。
[0040] As a result, a discharge occurs in the chamber, and hydrogen and other chemically active groups of generating groups (radicals) are doped into the semiconductor.
It was possible to neutralize it by combining with the unpaired bond.
In addition, conventionally, L-annealing could only be performed in air, but by doing so, it can be performed in hydrogen, an inert gas, especially helium, and as a result, a characteristic of ring-shaped L-annealing on the irradiated surface is achieved. It was possible to reduce the occurrence of striped patterns.

【0041】 本発明においおは、−アニヌルに甚
いられたのはスむツチパルス発振レヌザたたは
CWレヌザを甚いたが、これを同様の効果をもた
らすものにフラツシナ等の発生をキセノン等のラ
ンプを甚いお行぀おもよい。その基板はきわめお
速い昇枩ず降枩を行うこずにより、半導䜓たたは
半導䜓䞭の添加物のミクロな移動は高枩の実質的
に溶融状態で行い埗おも䞍玔物の偏析等倧きな移
動は行い埗ず、熱アニヌル法における固溶限界以
䞊の濃床の䞍玔物たたは添加物を半導䜓䞭に析出
させるこずなく添加させるこずを特城ずしおい
る。
[0041] In the present invention, the Q-switch pulse oscillation laser or
Although a CW laser is used, a lamp of xenon or the like may be used to generate a flash or the like to produce a similar effect. The temperature of the substrate is raised and cooled extremely rapidly, and even though microscopic movement of the semiconductor or additives in the semiconductor can be carried out at high temperatures and in a substantially molten state, large movements such as segregation of impurities cannot occur, and heat A feature of this method is that impurities or additives with a concentration higher than the solid solubility limit in the annealing method are added to the semiconductor without precipitation.

【0042】 本発明のこれたでの実斜䟋においお、
透明電極はそのたた残眮せしめおいる。しかしこ
の電極を䞀床゚ツチング液で陀去しお再床新しい
透明電極を圢成させおもよいこずはいうたでもな
い。たた第䞀の透明電極を䟋えば窒化物により
100〜1000Åの厚さに圢成した埌、光アニヌルし、
さらに第二の透明電極を酞化物により0.1〜2Όの
厚さに圢成しおもよい。
[0042] In the previous embodiments of the invention,
The transparent electrode is left as is. However, it goes without saying that this electrode may be removed once with an etching solution and a new transparent electrode may be formed again. In addition, the first transparent electrode is made of, for example, nitride.
After forming to a thickness of 100 to 1000 Å, photoannealing
Furthermore, the second transparent electrode may be formed of an oxide to a thickness of 0.1 to 2 ÎŒm.

【0043】 たた本発明のこれたでの実斜䟋は半導
䜓は珪玠を䞻䜓ずしお説明した。しかしSixGe1-x
、SixSn1-x、SixC1-x
0.5たたはSnの劂き族の半導䜓たた
はGaAsGaAlAs等の、族の化合物半導䜓、
さらにたたは半導䜓の䞀郚にSixO2-x
、SixN4-x等の䜎玚酞化物、䜎
玚窒化物でかかる半導䜓の䞀郚を圢成させ、その
゚ネルギバンド巟を連続的に−構造に倉化さ
せた半導䜓を甚いおもよいこずはいうたでもな
い。
[0043] Furthermore, the previous embodiments of the present invention have been described using silicon as the main semiconductor. But Si x Ge 1-x
(0<x<1), Si x Sn 1-x (0<x<1), Si x C 1-x
(0.5<x<1) or Group 4 semiconductors such as Sn or Group 3 and 5 compound semiconductors such as GaAs and GaAlAs,
Furthermore, or in a part of the semiconductor, Si x O 2-x (0<x<
2) Form a part of such a semiconductor with a lower oxide or lower nitride such as Si x N 4-x (0<x<4), and continuously change the energy band width to a W-N structure. It goes without saying that other semiconductors may also be used.

【0044】 本発明の実斜䟋においお、透明電極は
酞化スズ、酞化むンゞナヌムたたは酞化アンチモ
ン等の酞化物導電性透明電極を䞻ずしお蚘した。
しかし化孊的にさらに安定な窒化物の導電性透明
電極を窒化スズ、窒化むンゞナヌム、窒化アンチ
モン、窒化チタン、窒化ゲルマニナヌムを甚いお
もよく、さらに窒化珪玠ずこれらの混合物を導電
性透明電極ずしお甚いおもよい。
[0044] In the embodiments of the present invention, the transparent electrode is mainly an oxide conductive transparent electrode such as tin oxide, indium oxide, or antimony oxide.
However, chemically more stable nitride conductive transparent electrodes such as tin nitride, indium nitride, antimony nitride, titanium nitride, and germanium nitride may be used, and silicon nitride and mixtures thereof may be used as conductive transparent electrodes. Good too.

【0045】 加えお半導䜓局ず酞化物透明電極ずの
境界に10〜50Åのトンネル電流を流すきわめお薄
い膜厚の窒化物を蚭けた半導䜓装眮にも本発明を
適甚できるこずはいうたでもない。
[0045] In addition, it goes without saying that the present invention can also be applied to a semiconductor device in which a very thin nitride film is provided that allows a tunnel current of 10 to 50 Å to flow at the boundary between a semiconductor layer and a transparent oxide electrode.

【0046】【0046】

【本発明の効果】 さらに本発明における半導䜓
装眮は光電倉換装眮、特に倪陜電池のみではな
く、MIS.FETを甚いた集積回路、発光玠子、半
導䜓レヌザその他トランゞスタ、ダむオヌド等の
すべおの半導䜓装眮に適甚できるこずはいうたで
もない。
[Effects of the present invention] Furthermore, the semiconductor device of the present invention is applicable not only to photoelectric conversion devices, especially solar cells, but also to all semiconductor devices such as integrated circuits using MIS.FET, light emitting elements, semiconductor lasers, transistors, diodes, etc. It goes without saying that it can be done.

【図面の簡単な説明】[Brief explanation of the drawing]

【図】本発明を実斜するための半導䜓装眮の䟋
を瀺す。
FIG. 1 shows an example of a semiconductor device for implementing the present invention.

【図】本発明の他の実斜䟋を瀺すための半導䜓
装眮の䟋を瀺す。
FIG. 2 shows an example of a semiconductor device for illustrating another embodiment of the present invention.

【図】本発明を実斜するための補造装眮の䞀䟋
である。
FIG. 3 is an example of a manufacturing apparatus for implementing the present invention.

【笊号の説明】[Explanation of symbols]

 半導䜓局  導電膜  基板  䞋偎電極  遷移領域。 1 Semiconductor layer 2 Conductive film 3 Board 4 Lower electrode 5 Transition area.

Claims (1)

【特蚱請求の範囲】[Claims] 【請求項】 族元玠を䞻成分ずする非単結晶
半導䜓の䞀䞻面にレヌザたたはそれず同様の匷光
゚ネルギヌを照射するこずにより光アニヌルを行
぀た埌、前蚘半導䜓を高呚波たたはマむクロ波に
よるプラズマ状態の氎玠、ハロゲン元玠たたは䞍
掻性ガス雰囲気に配眮しお300〜700℃の枩床の加
熱雰囲気で熱アニヌルを行うこずを特城ずした半
導䜓装眮䜜補方法。
1. After performing optical annealing by irradiating one main surface of a non-single-crystal semiconductor mainly composed of a group 4 element with a laser or similar intense light energy, the semiconductor is subjected to high-frequency or microwave treatment. 1. A method for manufacturing a semiconductor device, comprising placing the semiconductor device in a hydrogen, halogen element, or inert gas atmosphere in a plasma state, and performing thermal annealing in a heated atmosphere at a temperature of 300 to 700°C.
JP3033679A 1991-02-01 1991-02-01 Manufacture of semiconductor device Granted JPH04211130A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3033679A JPH04211130A (en) 1991-02-01 1991-02-01 Manufacture of semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3033679A JPH04211130A (en) 1991-02-01 1991-02-01 Manufacture of semiconductor device

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP9974379A Division JPS5623784A (en) 1979-08-05 1979-08-05 Manufacture of semiconductor device

Publications (2)

Publication Number Publication Date
JPH04211130A JPH04211130A (en) 1992-08-03
JPH0566012B2 true JPH0566012B2 (en) 1993-09-20

Family

ID=12393128

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3033679A Granted JPH04211130A (en) 1991-02-01 1991-02-01 Manufacture of semiconductor device

Country Status (1)

Country Link
JP (1) JPH04211130A (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2631014A3 (en) * 2003-06-25 2014-01-01 The Trustees of Princeton University Improved solar cells
CN102439735B (en) * 2009-04-22 2015-04-08 泰特拉桑有限公叞 Localized metal contacts by localized laser assisted conversion of functional films in solar cells

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
SEMICONDUCTOR CHARACTERIZATION TECHNIQUES=1978 *
APPL.PHYS LETT=1979 *
APPLIED PHYSICS LETTERS=1979 *
CHARACTERIZATION TECHNIQUES FOR SEMICONDUCTOR MATERIALS AND DEVICES=1978 *

Also Published As

Publication number Publication date
JPH04211130A (en) 1992-08-03

Similar Documents

Publication Publication Date Title
US6537886B2 (en) Ultra-shallow semiconductor junction formation
US6455360B1 (en) Method for forming crystalline semiconductor layers, a method for fabricating thin film transistors, and a method for fabricating solar cells and active matrix liquid crystal devices
US5221365A (en) Photovoltaic cell and method of manufacturing polycrystalline semiconductive film
US8183066B2 (en) Method and system for large scale manufacture of thin film photovoltaic devices using multi-chamber configuration
KR860001161B1 (en) Semiconductor device
Prucnal et al. Doping by flash lamp annealing
JPH0338756B2 (en)
JPS588128B2 (en) Semiconductor device manufacturing method
JPS6245712B2 (en)
Young et al. Laser processing for high‐efficiency Si solar cells
US11107968B1 (en) All-semiconductor Josephson junction device for qubit applications
US4251287A (en) Amorphous semiconductor solar cell
US6555451B1 (en) Method for making shallow diffusion junctions in semiconductors using elemental doping
Sealy Ion implantation doping of semiconductors
JPH0566012B2 (en)
Polyakov et al. The influence of hydrogen plasma treatment and proton implantation on the electrical properties of InAs
JPS58161380A (en) Semiconductor device
JP4200530B2 (en) Thin film transistor manufacturing method
JPS6150329A (en) Manufacture of semiconductor device
EP0419763A1 (en) A stable interconnection metallization for VLSI devices including copper
JPH0345555B2 (en)
Eryu et al. Formation of ap‐n junction in silicon carbide by aluminum doping at room temperature using a pulsed laser doping method
JPH044757B2 (en)
JPS58161381A (en) Manufacture of semiconductor device
JP2626704B2 (en) MIS type semiconductor device manufacturing method