JPH0565896A - Vortex flow pump - Google Patents

Vortex flow pump

Info

Publication number
JPH0565896A
JPH0565896A JP3145786A JP14578691A JPH0565896A JP H0565896 A JPH0565896 A JP H0565896A JP 3145786 A JP3145786 A JP 3145786A JP 14578691 A JP14578691 A JP 14578691A JP H0565896 A JPH0565896 A JP H0565896A
Authority
JP
Japan
Prior art keywords
annular groove
impeller
cross
casing
section
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP3145786A
Other languages
Japanese (ja)
Other versions
JP2844966B2 (en
Inventor
Eiichi Ito
永一 伊藤
Susumu Yamazaki
山崎  進
Masayuki Fujio
正行 藤生
Toshiji Yoshitomi
利治 吉富
Hiroshi Asabuki
弘 朝吹
Kazuo Kobayashi
和男 小林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP14578691A priority Critical patent/JP2844966B2/en
Priority to KR1019920010569A priority patent/KR970005981B1/en
Priority to US07/900,932 priority patent/US5281083A/en
Priority to DE4220153A priority patent/DE4220153B4/en
Publication of JPH0565896A publication Critical patent/JPH0565896A/en
Application granted granted Critical
Publication of JP2844966B2 publication Critical patent/JP2844966B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Structures Of Non-Positive Displacement Pumps (AREA)

Abstract

PURPOSE:To lower the noise level by providing a section reducing means partly in an interval at least from the center over to a delivery port of a part reaching the delivery port from a suction port, of annular grooves provided in the part opposed to blades of an impeller in a casing. CONSTITUTION:A single-blade cup-shaped vortex flow pump having a plurality of sheets of blades 1a in annular grooves 1b provided in an impeller 1 is formed by storing the impeller 1, mounted to a rotary shaft 14 of a prime mover 11, in a casing 3 of providing a suction port 3b and a delivery port 3c. An annular groove 3a opened to face an impeller 1a is provided so as to reach the delivery port 3c from the suction port 3b along the direction of rotation of the impeller 1, in a part opposed to the blade 1b of the impeller 1 in the casing 3. Here, a section contraction part 3f formed of slope-shaped protruding parts is provided at least from a center 3e over to the delivery port 3c in a part of reaching the delivery port 3c from the suction port 3b of the annular groove 3a, and a flow of air is accelerated to contrive increase of an amount of air.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、渦流式気体ポンプ(渦
流ブロワ)、または渦流式液体ポンプ(ウエスコポン
プ)の性能向上に好適なケーシング環状溝の構造に関す
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a casing annular groove structure suitable for improving the performance of a vortex gas pump (vortex blower) or a vortex liquid pump (wesco pump).

【0002】[0002]

【従来の技術】従来の片羽根形渦流ポンプおいては、ケ
ーシングの環状溝構造として例えば特開昭51−705
12号に記載されたように環状溝をほぼ半楕円形状に形
成し、環状溝の外径をD2 、内径をD1 、深さをdとし
たときにd<(D2 −D1 )/4とすることにより逆流
を防止して小風量で高静圧の渦流ブロワを得ることが行
なわれていた。
2. Description of the Related Art In a conventional single-blade vortex flow pump, an annular groove structure of a casing is disclosed in, for example, Japanese Patent Laid-Open No. 51-705.
As described in No. 12, the annular groove is formed in a substantially semi-elliptical shape, and the outer diameter of the annular groove is D2, the inner diameter is D1, and the depth is d, where d <(D2-D1) / 4. Therefore, backflow is prevented and a swirl blower with a small static flow and high static pressure is obtained.

【0003】また従来の両羽根形渦流ポンプにおいて
は、ケーシングの環状溝構造として例えば特開昭49−
135209号に記載されたように環状溝外周側に環状
の突起を設けて渦の発生を防止することにより出力の向
上を図ることが行なわれている。
Further, in a conventional double-blade vortex flow pump, as an annular groove structure of a casing, for example, Japanese Patent Laid-Open No. 49-
As described in Japanese Patent No. 135209, an output is improved by providing an annular protrusion on the outer peripheral side of the annular groove to prevent the generation of vortices.

【0004】[0004]

【発明が解決しようとする課題】上記従来技術は、少風
量域における高静圧化に関するものであり、低騒音化の
ための構成については考えられていなかった。
The above-mentioned prior art relates to a high static pressure in a small air volume range, and a structure for reducing noise has not been considered.

【0005】上記従来技術においては突起または溝の浅
い部分が環状溝の全周に設けられるので、環状溝の吸込
口から吸吐中央に至る部分の断面積が減少し風量が減少
するという問題がある。また、この部分における断面積
の減少は騒音の低減についてはほとんど関与しない。
In the above-mentioned prior art, since the shallow portion of the protrusion or groove is provided on the entire circumference of the annular groove, there is a problem that the cross-sectional area of the portion of the annular groove from the suction port to the center of intake and discharge is reduced and the air volume is reduced. is there. Further, the reduction of the cross-sectional area in this portion hardly contributes to the reduction of noise.

【0006】本発明は、騒音レベルの低減が可能で、ま
た全風量域における高静圧化が可能な渦流ポンプを提供
することを目的とする。
It is an object of the present invention to provide a vortex pump capable of reducing the noise level and achieving a high static pressure in the entire air volume range.

【0007】[0007]

【課題を解決するための手段】上記目的は、羽根車と、
吸込口と吐出口を備えて上記羽根車を格納するケーシン
グを備え、上記ケーシング内の上記羽根車の羽根に対向
する部分に上記羽根車の回転方向に沿って上記吸込口か
ら吐出口に至るよう設けられ上記羽根に面して開口した
環状溝を有する渦流ポンプにおいて、上記環状溝のうち
上記吸込口から吐出口に至る部分の少なくとも中央から
上記吐出口にかけての区間の一部に上記環状溝内の断面
積を減少させる断面減少手段を備えることにより達成さ
れる。
[Means for Solving the Problems] The above object is to provide an impeller,
A casing having a suction port and a discharge port for accommodating the impeller is provided, and a portion of the casing facing the blade of the impeller extends along the rotation direction of the impeller from the suction port to the discharge port. In the vortex pump having an annular groove provided facing the blade and opening, in the annular groove, at least a part of a portion from the suction port to the discharge port of the annular groove from the center to the discharge port This is achieved by providing a cross-section reduction means for reducing the cross-sectional area of

【0008】好ましい実施態様においては、上記断面減
少手段は回転軸を通る平面で切断した断面が上記環状溝
の外周側の縁の近傍から上記環状溝の底面に至る斜面状
の突出部で形成される。
In a preferred embodiment, the cross-section reducing means has a cross-section cut by a plane passing through the rotation axis and formed by a slanting projection extending from the vicinity of the outer peripheral edge of the annular groove to the bottom surface of the annular groove. It

【0009】他の好ましい実施態様においては、上記環
状溝は上記ケーシングの上記羽根車に対向する面からの
深さが、上記環状流路中央部と上記吸込口との中間位
置、上記環状流路中央部、上記環状流路中央部と吐出口
との中間位置の順で深くなる。
In another preferred embodiment, the annular groove has a depth from a surface of the casing facing the impeller, an intermediate position between the central portion of the annular passage and the suction port, and the annular passage. It becomes deeper in the order of the central portion, the intermediate portion between the central portion of the annular flow passage and the discharge port.

【0010】[0010]

【作用】羽根車は原動機により駆動されて回転し外周部
から流出する流体の内部流れを作り出す。断面縮小手段
は羽根車から流出する内部流れに対して斜面をなし、こ
の内部流れを積極的に進路変更するよう、内周側に導
く。これにより羽根車外周部からから流出する内部流れ
は内周側に導かれ、羽根車の外周部から離れた部分から
流出する流れと密接して流れる。このため羽根車外周部
から流出する流れと、外周部から離れた部分から流出す
る流れとの速度差による剥離が少なくなるため音の発生
を抑制することができ、同時に内部流れの乱れによる損
失も抑えられることで、静圧上昇を得ることができる。
The impeller is driven by the prime mover to rotate and generate an internal flow of the fluid flowing out from the outer peripheral portion. The cross-section reducing means forms an inclined surface with respect to the internal flow flowing out from the impeller and guides the internal flow to the inner peripheral side so as to positively change the course. As a result, the internal flow flowing out from the outer peripheral portion of the impeller is guided to the inner peripheral side and closely flows with the flow flowing out from the portion away from the outer peripheral portion of the impeller. Therefore, the separation due to the speed difference between the flow flowing out from the outer peripheral portion of the impeller and the flow flowing out from the portion away from the outer peripheral portion is reduced, so that the generation of sound can be suppressed, and at the same time, the loss due to the turbulence of the internal flow is also reduced. By being suppressed, the static pressure can be increased.

【0011】また、締め切り運転付近では内部流れを速
やかに内周側に導き羽根車内周部での流入速度を低下さ
せることで、騒音の発生を抑制する事が出来、同時に内
部流れの乱れによる損失も抑えられることで、静圧上昇
を得ることができる。
Further, near the deadline operation, the internal flow is promptly guided to the inner peripheral side and the inflow speed at the inner peripheral portion of the impeller is reduced to suppress the generation of noise, and at the same time, the loss due to the turbulence of the internal flow is caused. By also suppressing, it is possible to obtain an increase in static pressure.

【0012】また、吸込側では流路面積が確保されるの
で風量の低下を防止できる。
Further, since the flow passage area is secured on the suction side, it is possible to prevent a decrease in the air volume.

【0013】[0013]

【実施例】以下本発明の実施例を図1〜図21により説
明する。
EXAMPLES Examples of the present invention will be described below with reference to FIGS.

【0014】本発明の第1実施例を図1〜図5、および
図18〜図21により説明する。本実施例は、本発明を
カップ形渦流ポンプに適用した例である。
A first embodiment of the present invention will be described with reference to FIGS. 1 to 5 and 18 to 21. The present embodiment is an example in which the present invention is applied to a cup type vortex flow pump.

【0015】カップ形渦流ポンプは図1、図5に示され
るように羽根車1に設けられた環状溝1b中に複数枚の
ブレード1aを有する片羽根の渦流ポンプである。
The cup type vortex flow pump is a single-blade vortex flow pump having a plurality of blades 1a in an annular groove 1b provided in an impeller 1 as shown in FIGS.

【0016】羽根車1は原動機4の回転軸14を中心に
して回転するよう設けられ、ケーシング3には吸込口3
bと吐出口3cが設けられ、内部に羽根車1が格納され
る空間を有している。本実施例では原動機4として誘導
電動機が用いられる。このケーシング3内の羽根車1の
羽根1aに対向する部分には、羽根車1の回転方向に沿
って吸込口3bから吐出口3cに至るよう設けられ羽根
1aに面して開口したケーシングの環状溝3a(以下環
状溝3a)が設けられる。
The impeller 1 is provided so as to rotate around a rotary shaft 14 of a prime mover 4, and a suction port 3 is provided in a casing 3.
b and the discharge port 3c are provided, and there is a space in which the impeller 1 is stored. In this embodiment, an induction motor is used as the prime mover 4. In the portion of the casing 3 facing the blade 1a of the impeller 1, the casing annular shape is provided so as to extend from the suction port 3b to the discharge port 3c along the rotation direction of the impeller 1 and opens toward the blade 1a. A groove 3a (hereinafter referred to as an annular groove 3a) is provided.

【0017】羽根車1は多数枚の羽根1aが環状溝3a
を横切るよう配置され、羽根車1の環状溝1b(以下羽
根車環状溝1b)は微少ギャップgを介して環状溝3a
に対向する。
The impeller 1 has a large number of blades 1a and an annular groove 3a.
The annular groove 1b of the impeller 1 (hereinafter referred to as the impeller annular groove 1b) is disposed so as to cross the annular groove 3a via a minute gap g.
To face.

【0018】環状溝3aの吸込口3bと吐出口3cとの
間の円周上の一部分は隔壁部3dにより仕切られ、この
隔壁部3dに隣接する環状溝3aの底部には羽根車1の
回転方向の終点側に吸込口3b、羽根車1の回転方向の
始点側に吐出口3cがそれぞれ開口している。環状溝3
aのうち吸込口3bから吐出口3cに至る部分の少なく
とも中央(以下吸吐中央3e)から吐出口3cにかけて
の区間の一部に環状溝3a内の断面積を減少させる断面
減少手段を備えたものである。
A part of the circumference of the annular groove 3a between the suction port 3b and the discharge port 3c is partitioned by a partition wall portion 3d, and the impeller 1 rotates at the bottom of the annular groove 3a adjacent to the partition wall portion 3d. The suction port 3b is opened at the end point side in the direction, and the discharge port 3c is opened at the start point side in the rotation direction of the impeller 1. Annular groove 3
A cross-section reducing means for reducing the cross-sectional area in the annular groove 3a is provided in at least a part of a section from a suction port 3b to the discharge port 3c in the section a, from at least the center (hereinafter referred to as the suction / discharge center 3e) to the discharge port 3c. It is a thing.

【0019】この断面減少手段は本実施例では回転軸を
通る平面で切断した断面が環状溝3aの外周側の縁の近
傍(羽根車1外周との微少ギャップgの近傍)からこの
環状溝3aの底面に至る斜面状の突出部で形成された断
面縮小部3fである。
In this embodiment, the cross-section reducing means has a cross-section cut along a plane passing through the rotation axis from the vicinity of the outer peripheral edge of the annular groove 3a (near the minute gap g with the outer circumference of the impeller 1). 3f is a cross-sectional reduction portion 3f formed by a slope-shaped projecting portion reaching the bottom surface.

【0020】本実施例においては、図2に示すように、
環状溝3aの吸吐中央3eから吐出口3c中心までの区
間の内、吸吐中央3e寄りの7割の区間内に上記の断面
減少手段を設けている。
In this embodiment, as shown in FIG.
The cross-section reducing means is provided in 70% of the section of the annular groove 3a from the suction / discharge center 3e to the center of the discharge port 3c near the suction / discharge center 3e.

【0021】具体的には、本実施例では吸吐中央3eか
ら吐出口3c中心までは角度にして160度あるので、
断面減少手段が設けられるのは吸吐中央3eから112
度までの区間である。
Specifically, in this embodiment, the angle from the suction / discharge center 3e to the center of the discharge port 3c is 160 degrees,
The cross-section reducing means is provided in the suction and discharge centers 3e to 112.
It is a section up to degrees.

【0022】この断面減少手段が設けられる区間の範囲
は、最大は吸吐中央3eから始まり、吐出口方向に環状
溝に沿って112度の角度の位置に至る区間であり、最
小は実験的に吸吐中央3eから吐出口方向に環状溝に沿
って30度の角度の位置から始まり、90度の角度の位
置に至る区間である。このときの断面減少手段の区間の
長さは最大値に対して約4割である。
The range of the section where the cross-section reducing means is provided is such that the maximum starts from the intake / exhaust center 3e and reaches the position of an angle of 112 degrees along the annular groove in the discharge port direction, and the minimum is experimentally. It is a section starting from the position of 30 degrees along the annular groove in the discharge port direction from the suction / discharge center 3e to the position of 90 degrees. At this time, the length of the section of the section reducing means is about 40% of the maximum value.

【0023】断面減少手段は特願平2−279013号
に記載のように吐出口または吸込口の部分に設けられて
もよい。この場合、吐出側においては内部流れの隔壁3
dに衝突する部分が抑制されて流れがスムーズになって
さらに低騒音化を図ることができ、吸込側では内部流れ
が羽根車1の近傍を通過するよう導かれ、羽根車1から
速度を与えられて十分に加速されるので風量の増大を図
ることができる。
The cross-section reducing means may be provided at the portion of the discharge port or the suction port as described in Japanese Patent Application No. 2-279013. In this case, on the discharge side, the internal flow partition 3
The part that collides with d is suppressed, the flow becomes smoother, and the noise can be further reduced. On the suction side, the internal flow is guided so as to pass near the impeller 1, and the speed is given from the impeller 1. As a result, the air volume can be increased because it is accelerated sufficiently.

【0024】本実施例においては、原動機4は回転軸1
4を中心にして、羽根車1を回転させ、羽根車環状溝1
b中の複数枚のブレード1aにより、図3(a)、
(b)に示すように、内部流れを環状溝3aと羽根車環
状溝1bの中に発生させる。
In the present embodiment, the prime mover 4 is the rotary shaft 1
Rotate the impeller 1 about 4 to rotate the impeller annular groove 1
3 (a) by the plurality of blades 1a in FIG.
As shown in (b), an internal flow is generated in the annular groove 3a and the impeller annular groove 1b.

【0025】つまり、ケーシングの吸込口3bから吸吐
中心3eを通り断面縮小手段3fを経て吐出口3cに至
る旋回を持つ内部流れを形成する構造である。
In other words, the structure is such that an internal flow having a swirl from the suction port 3b of the casing to the discharge port 3c through the suction / discharge center 3e and the cross-section reducing means 3f is formed.

【0026】本実施例においては吸込口3bから吸吐中
央3eにかけて羽根車1の回転方向に十分加速された1
次流れと同時に環状流路1b,3a内を旋回する2次流
れを持つ内部流れが形成され、この内部流れは吸吐中央
3eから吐出口3cにかけて図4に稜線形状で誇張して
示した形状の断面縮小部3fを経由することで剥離を起
こさずスムーズに流れる。そのため、剥離による流れの
乱れの発生が防止でき、これにより騒音および圧力損失
の発生を防止できる。
In this embodiment, from the suction port 3b to the suction and discharge center 3e, the impeller 1 is sufficiently accelerated in the rotation direction 1
At the same time as the next flow, an internal flow having a secondary flow that swirls in the annular flow paths 1b and 3a is formed, and this internal flow extends from the suction / discharge center 3e to the discharge port 3c in a shape exaggeratedly shown by a ridge line shape in FIG. By passing through the cross-sectional reduced portion 3f, the flow smoothly without causing peeling. Therefore, it is possible to prevent the occurrence of flow turbulence due to separation, and thus to prevent noise and pressure loss.

【0027】また、締め切り運転付近での内部流れは図
18〜図20に示すようになる。この場合、図4に稜線
形状で誇張して示した形状の断面縮小部3fを経て速や
かに内周側に導かれ羽根車内周部での流入速度を低下さ
せることで、騒音の発生を抑制する事が出来、同時に内
部流れの乱れによる損失も抑えられることで、静圧上昇
を得ることができる。
The internal flow near the deadline operation is as shown in FIGS. In this case, generation of noise is suppressed by promptly being guided to the inner peripheral side through the cross-sectional reduced portion 3f having an exaggerated ridge line shape in FIG. 4 to reduce the inflow speed at the inner peripheral portion of the impeller. The static pressure can be increased by suppressing the loss due to the turbulence of the internal flow.

【0028】ここで、内部流れ30は、図18のよう
に、羽根車1外周側の点S1 から流出し、ケ−シングの
環状溝3a内に高速で流入し環状溝3aの外周側では羽
根車1の回転方向に点S2 まで流れるが、流れはそのま
ま吐出口3cへ流れるのではなく、環状溝3aの有効流
出分だけが流れるように、環状溝3aの内周側では流れ
は回転方向とは逆側に、元の流出点S1 に近い点S3 に
戻る流れとなる。
Here, as shown in FIG. 18, the internal flow 30 flows out from a point S1 on the outer peripheral side of the impeller 1, flows into the annular groove 3a of the casing at a high speed, and the blades on the outer peripheral side of the annular groove 3a. The flow in the rotational direction of the vehicle 1 reaches the point S2, but the flow does not flow to the discharge port 3c as it is, but only the effective outflow portion of the annular groove 3a flows, so that the flow is in the rotational direction on the inner peripheral side of the annular groove 3a. On the opposite side, the flow returns to the point S3 close to the original outflow point S1.

【0029】すなわち、外周、内周での流れは、ケ−シ
ング外周側:S1 →S2 (回転方向に進行角θ2 分流れ
る) ケ−シング内周側:S2 →S3 (回転方向と逆方向に戻
り角θ2’分流れる) となる。
That is, the flow on the outer circumference and the inner circumference is as follows: Outer side of the casing: S1 → S2 (flowing by the advancing angle θ2 in the rotating direction) Inner side of the casing: S2 → S3 (in the direction opposite to the rotating direction) The return angle θ2 'flows).

【0030】つまり、羽根車1外周側の点S1 から流出
した流れは、羽根車1の内周側に戻るときは点S1 では
なく、繰越流量QIK分だけ回転方向に進んだ点S3 に戻
る。
That is, the flow flowing out from the point S1 on the outer peripheral side of the impeller 1 does not return to the point S1 when returning to the inner peripheral side of the impeller 1, but returns to the point S3 advanced in the rotational direction by the carry-forward flow rate QIK.

【0031】従来のように、環状溝3aの流路断面が半
円状であれば、環状溝3a外周側では点S1 から点S2
まで進行角θ2 分大きく流れるから、環状溝3aの内周
側でも点S2 から点S3 に戻るとき角度θ2’分大きく
戻って流れるため、点S3 から羽根車への流入状態は、
図20のように、流速w1 で羽根車へ流入することにな
る。
As in the conventional case, if the flow passage cross section of the annular groove 3a is semicircular, points S1 to S2 are provided on the outer peripheral side of the annular groove 3a.
Since the flow angle greatly flows up to the angle θ2 ′ even when the inner peripheral side of the annular groove 3a returns from the point S2 to the point S3, the flow state from the point S3 to the impeller is as follows.
As shown in FIG. 20, it flows into the impeller at a flow velocity w1.

【0032】渦流ブロワの締め切りにおける騒音は、羽
根車の内周側における、流れの流入に伴う乱れの大きさ
に大きく起因する。内部流れを測定したところ、流速w
1 はu2 の約2倍もあることから、流れの羽根流入時の
乱れが大きく、騒音発生量も大きい欠点を有していた。
The noise at the deadline of the vortex flow blower is largely due to the magnitude of the turbulence associated with the flow inflow on the inner peripheral side of the impeller. When the internal flow was measured, the flow velocity w
Since 1 is about twice as large as u2, it has the drawbacks that the turbulence of the flow when flowing into the blade is large and the amount of noise generated is large.

【0033】例えば、羽根径D2 が210mm、回転数
が2850rpmの渦流ブロワについて、内部流れを測
定したところ、羽根周速u2 は31.3m/s、流量が
締切り点ではC2 は78.5m/s(C2 はケ−シング
内に断面減少手段3fの有無によっての差異はない)、
C1 は76.5m/s、w1 は93.5m/sもあり、
図22に示すように200〜1000Hzにおける周波
数成分(流動騒音)および2000Hz付近の周波数成
分(サイレン音)が大きく、騒音レベルはオーバーオー
ルで63dbあった。
For example, when the internal flow of a vortex flow blower with a blade diameter D2 of 210 mm and a rotation speed of 2850 rpm was measured, the blade peripheral speed u2 was 31.3 m / s and C2 was 78.5 m / s at the cutoff point. (C2 does not differ depending on the presence or absence of the cross-section reducing means 3f in the casing),
C1 is 76.5m / s, w1 is 93.5m / s,
As shown in FIG. 22, the frequency component (fluid noise) at 200 to 1000 Hz and the frequency component near 2000 Hz (siren sound) were large, and the noise level was 63 db overall.

【0034】本実施例により、環状溝3a断面が半円状
でなく図3のように環状溝3a外周側の流路面積を小さ
くすれば、図3のように流れも30から30’に変わ
り、円弧S1 、S2 の長さも従来に比べ短くなるから、
流れの回転方向進行角も従来のθ2 からθ2’に大幅に
小さくなる。
According to this embodiment, if the cross section of the annular groove 3a is not semicircular and the flow passage area on the outer peripheral side of the annular groove 3a is reduced as shown in FIG. 3, the flow also changes from 30 to 30 'as shown in FIG. , The lengths of the arcs S1 and S2 are also shorter than before,
The advancing angle of the flow in the rotational direction is also significantly reduced from the conventional θ2 to θ2 '.

【0035】流れの環状溝3a外周側における進行角が
小さくなると、流れの環状溝3a内周側における点S2
から点S3 への戻り角も小さくなるから、このため図1
9のように流れの羽根車への流入速度はw2’となっ
て、従来のw2より大幅に小さくなる。
When the traveling angle on the outer peripheral side of the flow annular groove 3a becomes smaller, a point S2 on the inner peripheral side of the flow annular groove 3a becomes smaller.
Therefore, the return angle from S3 to point S3 is also small,
As in No. 9, the inflow velocity of the flow into the impeller is w2 ', which is significantly smaller than the conventional w2.

【0036】上記の羽根車径D2 が210mmの場合、
本実施例の羽根流入速度w2’は65.2mmとなっ
て、従来のw1 の93.5m/sより大幅に小さくなっ
た。この結果、流れの羽根流入に伴う乱れも大幅に減少
し、図21に示すように200〜1000Hzおよび2
000Hz付近での周波数成分が減衰して騒音レベルは
オーバーオールで56dbとなり、従来より7dbも静
音化を達成することができた。
When the above-mentioned impeller diameter D2 is 210 mm,
The blade inflow velocity w2 'of this embodiment was 65.2 mm, which was significantly smaller than the conventional w1 of 93.5 m / s. As a result, the turbulence of the flow due to the inflow of the blades is also significantly reduced, and as shown in FIG.
Since the frequency component near 000 Hz was attenuated, the overall noise level was 56 db, and it was possible to achieve noise reduction of 7 db compared to the conventional case.

【0037】また、乱れの低減により動力を約3割減少
させることができた。
Also, the power could be reduced by about 30% by reducing the turbulence.

【0038】上記のごとく、本実施例では、カップ形渦
流ポンプのケーシング環状溝外周側が、外周側の微少ギ
ャップ近傍から始まる斜面により断面を縮小する手段を
持ち、羽根車外周部から流出する内部流れを、この斜面
に沿って積極的に内周側に導くことにより流れの剥離を
防止して低騒音化、高静圧化を図るものである。具体的
には騒音レベルで約7dBまでの低下、つまり発生騒音
エネルギーを2割までの低減の効果が得られる。また同
時に1割程度の圧力上昇の効果が得られる。
As described above, in the present embodiment, the outer peripheral side of the casing annular groove of the cup-type vortex pump has a means for reducing the cross section by the inclined surface starting from the vicinity of the minute gap on the outer peripheral side, and the internal flow flowing out from the outer peripheral portion of the impeller. Is positively guided to the inner peripheral side along this slope to prevent flow separation, resulting in low noise and high static pressure. Specifically, the noise level can be reduced to about 7 dB, that is, the generated noise energy can be reduced by up to 20%. At the same time, the effect of increasing the pressure by about 10% can be obtained.

【0039】断面減少手段3fはケーシングとは別部材
で形成してこれを環状溝3aに取付け、この別部材の斜
面に沿って内部流れを内周側に導くように構成してもよ
い。ケーシングは一般にアルミダイキャストで形成され
るが、断面減小手段3fを鋼材、セラミック材、あるい
はふっ素樹脂等で形成してもよい。
The cross-section reducing means 3f may be formed as a separate member from the casing and attached to the annular groove 3a so as to guide the internal flow to the inner peripheral side along the slope of the separate member. The casing is generally formed by aluminum die casting, but the cross-section reducing means 3f may be formed by a steel material, a ceramic material, a fluororesin, or the like.

【0040】即ち、図3に示すように、断面減少手段3
fを環状溝3aと別部材とすることで、形状の最適化を
図れ、耐摩耗性材料の使用、耐食性材料の使用を可能に
でき、摩耗時の交換を容易にする構造である。これによ
り、周速の2倍ほどの内部流速にさらされる渦流ポンプ
においても良好な断面減少手段を維持することが可能と
なる。
That is, as shown in FIG. 3, the cross-section reducing means 3
By using f as a separate member from the annular groove 3a, it is possible to optimize the shape, enable the use of wear-resistant materials and the use of corrosion-resistant materials, and facilitate the replacement during wear. As a result, it becomes possible to maintain a good cross-section reducing means even in the vortex flow pump that is exposed to an internal flow velocity that is twice the peripheral velocity.

【0041】本発明の第2実施例を図6〜図10により
説明する。
A second embodiment of the present invention will be described with reference to FIGS.

【0042】本実施例は、断面減小手段としての斜面の
機能をより効果的なものとするためほぼ斜面中央と考え
られる位置を特定するものである。
In this embodiment, in order to make the function of the slope as the cross-section reducing means more effective, the position considered to be approximately the center of the slope is specified.

【0043】本実施例においては、環状溝3aの内周
径、外周径をそれぞれD1 、D2 としたとき、図6に示
すように、吸込口3bから吐出口3cに至る環状溝3a
の、少なくとも吸吐中央3eから吐出口3c中心までの
区間の内、吸吐中央3e寄りの7割の区間において、環
状溝3a内の(3D2 +D1 )/4の径における流路面
の深さP1 (斜面の表面位置)が、環状溝3aの中心径
(D2 +D1 )/2における環状溝3a底面の深さより
(D2 −D1 )/8以上浅くなるよう構成したものであ
る。
In this embodiment, when the inner and outer diameters of the annular groove 3a are D1 and D2, respectively, as shown in FIG. 6, the annular groove 3a extending from the suction port 3b to the discharge port 3c is shown.
Of at least the section from the discharge center 3e to the center of the discharge port 3c, 70% of the section closer to the discharge center 3e, the depth P1 of the flow path surface at the diameter of (3D2 + D1) / 4 in the annular groove 3a. The surface position of the inclined surface is configured to be shallower by (D2-D1) / 8 or more than the depth of the bottom surface of the annular groove 3a at the center diameter (D2 + D1) / 2 of the annular groove 3a.

【0044】すなわち、本実施例では吸吐中央3eから
吐出口3c中心までは角度にして160度あるので、吸
吐中央3eから112度までの区間で環状溝の深さが上
記の関係を有しながら浅くなる。
That is, in this embodiment, since the angle from the discharge center 3e to the center of the discharge port 3c is 160 degrees, the depth of the annular groove has the above relationship in the section from the discharge center 3e to 112 degrees. While becoming shallower.

【0045】この区間は必要に応じて吸吐中央3eから
吸込口3b中心までの区間の内、吸吐中央3e寄りの7
割の区間にまで延びてもよい。
In this section, if necessary, of the section from the suction / discharge center 3e to the center of the suction port 3b, 7 near the suction / discharge center 3e.
It may extend to a relatively long section.

【0046】吸吐中央3eから吐出側では内部流れは周
方向の成分が旋回方向の成分より大きくなる。そのた
め、低騒音対策等は主としてこの周方向成分について行
なえばよい。流れの乱れによる騒音を低減するには外周
側での流れの剥離を防止することが重要である。このた
めには環状溝の断面積を減少させることが考えられる
が、単に減少させた場合には流れの流路が狭くなり過ぎ
るので風量が低下するという問題がある。
On the discharge side from the suction / discharge center 3e, the component in the circumferential direction becomes larger than the component in the swirling direction. Therefore, low noise measures and the like may be mainly performed on this circumferential component. In order to reduce noise due to flow turbulence, it is important to prevent flow separation on the outer peripheral side. For this purpose, it is conceivable to reduce the cross-sectional area of the annular groove, but if it is simply reduced, there is a problem that the air flow rate decreases because the flow passage becomes too narrow.

【0047】本実施例では上記のように断面減少手段を
外周側に設けることにより内周側で断面積を確保し、風
量の維持を図る。
In this embodiment, the cross-section reducing means is provided on the outer peripheral side as described above to secure the cross-sectional area on the inner peripheral side and to maintain the air volume.

【0048】このように構成することにより、気流の剥
離を有効に防止でき、内部流れの乱れによる損失を抑え
られて静圧上昇を図ることができる。
With this structure, the separation of the air flow can be effectively prevented, the loss due to the turbulence of the internal flow can be suppressed, and the static pressure can be increased.

【0049】図7は本実施例の第1の変形例であり、環
状溝3a断面減少手段3fをより有効に使用するため断
面減少手段3fの中間位置を図6で基準とした位置P1
より浅い位置とした例である。
FIG. 7 shows a first modification of the present embodiment. In order to use the annular groove 3a section reducing means 3f more effectively, the intermediate position of the section reducing means 3f is used as a reference position P1 in FIG.
This is an example of a shallower position.

【0050】図8は本実施例の第2の変形例であり、断
面減小手段3fを環状溝3aの内周および外周の縁から
環状溝底面に向かって設けたものにおいて位置P1 にお
ける深さの関係を図6と同様にしたものである。
FIG. 8 shows a second modification of this embodiment, in which the cross-section reducing means 3f is provided from the inner and outer edges of the annular groove 3a toward the bottom surface of the annular groove, and the depth at the position P1. Is similar to that of FIG.

【0051】図9は、本実施例の第3の変形例であり、
断面減少手段3fを環状溝3aの外周側において羽根車
1の外周側との間に微少ギャップgを形成する位置
(縁)の近傍から若干の間隙を持った後始まり、環状溝
3aの底面に至る斜面状の突出部で形成されたものであ
る。
FIG. 9 shows a third modification of this embodiment.
The cross-section reducing means 3f is started on the outer peripheral side of the annular groove 3a with a slight gap from the vicinity of the position (edge) where the minute gap g is formed between the outer peripheral side of the impeller 1 and the outer peripheral side of the impeller 1, and then on the bottom surface of the annular groove 3a. It is formed of a slope-shaped projecting portion.

【0052】環状溝3aの断面減少手段3fを環状溝外
周側の縁から若干スキマを開けて設定し、外周側垂直部
を若干残すことにより位置決めの容易性を図ることがで
きる。
The cross-section reducing means 3f of the annular groove 3a is set with a slight clearance from the edge on the outer peripheral side of the annular groove, and the outer peripheral side vertical portion is left a little to facilitate positioning.

【0053】図10は、本実施例の第4の変形例であ
り、環状溝3aの断面減少手段3fをより有効に使用す
るため断面減少手段3fの外周側位置を図9で基準とし
た位置P1 よりも浅いものとした例である。
FIG. 10 shows a fourth modification of the present embodiment. In order to use the cross-section reducing means 3f of the annular groove 3a more effectively, the position on the outer peripheral side of the cross-section reducing means 3f is used as a reference in FIG. In this example, the depth is shallower than P1.

【0054】本変形例では、環状溝3aの(3D2 +D
1 )/4の径におけるP1 点と、同一断面中の環状溝3
aの径が(3D2 +D1 )/4からD2 までの流路形状
を示す曲線との接線の、D2 における微少ギャップ面か
らの深さが、(D2 −D1 )/10よりも小さくなるよ
う構成したものである。
In this modification, (3D2 + D of the annular groove 3a is
1) / 4 diameter P1 point and annular groove 3 in the same cross section
The depth of the tangent to the curve showing the channel shape from (3D2 + D1) / 4 to D2 having a diameter of a is smaller than (D2-D1) / 10 at the minute gap surface at D2. It is a thing.

【0055】本発明の第3実施例を図11により説明す
る。本実施例は、羽根車1と、吸込口3bと吐出口3c
を備えて羽根車1を格納するケーシング2を備え、この
ケーシング2内の羽根車1の羽根1aに対向する部分に
羽根車1の回転方向に沿って吸込口3bから吐出口3c
に至るよう設けられ羽根1aに面して開口した環状溝3
aを有する渦流ポンプにおいて、上記環状溝3aのうち
吸込口3bから吐出口3cに至る部分の少なくとも中央
3eから吐出口3cにかけての区間の一部に環状溝3a
内の断面積を減少させる断面減少手段3fを備え、環状
溝3aはケーシング2の羽根車1に対向する面からの深
さが、環状溝3a中央部3eと吸込口3bとの中間位
置、環状溝3a中央部3e、環状溝3a中央部3eと吐
出口3cとの中間位置の順で深くなるよう構成したもの
である。
A third embodiment of the present invention will be described with reference to FIG. In this embodiment, the impeller 1, the suction port 3b and the discharge port 3c are used.
A casing 2 for accommodating the impeller 1 is provided, and a portion of the casing 2 facing the blade 1a of the impeller 1 extends from the suction port 3b to the discharge port 3c along the rotation direction of the impeller 1.
Annular groove 3 provided to reach the blade 1a and opening toward the blade 1a
In the swirl pump having a, the annular groove 3a is formed in at least a part of a section from the inlet 3b to the outlet 3c of the annular groove 3a at least from the center 3e to the outlet 3c.
The annular groove 3a is provided with a cross-section reducing means 3f for reducing the inner cross-sectional area, and the annular groove 3a has a depth from the surface of the casing 2 facing the impeller 1 at an intermediate position between the central portion 3e of the annular groove 3a and the suction port 3b. The central portion 3e of the groove 3a, the central portion 3e of the annular groove 3a and the middle position of the ejection port 3c are deepened in this order.

【0056】図11は図2の周方向断面位置A−A,C
−C,D−Dでの断面を示したもので、この順番に深さ
が。深くなる。本実施例では、開放時の大風量域でも断
面減小手段3Fにより騒音レベル低減または高静圧化を
図ることができ、さらにD−D断面が広いので風量の確
保も可能とした例である。
FIG. 11 is a sectional view taken along the circumferential direction AA, C of FIG.
The cross section at -C and DD is shown, and the depth is in this order. Get deeper. The present embodiment is an example in which the noise level can be reduced or the static pressure can be increased by the cross-section reducing means 3F even in the large air volume range when opened, and the air volume can be secured because the DD cross section is wide. ..

【0057】本発明の第4実施例を図12により説明す
る。本実施例は、環状溝3aの斜面をケーシング2と同
一部材とし、かつケーシングの斜面形成範囲において上
記環状溝3aの内面を環状溝の内側に向かって突出する
斜面状に形成したものである。図12(a)はケーシン
グ2の斜面形成範囲における最大肉厚箇所の肉厚Tを、
同一周上の斜面を形成しない箇所の肉厚tの2倍以上と
したものである。
A fourth embodiment of the present invention will be described with reference to FIG. In this embodiment, the inclined surface of the annular groove 3a is the same member as the casing 2, and the inner surface of the annular groove 3a is formed in an inclined surface projecting toward the inner side of the annular groove in the inclined surface forming range of the casing. FIG. 12A shows the wall thickness T at the maximum wall thickness portion in the slope forming range of the casing 2,
The thickness is set to be twice or more the wall thickness t of a portion where no slope is formed on the same circumference.

【0058】本図のようにケーシング肉厚部を設けて、
断面縮小部3fを形成することで、摩耗時の故障防止、
鋳物型の削り込みによる製作性の良さ迅速化を得ること
ができる。また、ケーシングの肉厚を増すことで、摩耗
に対する耐久性を向上させることができる。
As shown in the figure, by providing a thick wall portion of the casing,
By forming the cross-section reduced portion 3f, failure prevention during wear,
Good manufacturability and quickness can be obtained by cutting the casting mold. Further, by increasing the thickness of the casing, it is possible to improve durability against wear.

【0059】図12(b)は、本実施例の変形例で、環
状溝3aの部材を板厚を変えずに内部に突出させ、環状
溝3aの内側に向かって突出する斜面状に形成したもの
である。この構成によれば、材料の節減と計量化を図る
ことができる。
FIG. 12 (b) shows a modification of this embodiment, in which the member of the annular groove 3a is projected inward without changing the plate thickness, and is formed in the shape of an inclined surface projecting inward of the annular groove 3a. It is a thing. According to this configuration, it is possible to save the material and to measure the material.

【0060】なお渦流ポンプにおいて、一般に内部流れ
の最大速度は羽根車周速の2倍ほどにもなり、高速な流
れの為この様な配慮が必要である。
In a vortex flow pump, the maximum internal flow speed is generally about twice the peripheral speed of the impeller, and such consideration is necessary because of the high speed flow.

【0061】以上の実施例ではカップ形への適用形状で
示しているが、両羽根形でも吸込側断面形状を大きくす
ることは容易であり同じように実施可能である。
In the above embodiment, the shape applied to the cup type is shown, but it is easy to increase the suction side cross-sectional shape even in the double blade type, and it is possible to carry out in the same manner.

【0062】本発明の第5実施例を図13〜17により
説明する。
A fifth embodiment of the present invention will be described with reference to FIGS.

【0063】本実施例は本発明を両羽根形渦流ポンプに
適用した例である。本実施例の基本構成を図13〜図1
5により説明する。本実施例は、両羽根形渦流ポンプの
ケーシング環状溝外周側に、微少ギャップ近傍から羽根
車側方に傾いた斜面で断面を減少する手段を持ち、羽根
車外周部から流出する内部流れをその斜面に沿って積極
的に羽根車側方に導き、吐出口または羽根車内周部に至
らせるものである。
The present embodiment is an example in which the present invention is applied to a double-blade vortex flow pump. The basic configuration of this embodiment is shown in FIGS.
5 will be described. The present embodiment has means for reducing the cross-section on the outer peripheral side of the casing annular groove of the double-blade vortex pump by the slope inclined from the vicinity of the minute gap to the side of the impeller, and the internal flow flowing out from the outer peripheral part of the impeller is It positively guides to the side of the impeller along the slope and reaches the discharge port or the inner circumference of the impeller.

【0064】本実施例の構成は、回転軸に対して略放射
状に突出する多数枚の羽根101aを外周部に有する両
羽根形の羽根車101、羽根車101の羽根101aに
対応して側方及び外周側に環状溝103aを有するケー
シング102、羽根車101の羽根101aに対応して
側方及び外周側に開口する環状溝115aを有するサイ
ドカバー115、ケーシング環状溝101aの円周上の
一部分を仕切る隔壁部103d、ケーシング隔壁部10
3dに隣接し羽根車101に軸方向側に開口する吸込口
103b、ケーシング隔壁部103dに隣接し、羽根車
回転に対向する側に開口する吐出口103cを有する両
羽根形渦流ポンプにおいて、環状溝103aのうち吸込
口103bから吐出口103cに至る部分の少なくとも
中央から上記吐出口103cにかけての区間の一部に環
状溝103a内の断面積を減少させる断面減少手段10
3fを備えて成るものである。
The structure of this embodiment has a double vane type impeller 101 having a large number of vanes 101a protruding substantially radially with respect to the rotating shaft on the outer peripheral portion thereof, and a side face corresponding to the vane 101a of the impeller 101. And a casing 102 having an annular groove 103a on the outer peripheral side, a side cover 115 having an annular groove 115a opening to the side and the outer peripheral side corresponding to the blade 101a of the impeller 101, and a part of the casing annular groove 101a on the circumference. Partition wall portion 103d and casing partition wall portion 10
In the double-blade vortex pump having a suction port 103b that is adjacent to the impeller 101 and opens on the axial direction side of the impeller 101, and a discharge port 103c that is adjacent to the casing partition wall portion 103d and that is open on the side facing the impeller rotation, an annular groove The cross-section reducing means 10 that reduces the cross-sectional area in the annular groove 103a in at least a part of a section from the suction port 103b to the discharge port 103c of the portion 103a to the discharge port 103c.
It is provided with 3f.

【0065】本実施例においては、原動機4により両羽
根形羽根車101が回転されて、カップ形渦流ポンプと
同様に内部流れが発生される。この場合、吸込口103
bから吸吐中心103eにかけて羽根車101の回転方
向に十分に加速された1次流れと、ブレード101a間
と環状流路103a内を旋回する2次流れを成分とする
内部流れが形成され、次に吸吐中央103eから吐出口
103cにかけて、断面縮小部103fを経由すること
により内部流れは剥離を起こさずスムーズに流れる。
In this embodiment, the double-blade impeller 101 is rotated by the prime mover 4, and an internal flow is generated as in the cup-type vortex pump. In this case, the suction port 103
The primary flow that is sufficiently accelerated in the rotation direction of the impeller 101 from b to the intake / exhaust center 103e and the internal flow that has the secondary flow swirling between the blades 101a and the annular flow passage 103a as components are formed. In addition, the internal flow smoothly flows from the suction / discharge center 103e to the discharge port 103c without passing through the cross-sectional reduction portion 103f.

【0066】図14,図15は、本実施例の両羽根形渦
流ポンプでの基本動作を示すもので、羽根車101外周
部中心から流出する流れは、本実施例の斜面による断面
減少手段103fにより環状溝103a側方に導かれ、
羽根車外周部中心からややずれて流出する内部流れを環
状溝103a側方に導きかつ密接して流れる。よって従
来発生していた羽根車外周部中心から流出する流れと羽
根車外周部中心からずれて流出する流れとの速度差によ
る剥離が少なくなるため音の発性を抑制することがで
き、同時に内部流れの乱れによる損失も抑えられること
で、静圧上昇を得ることができる。
FIGS. 14 and 15 show the basic operation of the double-blade vortex flow pump of this embodiment. The flow flowing out from the center of the outer peripheral portion of the impeller 101 is the cross-section reducing means 103f due to the slope of this embodiment. Is guided to the side of the annular groove 103a by
The internal flow, which is slightly displaced from the center of the outer peripheral portion of the impeller, is guided to the side of the annular groove 103a and closely flows. Therefore, since the separation due to the speed difference between the flow that flows out from the center of the outer peripheral part of the impeller and the flow that deviates from the center of the outer peripheral part of the impeller, which occurs in the past, is reduced, the sound generation can be suppressed, and at the same time the internal sound can be suppressed. Since the loss due to the turbulence of the flow is also suppressed, the static pressure can be increased.

【0067】従って本実施例によれば両羽根形渦流ポン
プの騒音レベルの低減および静圧の上昇を図ることがで
きる。
Therefore, according to this embodiment, it is possible to reduce the noise level and increase the static pressure of the double-blade vortex flow pump.

【0068】また、断面減少手段としての斜面の形状
は、図16に示すように、ケーシング環状溝103a外
周側のラジアル方向ギャップ面の径をD1 、ケーシング
環状溝103a外周側の最大径をD2 、側方ギャップを
g2、面幅をBとしたとき、ケーシング環状溝外周側の
吸吐中央から吸込口中心までの区間の内、吸吐中央寄り
の7割の区間および吸吐中央から吐出口中心までの区間
の内、吸吐中央寄りの7割の区間において、ケーシング
環状溝の(D2 +D1 )/2の径における流路面の深さ
が、側方ギャップg2 面における環状溝外周側のラジア
ル方向深さの最大値より(D2 −D1 )/8以上浅くな
るような形状である。
As shown in FIG. 16, the diameter of the radial gap surface on the outer peripheral side of the casing annular groove 103a is D1, the maximum diameter on the outer peripheral side of the casing annular groove 103a is D2, as shown in FIG. When the side gap is g2 and the face width is B, 70% of the section from the center of suction and discharge on the outer peripheral side of the casing annular groove to the center of the suction port, and 70% of the section near the center of discharge and the center of discharge port from the center of discharge. In the 70% section near the intake / exhaust center of the section up to, the depth of the flow passage surface at the diameter (D2 + D1) / 2 of the casing annular groove is the radial direction on the outer peripheral side of the annular groove on the side gap g2 surface. The shape is shallower than the maximum depth by (D2-D1) / 8 or more.

【0069】斜面により断面を減少する手段103fを
図15に示すように別部材の取付けとして、この別部材
の斜面に沿って内部流れを羽根車側方に導き、吐出口ま
たは羽根車内周部に至らせるよう構成してもよい。
As shown in FIG. 15, the means 103f for reducing the cross section by the slope is attached to another member, and the internal flow is guided to the side of the impeller along the slope of this separate member to the discharge port or the inner circumference of the impeller. It may be configured to reach.

【0070】本実施例の第1の変形例を図15により説
明する。本変形例は斜面の機能をより効果的なものとす
るため、斜面の起点位置を指定し、ケーシング環状溝の
断面減少手段を、微少ギャップg1 近傍でかつ若干の隙
間を持って始った後、側面方向に傾く斜面で形成したも
のである。本変形例では、図15に示すように、環状溝
103aの断面減少手段103fはケーシング環状溝1
03aの外周側ギャップ部g1 近傍でかつギャップg1
から若干隙間を設けて設定される。この隙間は位置決め
の基準として使用可能である。
A first modification of this embodiment will be described with reference to FIG. In order to make the function of the slope more effective in this modification, after the start position of the slope is specified and the section reducing means of the casing annular groove is started near the minute gap g1 and with a slight gap, It is formed by a slope inclined in the side direction. In this modification, as shown in FIG. 15, the cross-section reducing means 103f of the annular groove 103a is the casing annular groove 1
In the vicinity of the outer peripheral side gap portion g1 of 03a and the gap g1
Therefore, it is set with a slight gap. This gap can be used as a reference for positioning.

【0071】本実施例の第2の変形例を図17により説
明する。本変形例は、環状溝103a断面減少手段10
3fをより有効に使用するため断面減少手段103fの
中間位置を第1の変形例で基準とした位置P1 より浅い
ものとした例である。本変形例では図17に示されるよ
うに、ケーシング環状溝103a外周側の幅中心におい
て微少ギャップ面g1 からP1 までの深さが、(D2 −
D1 )/10以下となるよう定められ、環状溝103a
の断面をより減少させて気流を内周側に導く効果を向上
させる。
A second modification of this embodiment will be described with reference to FIG. In this modification, the annular groove 103a cross-section reducing means 10 is used.
This is an example in which the intermediate position of the cross-section reducing means 103f is shallower than the position P1 which is the reference in the first modification in order to use 3f more effectively. In this modification, as shown in FIG. 17, the depth from the minute gap surface g1 to P1 is (D2-
D1) / 10 or less, the annular groove 103a
The cross section of is further reduced to improve the effect of guiding the airflow to the inner peripheral side.

【0072】また、本実施例の第3の変形例として、ケ
ーシング102外周側のケーシング微少ギャップ面から
の深さを、吸吐中央103eとケーシング吸込口103
bとの中間位置,吸吐中央103e,吸吐中央103e
と吐出口103cとの中間位置の順で大きくしてもよい
(図示せず)。この変形例は大風量特性も考慮し、周方
向吸込側においては、ケーシング環状溝の外周側に斜面
を設けず羽根車外周側からの流出流れを、外周側に沿わ
せることで吸込口から吸い込まれる流れと交叉しない流
れとするものである。本変形例によれば、吸込側流路断
面の指定を加えることで、吸吐中央の断面を吸込口から
吸吐中央まで一定値で連続させたものに比較して2割程
度の最大風量増を図ることができる。
As a third modification of this embodiment, the depth from the casing micro gap surface on the outer peripheral side of the casing 102 is determined by the suction / discharge center 103e and the casing suction port 103.
Intermediate position with b, suction / discharge center 103e, suction / discharge center 103e
The intermediate position between the discharge port 103c and the discharge port 103c may be increased in this order (not shown). In this modified example, considering the large air flow characteristic, on the suction side in the circumferential direction, the outflow from the outer peripheral side of the impeller is sucked from the suction port by arranging the outflow from the outer peripheral side of the impeller without providing a slope on the outer peripheral side of the casing annular groove. It is a flow that does not intersect with the flow. According to this modification, by adding the designation of the cross section of the suction side flow path, the maximum air flow rate is increased by about 20% as compared with the case where the cross section of the suction and discharge center is continuous from the suction port to the suction and discharge center at a constant value. Can be planned.

【0073】本変形例においてケーシングの斜面形成範
囲における肉厚を他の部分の2倍以上とすることによ
り、斜面部分103fが肉厚となり、羽根車101から
の高速の流れとの摩耗によるケーシング102への穴明
き等の損傷を防止できる。
In this modified example, the wall thickness in the slope forming range of the casing is made twice as large as that of the other portions, so that the slope portion 103f becomes thicker, and the casing 102 due to abrasion with the high speed flow from the impeller 101. It is possible to prevent damage such as hole punching.

【0074】[0074]

【発明の効果】本発明によれば、環状溝減少手段により
内部流れの剥離を防止できるので、騒音レベルの低減が
可能で、また全風量域における高静圧化が可能な渦流ポ
ンプを得ることを目的とする。
According to the present invention, since the internal flow can be prevented from being separated by the annular groove reducing means, it is possible to obtain a vortex pump capable of reducing the noise level and increasing the static pressure in the entire air volume range. With the goal.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の第1実施例の構成の分解斜視図。FIG. 1 is an exploded perspective view of the configuration of a first embodiment of the present invention.

【図2】本発明の第1実施例の流路の平面図。FIG. 2 is a plan view of the flow channel according to the first embodiment of the present invention.

【図3】本実施例の流路の断面図で、(a)は図2のA
−A断面図、(b)はB−B断面図。
FIG. 3 is a cross-sectional view of the flow channel of this embodiment, (a) of FIG.
-A sectional view, (b) is a BB sectional view.

【図4】本実施例の流路部稜線表現図。FIG. 4 is a diagram showing a flow path ridge line according to the present embodiment.

【図5】本実施例の全体構造を示す縦断面図。FIG. 5 is a vertical sectional view showing the overall structure of the present embodiment.

【図6】本発明の第2実施例の流路断面図。FIG. 6 is a sectional view of a flow channel according to a second embodiment of the present invention.

【図7】本実施例の第1変形例の流路断面図。FIG. 7 is a flow path cross-sectional view of a first modified example of the present embodiment.

【図8】本実施例の第2変形例の流路断面図。FIG. 8 is a flow path cross-sectional view of a second modified example of the present embodiment.

【図9】本実施例の第3変形例の流路断面図。FIG. 9 is a flow path cross-sectional view of a third modified example of the present embodiment.

【図10】本実施例の第4変形例の流路断面図。FIG. 10 is a flow path cross-sectional view of a fourth modified example of the present embodiment.

【図11】本発明の第3実施例の流路断面図。FIG. 11 is a sectional view of a flow channel according to a third embodiment of the present invention.

【図12】本発明の第4実施例を示す断面図で(a)は
本実施例の流路断面図、(b)は本実施例の変形例の流
路断面図。
12A and 12B are sectional views showing a fourth embodiment of the present invention, wherein FIG. 12A is a sectional view of a flow channel of the present embodiment, and FIG. 12B is a sectional view of a flow channel of a modified example of the present embodiment.

【図13】本発明の第5実施例の縦断面図。FIG. 13 is a vertical sectional view of a fifth embodiment of the present invention.

【図16】本実施例の流路平面図。FIG. 16 is a plan view of the flow channel of this embodiment.

【図15】本実施例の流路の断面図で、(a)は図14
のA−A断面図、(b)はB−B断面図。
FIG. 15 is a cross-sectional view of the flow channel of this example, in which (a) is FIG.
A-A sectional view, and (b) is a BB sectional view.

【図16】本実施例の第1変形例の流路断面図。FIG. 16 is a sectional view of a flow path of a first modified example of the present embodiment.

【図17】本実施例の第2変形例の流路断面図。FIG. 17 is a sectional view of a flow path of a second modified example of this embodiment.

【図18】本発明の第1実施例の流路内の気流を示す平
面図。
FIG. 18 is a plan view showing the air flow in the flow channel according to the first embodiment of the present invention.

【図19】本発明の第1実施例の流路内の内部流れを示
す図で(a)は図18のA−A断面図、(b)はA−A
断面での周方向内部流れ分布図。
19A and 19B are diagrams showing the internal flow in the flow channel of the first embodiment of the present invention, FIG. 19A being a sectional view taken along line AA of FIG. 18, and FIG.
FIG. 6 is a circumferential internal flow distribution diagram in cross section.

【図20】図18B−B断面での内部流れの速度三角形
図。
FIG. 20 is a velocity triangle diagram of the internal flow in the cross section of FIG. 18B-B.

【図21】本発明の第1実施例の騒音のスペクトルを示
す図。
FIG. 21 is a diagram showing a noise spectrum according to the first embodiment of the present invention.

【図22】従来の渦流ブロワの騒音のスペクトルを示す
図。
FIG. 22 is a diagram showing a noise spectrum of a conventional vortex flow blower.

【符号の説明】[Explanation of symbols]

1、101…羽根車、2、102…ケーシング、3a、
103a…ケーシング環状溝、3b、103b…ケーシ
ング吸込口、3c、103c…ケーシング吐出口、3
d、103d…隔壁、3e、103e…吸吐中心、3
f、103f…断面減少手段、1a、101a…羽根車
ブレード、1b…羽根車環状流路。
1, 101 ... Impeller, 2, 102 ... Casing, 3a,
103a ... Casing annular groove, 3b, 103b ... Casing suction port, 3c, 103c ... Casing discharge port, 3
d, 103d ... partition walls, 3e, 103e ...
f, 103f ... Cross-section reducing means, 1a, 101a ... Impeller blades, 1b ... Impeller annular flow path.

─────────────────────────────────────────────────────
─────────────────────────────────────────────────── ───

【手続補正書】[Procedure amendment]

【提出日】平成4年9月29日[Submission date] September 29, 1992

【手続補正1】[Procedure Amendment 1]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】図面の簡単な説明[Name of item to be corrected] Brief explanation of the drawing

【補正方法】変更[Correction method] Change

【補正内容】[Correction content]

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の第1実施例の構成の分解斜視図。FIG. 1 is an exploded perspective view of the configuration of a first embodiment of the present invention.

【図2】本発明の第1実施例の流路の平面図。FIG. 2 is a plan view of the flow channel according to the first embodiment of the present invention.

【図3】本実施例の流路の断面図で、(a)は図2のA
−A断面図、(b)はB−B断面図。
FIG. 3 is a cross-sectional view of the flow channel of this embodiment, (a) of FIG.
-A sectional view, (b) is a BB sectional view.

【図4】本実施例の流路部稜線表現図。FIG. 4 is a diagram showing a flow path ridge line according to the present embodiment.

【図5】本実施例の全体構造を示す縦断面図。FIG. 5 is a vertical sectional view showing the overall structure of the present embodiment.

【図6】本発明の第2実施例の流路断面図。FIG. 6 is a sectional view of a flow channel according to a second embodiment of the present invention.

【図7】本実施例の第1変形例の流路断面図。FIG. 7 is a flow path cross-sectional view of a first modified example of the present embodiment.

【図8】本実施例の第2変形例の流路断面図。FIG. 8 is a flow path cross-sectional view of a second modified example of the present embodiment.

【図9】本実施例の第3変形例の流路断面図。FIG. 9 is a flow path cross-sectional view of a third modified example of the present embodiment.

【図10】本実施例の第4変形例の流路断面図。FIG. 10 is a flow path cross-sectional view of a fourth modified example of the present embodiment.

【図11】本発明の第3実施例の流路断面図。FIG. 11 is a sectional view of a flow channel according to a third embodiment of the present invention.

【図12】本発明の第4実施例を示す断面図で(a)は
本実施例の流路断面図、(b)は本実施例の変形例の流
路断面図。
12A and 12B are sectional views showing a fourth embodiment of the present invention, wherein FIG. 12A is a sectional view of a flow channel of the present embodiment, and FIG. 12B is a sectional view of a flow channel of a modified example of the present embodiment.

【図13】本発明の第5実施例の縦断面図。FIG. 13 is a vertical sectional view of a fifth embodiment of the present invention.

【図14】本実施例の流路平面図。FIG. 14 is a plan view of the flow channel of this embodiment.

【図15】本実施例の流路の断面図で、(a)は図14
のA−A断面図、(b)はB−B断面図。
FIG. 15 is a cross-sectional view of the flow channel of this example, in which (a) is FIG.
A-A sectional view, and (b) is a BB sectional view.

【図16】本実施例の第1変形例の流路断面図。FIG. 16 is a sectional view of a flow path of a first modified example of the present embodiment.

【図17】本実施例の第2変形例の流路断面図。FIG. 17 is a sectional view of a flow path of a second modified example of this embodiment.

【図18】本発明の第1実施例の流路内の気流を示す平
面図。
FIG. 18 is a plan view showing the air flow in the flow channel according to the first embodiment of the present invention.

【図19】本発明の第1実施例の流路内の内部流れを示
す図で(a)は図18のA−A断面図、(b)はA−A
断面での周方向内部流れ分布図。
19A and 19B are diagrams showing the internal flow in the flow channel of the first embodiment of the present invention, FIG. 19A being a sectional view taken along the line AA of FIG. 18, and FIG.
FIG. 6 is a circumferential internal flow distribution diagram in cross section.

【図20】図18B−B断面での内部流れの速度三角形
図。
FIG. 20 is a velocity triangle diagram of the internal flow in the cross section of FIG. 18B-B.

【図21】本発明の第1実施例の騒音のスペクトルを示
す図。
FIG. 21 is a diagram showing a noise spectrum according to the first embodiment of the present invention.

【図22】従来の渦流ブロワの騒音のスペクトルを示す
図。
FIG. 22 is a diagram showing a noise spectrum of a conventional vortex flow blower.

【符号の説明】 1、101…羽根車、2、102…ケーシング、3a、
103a…ケーシング環状溝、3b、103b…ケーシ
ング吸込口、3c、103c…ケーシング吐出口、3
d、103d…隔壁、3e、103e…吸吐中心、3
f、103f…断面減少手段、1a、101a…羽根車
ブレード、1b…羽根車環状流路。
[Explanation of Codes] 1, 101 ... Impeller, 2, 102 ... Casing, 3a,
103a ... Casing annular groove, 3b, 103b ... Casing suction port, 3c, 103c ... Casing discharge port, 3
d, 103d ... partition walls, 3e, 103e ... suction / discharge center, 3
f, 103f ... Cross-section reducing means, 1a, 101a ... Impeller blades, 1b ... Impeller annular flow path.

フロントページの続き (72)発明者 吉富 利治 千葉県習志野市東習志野7丁目1番1号 株式会社日立製作所習志野工場内 (72)発明者 朝吹 弘 千葉県習志野市東習志野7丁目1番1号 株式会社日立製作所習志野工場内 (72)発明者 小林 和男 千葉県習志野市東習志野7丁目1番1号 株式会社日立製作所習志野工場内Front page continuation (72) Inventor Toshiharu Yoshitomi 1-1-1, Higashi Narashino, Narashino, Chiba Prefecture Hitachi Narashino Factory, Ltd. (72) Inventor Hiroshi Asabuki 7-1-1, Higashi Narashino, Narashino, Chiba Hitachi Narashino Factory Narashino Factory (72) Kazuo Kobayashi 7-1-1 Higashi Narashino Narashino City, Chiba Prefecture Hitachi Narashino Factory

Claims (8)

【特許請求の範囲】[Claims] 【請求項1】羽根車と、吸込口と吐出口を備えて上記羽
根車を格納するケーシングを備え、上記ケーシング内の
上記羽根車の羽根に対向する部分に上記羽根車の回転方
向に沿って上記吸込口から吐出口に至るよう設けられ上
記羽根に面して開口した環状溝を有する渦流ポンプにお
いて、上記環状溝のうち上記吸込口から吐出口に至る部
分の少なくとも中央から上記吐出口にかけての区間の一
部に上記環状溝内の断面積を減少させる断面減少手段を
備えたことを特徴とする渦流ポンプ。
1. An impeller, and a casing having a suction port and a discharge port for accommodating the impeller, the portion of the casing facing the blade of the impeller being arranged along the rotation direction of the impeller. In a vortex pump having an annular groove provided so as to extend from the suction port to the discharge port and open toward the vane, in the annular groove, from at least the center of the portion from the suction port to the discharge port to the discharge port. A swirl pump, comprising a cross-section reducing means for reducing the cross-sectional area in the annular groove in a part of the section.
【請求項2】上記断面減少手段は回転軸を通る平面で切
断した断面が上記環状溝の外周側の縁の近傍から上記環
状溝の底面に至る斜面状の突出部で形成されることを特
徴とする請求項1記載の渦流ポンプ。
2. The cross-section reducing means is characterized in that a cross-section cut along a plane passing through a rotation axis is formed by an inclined projecting portion extending from the vicinity of the outer peripheral edge of the annular groove to the bottom surface of the annular groove. The swirl pump according to claim 1.
【請求項3】上記断面減少手段は上記ケーシングとは異
なる部材で構成されたことを特徴とする請求項1または
2記載の渦流ポンプ。
3. The vortex flow pump according to claim 1, wherein the cross-section reducing means is composed of a member different from the casing.
【請求項4】上記環状溝は上記ケーシングの上記羽根車
に対向する面からの深さが、上記環状溝中央部と上記吸
込口との中間位置、上記環状溝中央部、上記環状溝中央
部と吐出口との中間位置の順で深くなることを特徴とす
る請求項1または2記載の渦流ポンプ。
4. The depth of the annular groove from the surface of the casing facing the impeller is an intermediate position between the annular groove central portion and the suction port, the annular groove central portion, and the annular groove central portion. The vortex pump according to claim 1 or 2, wherein the depth becomes deeper in the order of an intermediate position between the discharge port and the discharge port.
【請求項5】回転軸線を中心として回転し得るホイール
の回転軸線からおおむね外周方向に突出する多数枚の羽
根を有する羽根車、羽根車の羽根に対応して側方及び外
周側に環状溝を有するケーシング、羽根車の羽根に対応
して側方及び外周側に開口する環状溝を有するサイドカ
バー、ケーシング環状溝の円周上の一部分を仕切る隔壁
部、ケーシング隔壁部に隣接し羽根車に軸方向側に開口
する吸込口、ケーシング隔壁部に隣接し、羽根車回転に
対向する側に開口する吐出口を構成要素として持つ両羽
根形渦流ポンプにおいて、上記環状溝のうち上記吸込口
から吐出口に至る部分の少なくとも中央から上記吐出口
にかけての区間の一部に上記環状溝内の断面積を減少さ
せる断面減少手段を持つことを特徴とする渦流ポンプ。
5. An impeller having a large number of blades projecting generally in the outer peripheral direction from the rotational axis of a wheel that can rotate about the rotational axis, and annular grooves on the lateral and outer peripheral sides corresponding to the blades of the impeller. The casing has, a side cover having an annular groove that opens to the side and the outer peripheral side corresponding to the blades of the impeller, a partition wall partitioning a part of the circumference of the casing annular groove, and a shaft adjacent to the casing partition wall to the impeller. In a double-blade vortex pump that has as its constituent elements a suction port that opens in the direction side and a discharge port that is adjacent to the casing partition wall and that faces the rotation of the impeller, the suction port of the annular groove The vortex flow pump characterized by having a cross-section reducing means for reducing the cross-sectional area in the annular groove in at least a part of the section from the center to the discharge port.
【請求項6】上記断面減少手段は回転軸を通る平面で切
断した断面が上記環状溝の外周側の縁の近傍から上記環
状溝の底面に至る斜面状の突出部で形成されることを特
徴とする請求項5記載の渦流ポンプ。
6. The cross-section reducing means is characterized in that a cross-section taken along a plane passing through a rotation axis is formed by a slanted projection extending from the vicinity of the outer peripheral edge of the annular groove to the bottom surface of the annular groove. The vortex pump according to claim 5.
【請求項7】上記断面減少手段は上記ケーシングとは異
なる部材で構成されたことを特徴とする請求項5または
6記載の渦流ポンプ。
7. The vortex flow pump according to claim 5, wherein the cross-section reducing means is constituted by a member different from the casing.
【請求項8】上記環状溝は上記ケーシングの上記羽根車
に対向する面からの深さが、上記環状流路中央部と上記
吸込口との中間位置、上記環状流路中央部、上記環状流
路中央部と吐出口との中間位置の順で深くなることを特
徴とする請求項5または6記載の渦流ポンプ。
8. The depth of the annular groove from the surface of the casing facing the impeller is intermediate between the central portion of the annular flow passage and the suction port, the central portion of the annular flow passage, and the annular flow. 7. The vortex flow pump according to claim 5, wherein the vortex pump is deepened in the order of an intermediate position between the central portion of the passage and the discharge port.
JP14578691A 1991-06-18 1991-06-18 Swirl pump Expired - Lifetime JP2844966B2 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP14578691A JP2844966B2 (en) 1991-06-18 1991-06-18 Swirl pump
KR1019920010569A KR970005981B1 (en) 1991-06-18 1992-06-18 Vortex flow blower
US07/900,932 US5281083A (en) 1991-06-18 1992-06-18 Vortex flow blower
DE4220153A DE4220153B4 (en) 1991-06-18 1992-06-19 Eddy current fan

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP14578691A JP2844966B2 (en) 1991-06-18 1991-06-18 Swirl pump

Publications (2)

Publication Number Publication Date
JPH0565896A true JPH0565896A (en) 1993-03-19
JP2844966B2 JP2844966B2 (en) 1999-01-13

Family

ID=15393131

Family Applications (1)

Application Number Title Priority Date Filing Date
JP14578691A Expired - Lifetime JP2844966B2 (en) 1991-06-18 1991-06-18 Swirl pump

Country Status (1)

Country Link
JP (1) JP2844966B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002540350A (en) * 1999-03-26 2002-11-26 ヴェルナー リートシュレ ゲーエムベーハー ウント コンパニー コマンディットゲゼルシャフト Side channel compressor
GB2485881A (en) * 2010-11-25 2012-05-30 Gardner Denver Gmbh Blower and Silencer Arrangement
JP2017096172A (en) * 2015-11-24 2017-06-01 愛三工業株式会社 Vortex pump
CN117469209A (en) * 2023-12-27 2024-01-30 福建省福安市力德泵业有限公司 Hot water pump structure of new energy automobile

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002540350A (en) * 1999-03-26 2002-11-26 ヴェルナー リートシュレ ゲーエムベーハー ウント コンパニー コマンディットゲゼルシャフト Side channel compressor
GB2485881A (en) * 2010-11-25 2012-05-30 Gardner Denver Gmbh Blower and Silencer Arrangement
US8511427B2 (en) 2010-11-25 2013-08-20 Gardner Denver Deutschland Gmbh Blower arrangement
JP2017096172A (en) * 2015-11-24 2017-06-01 愛三工業株式会社 Vortex pump
CN108350896A (en) * 2015-11-24 2018-07-31 爱三工业株式会社 Turbulence pump
US10662901B2 (en) 2015-11-24 2020-05-26 Aisan Kogyo Kabushiki Kaisha Vortex pump
CN117469209A (en) * 2023-12-27 2024-01-30 福建省福安市力德泵业有限公司 Hot water pump structure of new energy automobile

Also Published As

Publication number Publication date
JP2844966B2 (en) 1999-01-13

Similar Documents

Publication Publication Date Title
US8721280B2 (en) Propeller fan
US6742989B2 (en) Structures of turbine scroll and blades
US5762469A (en) Impeller for a regenerative turbine fuel pump
US5281083A (en) Vortex flow blower
WO2011007467A1 (en) Impeller and rotary machine
WO2011007466A1 (en) Impeller and rotary machine
JPH0512560B2 (en)
JP2019035374A (en) Centrifugal rotary machine
JP4996985B2 (en) Vortex blower
JP2018173020A (en) Centrifugal compressor
KR970005981B1 (en) Vortex flow blower
JPH0565896A (en) Vortex flow pump
US20200309149A1 (en) Rotating machinery
JPS6147999B2 (en)
WO2018198808A1 (en) Centrifugal compressor
JP4696774B2 (en) Double suction centrifugal pump
JP4489394B2 (en) Vortex pump
JP2017020432A (en) Impeller for pump, and pump including the same
KR20030016175A (en) Vortex flow fan
JPH09100797A (en) Impeller of centrifugal compressor
JP5232721B2 (en) Centrifugal compressor
JP4174693B2 (en) Centrifugal compressor diffuser
WO2022064964A1 (en) Vortex pump
JP6740070B2 (en) Fluid machinery
JPH0511238B2 (en)

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20071030

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081030

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091030

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091030

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101030

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111030

Year of fee payment: 13

EXPY Cancellation because of completion of term
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111030

Year of fee payment: 13