JPH0511238B2 - - Google Patents

Info

Publication number
JPH0511238B2
JPH0511238B2 JP62167732A JP16773287A JPH0511238B2 JP H0511238 B2 JPH0511238 B2 JP H0511238B2 JP 62167732 A JP62167732 A JP 62167732A JP 16773287 A JP16773287 A JP 16773287A JP H0511238 B2 JPH0511238 B2 JP H0511238B2
Authority
JP
Japan
Prior art keywords
user
blade
flow path
impeller
side wall
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP62167732A
Other languages
Japanese (ja)
Other versions
JPS6415498A (en
Inventor
Toshiharu Ueyama
Tsutomu Kubo
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP62167732A priority Critical patent/JPS6415498A/en
Publication of JPS6415498A publication Critical patent/JPS6415498A/en
Publication of JPH0511238B2 publication Critical patent/JPH0511238B2/ja
Granted legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/40Casings; Connections of working fluid
    • F04D29/42Casings; Connections of working fluid for radial or helico-centrifugal pumps
    • F04D29/44Fluid-guiding means, e.g. diffusers
    • F04D29/445Fluid-guiding means, e.g. diffusers especially adapted for liquid pumps
    • F04D29/448Fluid-guiding means, e.g. diffusers especially adapted for liquid pumps bladed diffusers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D1/00Radial-flow pumps, e.g. centrifugal pumps; Helico-centrifugal pumps
    • F04D1/06Multi-stage pumps
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2250/00Geometry
    • F05D2250/50Inlet or outlet
    • F05D2250/52Outlet

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は、多段遠心ポンプに係り、特に、最終
段デイフユーザの軸方向位置がポンプ吐出口に一
致していないものの最終段デイフユーザを改良し
た多段遠心ポンプに関するものである。
Detailed Description of the Invention [Field of Industrial Application] The present invention relates to a multi-stage centrifugal pump, and particularly to a multi-stage centrifugal pump that has an improved final stage differential user, although the axial position of the final stage differential user does not coincide with the pump discharge port. It concerns centrifugal pumps.

[従来の技術] 例えば、ボイラー給水ポンプのようなバーレル
形多段デイフユーザポンプでは、そのポンプ吐出
口は最終段デイフユーザよりも吸込側に位置して
いる。
[Prior Art] For example, in a barrel-type multistage diffuser pump such as a boiler feed water pump, the pump discharge port is located on the suction side of the final stage diffuser.

従来の多段遠心ポンプを第3図ないし第7図を
参照して説明する。
A conventional multistage centrifugal pump will be explained with reference to FIGS. 3 to 7.

ここに、第3図は、一般的な多段遠心ポンプの
初段ステージの主要構成を示す縦断面図、第4図
は、その多段遠心ポンプの最終段ステージまわり
を示す縦断面図、第5図は、従来の二次元羽根を
採用したデイフユーザ部を示し、aは縦断面図、
bは、aのZ−Z矢視断面図、第6図は、一般的
なステージ流路における流体の流れを示す流路断
面図、第7図は、従来の三次元羽根を採用したデ
イフユーザ羽根で、aは、第4図のE−E矢視断
面に相当する羽根断面図、bは、aのY−Y矢視
図である。
Here, FIG. 3 is a vertical cross-sectional view showing the main structure of the first stage of a general multi-stage centrifugal pump, FIG. 4 is a vertical cross-sectional view showing the vicinity of the final stage of the multi-stage centrifugal pump, and FIG. , shows a differential user part employing conventional two-dimensional blades, a is a vertical cross-sectional view,
b is a cross-sectional view taken along the Z-Z arrow in a; FIG. 6 is a flow path cross-sectional view showing the fluid flow in a typical stage flow path; FIG. 7 is a diffuser blade employing a conventional three-dimensional blade. In this figure, a is a cross-sectional view of the blade corresponding to the cross section taken along the line E-E in FIG. 4, and b is a view taken along the line Y-Y of a.

従来の多段遠心ポンプは、第3図および第4図
に一般的な構成を示すように、吸込流路1から吸
込まれた液体を、主軸2に嵌着され主軸2と共に
回転する遠心羽根車(以下単に羽根車という)に
より昇圧し、この羽根車3の外周に設けたデイフ
ユーザ4に吐出し、デイフユーザ4の外周に設け
た曲り流路5に流入させ、この曲り流路5で外向
き流れを内向き流れに約180゜流れ方向を変え、さ
らに曲り流路5から出る流れを戻り流路6によつ
て次段の羽根車3′の入口へ導くことでステージ
の流路を構成し、以下、同様に羽根車、デイフユ
ーザ、曲り流路および戻り流路を軸方向に複数段
配列し、最終段デイフユーザ7から出る流れをポ
ンプ吐出口に集める出口流路8に吐出したのち、
ポンプ吐出口9から吐出するように流路形状が構
成されている。
As shown in FIGS. 3 and 4, a conventional multistage centrifugal pump pumps liquid sucked from a suction channel 1 into a centrifugal impeller (fitted onto a main shaft 2 and rotating together with the main shaft 2). (hereinafter simply referred to as an impeller), the pressure is raised by the impeller 3, and the pressure is discharged to the differential user 4 provided on the outer periphery of the impeller 3, and the flow is caused to flow into the curved channel 5 provided on the outer periphery of the differential user 4. The flow path of the stage is configured by changing the flow direction by approximately 180 degrees to an inward flow, and then guiding the flow exiting from the curved flow path 5 to the inlet of the next stage impeller 3' through the return flow path 6. Similarly, impellers, differential users, curved channels, and return channels are arranged in multiple stages in the axial direction, and the flow from the final stage differential user 7 is collected at the pump discharge port and discharged to the outlet channel 8.
The flow path is configured such that the fluid is discharged from the pump discharge port 9.

従来のデイフユーザ4と最終段デイフユーザ7
の流路は、第3図、第4図に示すように、羽根車
側板3a側(吸込側)のデイフユーザの側壁4
a,7a、羽根車心板3b側(吐出側)のデイフ
ユーザ側壁4b,7b、およびデイフユーザ羽根
4c,7cで形成されるが、前記デイフユーザの
側壁4a,4bおよび7a,7bが、主軸2の軸
心に対し直交する面内にあるように形成され、羽
根車3で昇圧された液体の半径方向の流れをその
まま半径方向へ流出させるラジアルデイフユーザ
が一般に使用されている。
Conventional differential user 4 and final stage differential user 7
As shown in FIGS. 3 and 4, the flow path is connected to the side wall 4 of the differential user on the impeller side plate 3a side (suction side).
a, 7a, differential user side walls 4b, 7b on the impeller core plate 3b side (discharge side), and differential user blades 4c, 7c. A radial diff user is generally used, which is formed in a plane perpendicular to the center and allows the radial flow of liquid pressurized by the impeller 3 to flow out in the radial direction.

また、デイフユーザ羽根4cの形状は、第5図
bに示すように側壁4aから4bまで、同一形状
の二次元羽根が採用されている。
Further, the shape of the diffuser blade 4c is a two-dimensional blade having the same shape from the side walls 4a to 4b, as shown in FIG. 5b.

一方、デイフユーザ4の下流には曲り流路5が
設けられており、ポンプを小形化するために、第
3図のようにデイフユーザ4のすぐ外周に、曲率
をほとんど持たない角形に近い形状で形成され
る。
On the other hand, a curved flow path 5 is provided downstream of the differential user 4, and in order to downsize the pump, it is formed in a shape close to a rectangle with almost no curvature immediately around the outer circumference of the differential user 4, as shown in FIG. be done.

この場合は、第6図に示すように、半径方向の
流れv1が軸方向の流れv2に変化するときの運動量
変化によりF方向に力が作用し、X点の圧力がY
点の圧力より高くなるため、デイフユーザ内の出
口付近の流れは、破線矢印で示すv′dのように側
壁4b方向へ傾斜して流れようとする。
In this case, as shown in Figure 6, a force acts in the F direction due to the change in momentum when the radial flow v 1 changes to the axial flow v 2 , and the pressure at the X point changes to Y.
Since the pressure is higher than that at the point, the flow near the outlet inside the diff user tends to flow in an inclined direction toward the side wall 4b as indicated by the broken line arrow v'd .

その結果、側壁4aに沿つた境界層は著しく発
達し、側壁4b側は境界層の発達が小さくなる。
この傾向は、ポンプ吐出量を設計点より減少させ
るほど著しくなり、側壁4a側での剥離を生じて
低流量域におけるポンプの不安定特性(揚程曲線
のへこみ)の原因となる。
As a result, the boundary layer along the side wall 4a is significantly developed, and the boundary layer is less developed on the side wall 4b side.
This tendency becomes more pronounced as the pump discharge rate is reduced from the design point, causing separation on the side wall 4a side and causing instability of the pump (indentation in the head curve) in the low flow rate region.

これを防止し、ポンプの大形化を抑えて、しか
もポンプ効率の低下を防止するために、従来のデ
イフユーザは第7図のように形成されている。
In order to prevent this, to suppress the increase in size of the pump, and to prevent a decrease in pump efficiency, a conventional diff user is formed as shown in FIG. 7.

第7図において、4caはデイフユーザ羽根の
側壁4aと近接した位置での羽根プロフイール、
4cbは側壁4bと近接した位置での羽根プロフ
イールを示す。
In FIG. 7, 4ca is the blade profile at a position close to the side wall 4a of the diffuser blade;
4cb shows the blade profile at a position close to the side wall 4b.

すなわち、第7図に示すように、デイフユーザ
4の隣接する羽根4c′が重なる拡大流路部分にお
いて、側壁4aの側では羽根間の拡大角を小さく
し、側壁4bの側では羽根間の拡大角を大きくな
るようにデイフユーザ羽根の形状を定めている。
しかし、第4図に示すように、最終段デイフユー
ザ7の下流側には、第3図に示すような角形に近
い形状の曲り流路5は無く、半径方向に吐出され
た液体の流れv1は、出口流路8において軸方向の
流れv3、すなわち第6図に示した流れv2と逆方向
に向かう流れとなりポンプ吐出口9から流出す
る。
That is, as shown in FIG. 7, in the enlarged channel portion where adjacent blades 4c' of the differential user 4 overlap, the expansion angle between the blades is made smaller on the side wall 4a side, and the expansion angle between the blades is made smaller on the side wall 4b side. The shape of the diffuser blade is determined to increase the size of the blade.
However, as shown in FIG. 4, on the downstream side of the final stage differential user 7, there is no curved channel 5 having a shape close to a rectangular shape as shown in FIG. 3, and the flow of liquid discharged in the radial direction v 1 In the outlet passage 8, the flow becomes an axial flow v 3 , that is, a flow directed in the opposite direction to the flow v 2 shown in FIG. 6, and flows out from the pump discharge port 9.

したがつて、最終段デイフユーザ7をデイフユ
ーザ4と同一の形状とすると、ポンプ吐出口9へ
流出する流れを阻害することになり、損失を増大
するばかりでなく、最終段デイフユーザ7の出口
の流速が過大な場合にはデイフユーザ出口の下流
にあるケーシング10の内壁がエロージヨンによ
り著しく侵食するなどの問題がある。
Therefore, if the final stage differential user 7 is made to have the same shape as the differential user 4, the flow out to the pump discharge port 9 will be obstructed, which will not only increase the loss but also reduce the flow velocity at the outlet of the final stage differential user 7. If it is too large, there will be a problem that the inner wall of the casing 10 located downstream of the differential user outlet will be significantly eroded due to erosion.

なお、第3図ないし第5図に示す一般的なポン
プとしては、「火力原子力発電」昭和50年7月号
99頁記載のものがある。また、第7図に示すデイ
フユーザとしては、本発明の関連出願である特願
昭60−99563号「多段遠心ポンプ用デイフユーザ」
が一例としてあげられる。
The general pumps shown in Figures 3 to 5 are shown in "Thermal and Nuclear Power Generation" July 1975 issue.
There is one listed on page 99. Furthermore, the differential user shown in FIG. 7 is related to the present invention, as disclosed in Japanese Patent Application No. 60-99563 entitled ``Diff User for Multistage Centrifugal Pump''.
is given as an example.

[発明が解決しようとする問題点] 上記のように、第3図ないし第5図に示した二
次元ラジアルデイフユーザ、ならびに第7図に示
した三次元羽根を有するデイフユーザは、多段遠
心ポンプの最終段デイフユーザ出口の流れが半径
方向に流出したのち、第4図に示すように出口流
路8において吐出側から吸込側へ向く流れ成分v3
を有しなければならない点について配慮されてい
ないためv3の流れ成分を打消し、流れを阻害する
ようになつていた。このため、最終段デイフユー
ザ7の出口からポンプ吐出口9に到る出口流路8
内での損失が増大しポンプ効率を低下するという
問題があつた。
[Problems to be Solved by the Invention] As described above, the two-dimensional radial differential user shown in FIGS. 3 to 5 and the three-dimensional differential vane shown in FIG. After the flow at the final stage differential user outlet flows out in the radial direction, a flow component v 3 flows from the discharge side to the suction side in the outlet flow path 8 as shown in FIG.
Since no consideration was given to the fact that the flow component of V3 must be maintained, the flow component of V3 was canceled out and the flow was obstructed. For this reason, the outlet flow path 8 from the outlet of the final stage differential user 7 to the pump discharge port 9
There was a problem in that internal losses increased and pump efficiency decreased.

また、第7図に示した三次元羽根を有するデイ
フユーザを最終段デイフユーザに適用した場合、
デイフユーザ出口の流れが、羽根車側板側の側壁
7a(吸込側)よりも羽根車心板側の側壁7b(吐
出側)に流出する傾向があるため、デイフユーザ
出口の流速が過大になるとエロージヨンが発生す
る問題がある。
Furthermore, when the differential user having the three-dimensional blades shown in FIG. 7 is applied to the final stage differential user,
Since the flow at the differential user outlet tends to flow out to the side wall 7b (discharge side) on the impeller core plate side rather than the side wall 7a (suction side) on the impeller side plate side, erosion occurs when the flow velocity at the differential user outlet becomes excessive. There is a problem.

一般に、大容量の多段遠心ポンプでは、コスト
との関係から羽根車、デイフユーザ、および内ケ
ーシング(ステージ)を高品質の材料として耐エ
ロージヨン性を保持しようとするが、外ケーシン
グは炭素鋼とするのが一般的である。そこで、前
述したようなエロージヨンの問題が生じると、ス
テライトなど耐エロージヨン性の高い材料を盛金
することになり、加工費がかさむという問題があ
つた。
Generally, in large-capacity multistage centrifugal pumps, the impeller, differential user, and inner casing (stage) are made of high-quality materials to maintain erosion resistance due to cost considerations, but the outer casing is made of carbon steel. is common. Therefore, when the above-mentioned erosion problem occurs, a material with high erosion resistance such as stellite must be deposited, resulting in an increase in processing costs.

本発明は、上記従来技術の問題点を解決するた
めになされたもので、最終段デイフユーザにおけ
る、デイフユーザ出口からポンプ吐出口までの流
体の流れを円滑化して損失を最少にするととも
に、デイフユーザ流出後の流れの軸方向成分をポ
ンプ吐出口に向けることで、ケーシング内部のエ
ロージヨンを防止しうる多段遠心ポンプを提供す
ることを、その目的とするものである。
The present invention was made in order to solve the problems of the prior art described above, and it minimizes loss by smoothing the flow of fluid from the outlet of the diffuser to the pump discharge port in the final stage differential user, and also The object of the present invention is to provide a multistage centrifugal pump that can prevent erosion inside the casing by directing the axial component of the flow toward the pump discharge port.

[問題点を解決するための手段] 上記目的を達成するために、本発明に係る多段
遠心ポンプの構成は、主軸に嵌着され主軸ととも
に回転すべき遠心羽根車と、遠心羽根車の外周に
位置し遠心羽根車から出る流れを外向きに導いて
静圧回復をはかるデイフユーザと、このデイフユ
ーザから出る外向き流れを内向き流れに導く曲り
流路と、曲り流路から出る流れを内向きに集め次
段の遠心羽根車入口へ導く戻り流路とからなるス
テージを軸方向に多段に配設し、その最終段のデ
イフユーザから出る流れを当該最終段デイフユー
ザよりも吸込側に位置するポンプ吐出口に集める
流路およびポンプ吐出口を形成したもので、複数
段のデイフユーザの羽根形状を、当該デイフユー
ザの隣接する羽根が重なる拡大流路部分における
羽根車側板側のデイフユーザ側壁に近い流路では
前記羽根間流路の側壁の拡大を小さくし、羽根車
心板側のデイフユーザ側壁に近い流路では前記羽
根間流路の拡大を大きくするように形成してなる
多段遠心ポンプにおいて、上記最終段デイフユー
ザの羽根形状のみを、当該デイフユーザの隣接す
る羽根が重なる拡大流路部分における羽根車側板
側のデイフユーザ側壁に近い流路では前記羽根間
流路の拡大を大きくして、羽根車心板側のデイフ
ユーザ側壁に近い流路では前記羽根間流路の拡大
を小さくするように形成したものである。
[Means for Solving the Problems] In order to achieve the above object, the configuration of the multistage centrifugal pump according to the present invention includes a centrifugal impeller that is fitted onto the main shaft and rotates together with the main shaft, and a centrifugal impeller that is attached to the outer periphery of the centrifugal impeller. A diff user is located at the center of the centrifugal impeller and guides the flow out from the centrifugal impeller outward to restore static pressure, a curved channel guides the outward flow from the diffuser into an inward flow, and a curved channel directs the flow out of the curved channel inward. Multiple stages are arranged in the axial direction, each consisting of a return flow path that collects the flow and guides it to the inlet of the centrifugal impeller at the next stage. A flow path and a pump discharge port are formed, and the shape of the blades of a plurality of stages of differential users is changed to the shape of the blades of the multiple stages of the diffuser in the flow path close to the side wall of the differential user on the side plate of the impeller in the enlarged flow path portion where adjacent blades of the differential user overlap. In a multi-stage centrifugal pump, the expansion of the side wall of the inter-vane flow passage is reduced, and the expansion of the inter-vane flow passage is increased in the flow passage near the side wall of the differential user on the impeller core plate side. Only the blade shape is changed, and in the enlarged flow path portion where adjacent blades of the relevant differential user overlap, the expansion of the inter-blade flow path is increased in the flow path close to the differential user side wall on the impeller side plate side, and the expansion of the flow path between the blades is increased, and The passages close to the blades are formed so as to reduce the expansion of the passages between the blades.

[作 用] 最終段デイフユーザ出口の隣接する羽根が重な
る拡大流路部にて、羽根車側板側(吸込側)のデ
イフユーザ側壁付近では羽根間流路の拡大を大き
くし、羽根車心板側(吐出口側)のデイフユーザ
側壁付近では羽根間流路の拡大を小さくすること
により、デイフユーザ出口での流れの主流を吸込
側方向へ向けることができる。
[Function] In the enlarged flow path section where adjacent blades of the final stage differential user outlet overlap, the expansion of the flow path between the blades is increased near the differential user side wall on the impeller side plate side (suction side), and By reducing the expansion of the inter-vane flow path near the diffuser side wall (on the discharge port side), the main flow of the flow at the diffuser outlet can be directed toward the suction side.

この場合、デイフユーザ入口から隣接するデイ
フユーザ羽根が重なる流路までは通常の二次元翼
のラジアルデイフユーザと同一の形状を保つの
で、羽根車で昇圧された流れを減速し静圧回復す
るというデイフユーザの機能は損なわれない。
In this case, the shape from the differential user inlet to the flow path where adjacent differential blades overlap is the same as that of a normal two-dimensional blade radial differential user, so the differential user decelerates the flow pressurized by the impeller and restores static pressure. functionality is not impaired.

このことによつて、最終段のデイフユーザは、
デイフユーザ性能を低下することなく、デイフユ
ーザ出口の流れを円滑にポンプ吐出口の方向へ向
けることができるとともに、デイフユーザ出口下
流の吐出側に設置されたケーシング内面付近での
流速を低減することにより耐エロージヨン性を向
上することが可能となる。
Due to this, the final stage differential user,
The flow at the differential user outlet can be directed smoothly toward the pump discharge port without deteriorating the differential user performance, and the flow velocity near the inner surface of the casing installed on the discharge side downstream of the differential user outlet is reduced to improve erosion resistance. This makes it possible to improve performance.

[実施例] 以下、本発明の各実施例を第1図ないし第4図
および第8図を参照して説明する。
[Embodiments] Hereinafter, each embodiment of the present invention will be described with reference to FIGS. 1 to 4 and FIG. 8.

まず、第1図は、本発明の一実施例に係る多段
遠心ポンプの最終段デイフユーザを示し、aは第
4図のE−E矢視断面に相当する羽根断面図、b
は、aのG−G矢視図である。
First, FIG. 1 shows a final stage differential user of a multi-stage centrifugal pump according to an embodiment of the present invention, a is a cross-sectional view of the blade corresponding to the cross-section taken along the line E-E in FIG.
is a GG arrow view of a.

本実施例の最終段デイフユーザを採用する多段
遠心ポンプの一般的な部品構成、流路構成が、先
に従来技術で説明した第3図および第4図に示さ
れている。
The general component configuration and flow path configuration of a multistage centrifugal pump that employs the final stage differential user of this embodiment are shown in FIGS. 3 and 4, which were previously explained in the prior art section.

第3図において、1は吸込流路、2は主軸、3
は、主軸2に嵌着された遠心羽根車(以下単に羽
根車という)、4は、羽根車3の外周に位置する
デイフユーザで、このデイフユーザ4は、羽根車
3で昇圧され流出する流れを外向き(主軸2の中
心からの半径方向が大となる方向)に導きながら
減速させ、静圧回復をはかる機能を有している。
In Fig. 3, 1 is a suction flow path, 2 is a main shaft, and 3
is a centrifugal impeller (hereinafter simply referred to as an impeller) fitted to the main shaft 2; 4 is a differential user located on the outer periphery of the impeller 3; It has a function of decelerating the rotor while guiding it in the direction (the direction in which the radial direction from the center of the main shaft 2 is larger) and recovering the static pressure.

5は、外向き流れを内向き流れに導く曲り流
路、6は、曲り流路5を経た流れを内向きに集め
次段羽根車3′の入口へ導く戻り流路である。
Reference numeral 5 designates a curved flow path that guides an outward flow into an inward flow, and reference numeral 6 designates a return flow path that collects the flow that has passed through the curved flow path 5 inward and guides it to the inlet of the next-stage impeller 3'.

第4図において、3″は、最終段羽根車、7は
最終段デイフユーザ、7aは、羽根車側板3a側
(吸込側)のデイフユーザ側壁(以下単に側壁と
いう)、7bは、羽根車心板3b側(吐出側)の
デイフユーザ側壁(以下単に側壁という)、8は、
最終段デイフユーザ7から出た流れをポンプ吐出
口に集める出口流路、9はポンプ吐出口、10は
ケーシングである。
In FIG. 4, 3'' is the final stage impeller, 7 is the final stage differential user, 7a is the differential user side wall (hereinafter simply referred to as side wall) on the side of the impeller side plate 3a (suction side), and 7b is the impeller core plate 3b. The differential user side wall (hereinafter simply referred to as side wall) 8 on the side (discharge side) is
An outlet flow path that collects the flow from the final stage diff user 7 to a pump discharge port, 9 is a pump discharge port, and 10 is a casing.

すなわち、第3図に示した初段ステージから第
4図に示した最終段ステージまわりまで、前記の
羽根車、デイフユーザ、曲り流路、および戻り流
路等を軸方向に多段に配設し、ポンプ吸込口から
ポンプ吐出口までを多段ポンプとして構成してい
る。
That is, from the first stage shown in FIG. 3 to the final stage shown in FIG. A multi-stage pump is constructed from the suction port to the pump discharge port.

本実施例の多段遠心ポンプが従来のものと異な
る点は、最終段デイフユーザ羽根の形状にある。
The multistage centrifugal pump of this embodiment differs from conventional pumps in the shape of the final stage diffuser vane.

第1図に、最終段デイフユーザ7のデイフユー
ザ羽根7cの形状を示す。
FIG. 1 shows the shape of the differential user blade 7c of the final stage differential user 7. As shown in FIG.

第1図において、7caは、デイフユーザ羽根
7cが側壁7aと近接した位置での羽根プロフイ
ール、7cbは、デイフユーザ羽根7cが側壁7
bと近接した位置での羽根プロフイールを示す。
In FIG. 1, 7ca is a blade profile at a position where the differential user blade 7c is close to the side wall 7a, and 7cb is a blade profile at a position where the differential user blade 7c is close to the side wall 7a.
The blade profile is shown in close proximity to b.

従来のデイフユーザ羽根は、先に第5図に示し
たように、羽根車側板側の側壁4aから羽根車心
板側の側壁4bまで断面形状が同一に形成された
二次元羽根となつていた。
As previously shown in FIG. 5, conventional diffuser blades are two-dimensional blades having the same cross-sectional shape from the side wall 4a on the side of the impeller side plate to the side wall 4b on the side of the impeller core plate.

これに対し、本実施例は、最終段デイフユーザ
を除く他の複数段のデイフユーザについては第7
図に示したごとく、隣接するデイフユーザ羽根4
c′が重なる拡大流路部分における側壁4a側では
羽根間流路の拡大を小さく、側壁4b側では羽根
間流路の拡大を大きくするようにデイフユーザ羽
根の形状を定めており、特に第1図に示すよう
に、最終段デイフユーザ7については、隣接する
デイフユーザ羽根7cが重なる拡大流路部分にお
ける前記側壁7a側では羽根間流路の拡大を大き
く、前記側壁7b側では羽根間流路の拡大を小さ
くなるようにデイフユーザ羽根の形状を定めてい
る。換言すれば、隣接するデイフユーザ羽根7c
が重なる拡大流路部分において、前記側壁7a側
では羽根間の拡大角を大きく、前記側壁7b側で
は羽根間の拡大角を小さくなるように羽根の形状
を定めている。
On the other hand, in this embodiment, for the differential users in multiple stages other than the final stage differential user, the seventh
As shown in the figure, adjacent differential user blades 4
The shape of the diffuser vane is determined so that the expansion of the inter-vane passage is small on the side wall 4a side in the enlarged passage part where c' overlaps, and the expansion of the inter-vane passage is made large on the side wall 4b side. As shown in FIG. 2, for the final stage differential user 7, in the enlarged channel portion where adjacent differential user blades 7c overlap, the inter-blade flow path is greatly enlarged on the side wall 7a side, and the inter-blade flow path is enlarged on the side wall 7b side. The shape of the diffuser blade is determined so that it is small. In other words, the adjacent differential user blades 7c
In the enlarged channel portion where the blades overlap, the shape of the blades is determined so that the expansion angle between the blades is large on the side wall 7a side, and the expansion angle between the blades is small on the side wall 7b side.

より詳しくは、第1図に示すように、隣接する
デイフユーザ羽根7cが重なる拡大流路の入口M
点における羽根間流路の幅d1は、側壁7a側およ
び側壁7b側ともに等しい。一方、拡大流路の出
口は、側壁7a側はNa点であり、出口流路幅は
d2a、M−Na間流路長さはlaである。また側壁7
b側の拡大流路の出口はNb点であり、出口流路
幅はd2b、M−Nb間流路長さはlbである。
More specifically, as shown in FIG.
The width d 1 of the inter-blade flow path at the point is equal on both the side wall 7a side and the side wall 7b side. On the other hand, the outlet of the enlarged channel is at point Na on the side wall 7a side, and the outlet channel width is
d 2a , the flow path length between M and Na is la . Also side wall 7
The outlet of the expanded channel on the b side is at point N b , the outlet channel width is d 2b , and the channel length between M and N b is l b .

羽根間流路の拡大角をθとすれば、側壁7a側
の羽根間流路の拡大角θa、側壁7b側の羽根間流
路の拡大角θbは次式で与えられる。
If the expansion angle of the inter-blade flow path is θ, then the expansion angle θ a of the inter-blade flow path on the side wall 7a side and the expansion angle θ b of the inter-blade flow path on the side wall 7b side are given by the following equations.

θa2tan-1(d2a−d1/2la) θb2tan-1(d2b−d1/2lb) 第1図に示すように、d2b<d2a、 lb>la であるから、 θa>θb となつている。 θ a 2tan -1 (d 2a - d 1 /2l a ) θ b 2tan -1 (d 2b - d 1 /2l b ) As shown in Figure 1, d 2b < d 2a , l b > l a Therefore, θ a > θ b .

上記のように構成した多段遠心ポンプの作用に
ついて次に説明する。
Next, the operation of the multistage centrifugal pump configured as described above will be explained.

主軸2が駆動され、羽根車3が回転すると、液
体は吸込流路1から羽根車3へ吸込まれる。そし
て、羽根車3により昇圧されたのちデイフユーザ
4へ流入し、ここで減速し、静圧回復したのち曲
り流路5へ流入する。曲り流路5ではデイフユー
ザ4からの外向き流れを内向き流れに方向を変
え、戻り流路6へ吐出し、さらに戻り流路6では
この流れを内向きに集め、次段の遠心羽根車3′
の入口へ導く。このように昇圧を何段か繰り返し
たのち、最終段羽根車3″により昇圧された流体
は最終段デイフユーザ7へ送られ、静圧回復した
のち出口流路8を通つてポンプ吐出口9から流出
される。
When the main shaft 2 is driven and the impeller 3 rotates, liquid is sucked into the impeller 3 from the suction channel 1 . After being pressurized by the impeller 3, it flows into the differential user 4, where it is decelerated, and after the static pressure is restored, it flows into the curved flow path 5. In the curved flow path 5, the direction of the outward flow from the differential user 4 is changed to an inward flow and is discharged to the return flow path 6. In the return flow path 6, this flow is further collected inward and sent to the centrifugal impeller 3 of the next stage. ′
leading to the entrance. After repeating the pressure increase several times in this way, the fluid pressurized by the final stage impeller 3'' is sent to the final stage differential user 7, and after the static pressure is restored, it flows out from the pump discharge port 9 through the outlet flow path 8. be done.

第1図の実施例では、最終段デイフユーザ羽根
7cの入口から、羽根凹面が次のデイフユーザ羽
根と重なる位置(M点)までを二次元形状、すな
わち、デイフユーザ羽根を軸方向から見て、側壁
7aから側壁7bまで同一形状に定め、かつ、前
記羽根凹面が近接するデイフユーザと重なり始め
る位置M点から出口Na,Nbまでについて、前記
隣接するデイフユーザ羽根との間の拡大流路が、
側壁7a側では拡大が大きく、側壁7b側では拡
大が小さくなるように羽根を傾斜させ、流路長さ
がlb>laであることからデイフユーザ出口の流れ
は、相対的に側壁7a側では半径方向速度が大き
く、側壁7b側では周方向速度が大きくなる。こ
れに第1図bに示したようにデイフユーザ出口の
羽根形状が3次元翼化している形状効果により、
デイフユーザから出る流れに側壁7bから側壁7
aへ向ける力が作用し、最終段デイフユーザ7か
らポンプ吐出口9への流れを円滑化するだけでな
く、主流の向きを吐出側から吸込側へ向ける効果
があるので、最終段デイフユーザの後流は、出口
流路8の中で円周方向速度を有して、外向き流れ
となり、吸込側へ向う軸方向成分v3をもつことに
なる。これによつて、最終段デイフユーザ7から
ポンプ吐出口9までの流れの損失を低減できる。
In the embodiment shown in FIG. 1, the area from the entrance of the final stage differential user blade 7c to the position (point M) where the concave surface of the blade overlaps the next differential user blade is formed into a two-dimensional shape, that is, when the differential user blade is viewed from the axial direction, the side wall 7a to the side wall 7b, and from the point M where the concave surface of the blade starts to overlap with the adjacent diff user blade to the exits Na and Nb, the expanded flow path between the adjacent diff user blade is
The blades are inclined so that the expansion is large on the side wall 7a side and small on the side wall 7b side, and since the flow path length is l b > l a , the flow at the outlet of the differential user is relatively small on the side wall 7a side. The radial velocity is high, and the circumferential velocity is high on the side wall 7b side. In addition, as shown in Figure 1b, due to the shape effect that the blade shape of the differential user outlet is three-dimensional,
From the side wall 7b to the side wall 7 for the flow coming out of the differential user
The force directed toward a acts not only to smooth the flow from the final stage differential user 7 to the pump discharge port 9, but also to direct the direction of the mainstream from the discharge side to the suction side. has a circumferential velocity in the outlet channel 8 and flows outward, with an axial component v 3 towards the suction side. Thereby, flow loss from the final stage differential user 7 to the pump discharge port 9 can be reduced.

また、従来の二次元羽根をもつ最終段デイフユ
ーザの後流は、円周方向の速度をもつ半径方向の
流速が過大な場合、ケーシング10の内周にエロ
ージヨンが発生する問題があつたが、本実施例の
ようなデイフユーザ羽根形状による吐出側から吸
込側へ向う速度成分をデイフユーザ出口流れに付
加することにより、ケーシング内面のエロージヨ
ンを抑制する効果があり、効率が良く信頼性の高
い多段遠心ポンプを得ることができる。
Furthermore, in the wake of the conventional final stage differential user with two-dimensional blades, if the flow velocity in the radial direction with the velocity in the circumferential direction is excessive, erosion occurs on the inner circumference of the casing 10. By adding a velocity component from the discharge side to the suction side due to the shape of the differential user vanes as in the example, to the differential user outlet flow, erosion of the inner surface of the casing is suppressed, and an efficient and reliable multistage centrifugal pump can be created. Obtainable.

次に、第2図は、本発明の他の実施例に係る多
段遠心ポンプの最終段デイフユーザを示し、a
は、第4図のE−E矢視断面に相当する羽根断面
図、bは、aのH−H矢視図である。
Next, FIG. 2 shows a final stage differential user of a multistage centrifugal pump according to another embodiment of the present invention, a
is a cross-sectional view of the blade corresponding to the cross section taken along line E-E in FIG. 4, and b is a view taken along line H-H in a.

図中、第1図と同一符号は同等部分を示すもの
であるから、その説明を省略する。
In the figure, the same reference numerals as those in FIG. 1 indicate the same parts, so the explanation thereof will be omitted.

第2図の実施例が、第1図の実施例と異なる点
は、最終段デイフユーザ7Aの出口部での羽根肉
厚分布にある。
The embodiment shown in FIG. 2 differs from the embodiment shown in FIG. 1 in the blade wall thickness distribution at the outlet of the final stage differential user 7A.

第1図の実施例では、デイフユーザ出口付近の
羽根肉厚は、両側壁7a,7b間でほぼ等しく定
め、羽根形状を、側壁7a側で出口角度が大き
く、側壁7b側で出口角度が小となるように傾斜
させている。
In the embodiment shown in FIG. 1, the blade wall thickness near the differential user exit is determined to be approximately equal between both side walls 7a and 7b, and the blade shape is such that the exit angle is large on the side wall 7a side and the exit angle is small on the side wall 7b side. It is tilted so that

これに対し第2図の実施例では、羽根凸面側は
二次元形状とし、側壁7a側と7b側とで出口角
度を等しくし、出口付近の羽根肉厚を、羽根車側
の側板3aの側壁7a側で薄く、羽根車心板3b
側の側壁7b側で厚くなるように、流路を横切つ
てテーパ状に定めることにより、羽根凹面側の出
口角度を、側壁7a側で出口角度が大きく、側壁
7b側で出口角度が小となるようにしている。第
2図に示すhaは、デイフユーザ7Aの出口におけ
る側壁7b側の羽根肉厚であり、hb>haとなつて
いる。
On the other hand, in the embodiment shown in FIG. 2, the convex side of the blade has a two-dimensional shape, the exit angle is made equal on the side wall 7a side and the side 7b, and the thickness of the blade near the exit is set on the side wall of the side plate 3a on the impeller side. Thin on the 7a side, impeller core plate 3b
By tapering across the flow path so that it becomes thicker on the side wall 7b side, the outlet angle on the concave side of the blade can be set such that the outlet angle is large on the side wall 7a side and small on the side wall 7b side. I'm trying to make it happen. h a shown in FIG. 2 is the thickness of the blade on the side wall 7b side at the outlet of the differential user 7A, and h b > ha .

また、本実施例では、第2図bに示すように、
最終段デイフユーザ流路の出口部形状が、羽根凹
面で側壁7a側よりも側壁7b側の出口長さが小
さくなり、しかも羽根形状がテーパ状となつてい
るため、デイフユーザ後流に吐出側(側壁7b
側)から吸込側(側壁7a側)へ向う軸方向の流
れが生じる。
In addition, in this embodiment, as shown in FIG. 2b,
The shape of the outlet of the final stage diff user flow path is such that the blade is concave and the outlet length on the side wall 7b side is smaller than that on the side wall 7a side, and the blade shape is tapered. 7b
An axial flow is generated from the side) to the suction side (side wall 7a side).

したがつて、第2図の実施例によれば、第1図
の実施例と同様の効果が期待される。
Therefore, according to the embodiment shown in FIG. 2, the same effects as those of the embodiment shown in FIG. 1 can be expected.

次に、第8図は、本発明のさらに他の実施例に
係る多段遠心ポンプの最終段ステージまわりを示
す縦断面図である。図中、第4図と同一符号のも
のは、一般的な多段遠心ポンプと同等部分である
から、その説明を省略する。
Next, FIG. 8 is a longitudinal sectional view showing the vicinity of the final stage of a multistage centrifugal pump according to still another embodiment of the present invention. In the figure, the same reference numerals as those in FIG. 4 are the same parts as those of a general multistage centrifugal pump, so a description thereof will be omitted.

第8図の実施例では、最終段デイフユーザ7B
の側壁7Baおよび7Bbを、デイフユーザ入口付
近は主軸2に直交する平面とし、デイフユーザ出
口付近は、吐出側から吸込側へ向う軸方向へα゜屈
曲、傾斜させた形状としている。
In the embodiment shown in FIG. 8, the final stage differential user 7B
The side walls 7B a and 7B b have a flat surface perpendicular to the main axis 2 near the differential user inlet, and are bent and inclined by α° in the axial direction from the discharge side to the suction side.

第8図の実施例では、最終段羽根車3″から流
出した流れが最終段デイフユーザ7Bへ流入した
のち、昇圧する時点で半径方向へ流出していく流
れに、流路を傾斜することにより吸込側へ向う速
度成分を与えるので、前述の第1図および第2図
の実施例と同様の効果が期待される。
In the embodiment shown in FIG. 8, after the flow flowing out from the final stage impeller 3'' flows into the final stage differential user 7B, the flow flowing out in the radial direction at the time of pressure increase is sucked by inclining the flow path. Since a velocity component toward the side is provided, the same effects as the embodiments shown in FIGS. 1 and 2 described above are expected.

なお、第8図の実施例では、デイフユーザ側壁
を、吐出側から吸込側へ向う軸方向α゜折れ曲るよ
うにした例を示したが、曲面をもつて湾曲させて
もよいことは言うまでもない。
In the embodiment shown in FIG. 8, the differential user side wall is bent by α° in the axial direction from the discharge side to the suction side, but it goes without saying that it may be curved with a curved surface. .

[発明の効果] 以上述べたように、本発明によれば、最終段デ
イフユーザにおける、デイフユーザ出口からポン
プ吐出口までの流体の流れを円滑化して損失を最
小にするとともに、デイフユーザ流出後の流れの
軸方向成分をポンプ吐出口に向けることで、ケー
シング内部のエロージヨンを防止しうる多段遠心
ポンプを提供することができる。
[Effects of the Invention] As described above, according to the present invention, the flow of fluid from the diffuser outlet to the pump discharge port in the final stage diffuser is smoothed to minimize loss, and the flow after the diffuser outflows is reduced. By directing the axial component toward the pump discharge port, it is possible to provide a multistage centrifugal pump that can prevent erosion inside the casing.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、本発明の一実施例に係る多段遠心ポ
ンプの最終段デイフユーザを示し、aは羽根断面
図、bは、aのG−G矢視図、第2図は、本発明
の他の実施例に係る多段遠心ポンプの最終段デイ
フユーザを示し、aは羽根断面図、bは、aのH
−H矢視図、第3図は、一般的な多段遠心ポンプ
の初段ステージの主要構成を示す縦断面図、第4
図は、その多段遠心ポンプの最終段ステージまわ
りを示す縦断面図、第5図は、従来の二次元羽根
を採用したデイフユーザ部を示し、aは縦断面
図、bは、aのZ−Z矢視断面図、第6図は、一
般的なステージ流路における流体の流れを示す流
路断面図、第7図は、従来の三次元羽根を採用し
たデイフユーザ羽根を示し、aは羽根断面図、b
は、aのY−Y矢視図、第8図は、本発明のさら
に他の実施例に係る多段遠心ポンプの最終段ステ
ージまわりを示す縦断面図である。 2…主軸、3…羽根車、3a…羽根車側板、3
b…羽根車心板、4…デイフユーザ、5…曲り流
路、6…戻り流路、7,7A,7B…最終段デイ
フユーザ、7a,7Ba,7b,7Bb…側壁、7
c…デイフユーザ羽根、8…出口流路、9…ポン
プ吐出口。
FIG. 1 shows a final stage diffuser of a multistage centrifugal pump according to an embodiment of the present invention, a is a cross-sectional view of the blade, b is a view taken along the line GG of a, and FIG. 2 shows the final stage diff user of the multistage centrifugal pump according to the embodiment, a is a cross-sectional view of the blade, and b is the H of a.
-H arrow view, Figure 3 is a vertical sectional view showing the main structure of the first stage of a general multistage centrifugal pump, and Figure 4 is
The figure is a vertical cross-sectional view showing the area around the final stage of the multi-stage centrifugal pump, FIG. 6 is a flow path cross-sectional view showing the flow of fluid in a general stage flow path, FIG. 7 is a differential user blade employing a conventional three-dimensional blade, and a is a blade cross-sectional view. ,b
FIG. 8 is a longitudinal sectional view showing the area around the final stage of a multistage centrifugal pump according to still another embodiment of the present invention. 2... Main shaft, 3... Impeller, 3a... Impeller side plate, 3
b... Impeller core plate, 4... Diff user, 5... Curved flow path, 6... Return flow path, 7, 7A, 7B... Final stage differential user, 7a, 7Ba, 7b, 7Bb... Side wall, 7
c... Diffuser vane, 8... Outlet channel, 9... Pump discharge port.

Claims (1)

【特許請求の範囲】 1 主軸に嵌着され主軸とともに回転すべき遠心
羽根車と、遠心羽根車の外周に位置し遠心羽根車
から出る流れを外向きに導いて静圧回復をはかる
デイフユーザと、このデイフユーザから出る外向
き流れを内向き流れに導く曲り流路と、曲り流路
から出る流れを内向きに集め次段の遠心羽根車入
口へ導く戻り流路とからなるステージを軸方向に
多段に配設し、その最終段のデイフユーザから出
る流れを当該最終段デイフユーザよりも吸込側に
位置するポンプ吐出口に集める流路およびポンプ
吐出口を形成したもので、 複数段のデイフユーザの羽根形状を、当該デイ
フユーザの隣接する羽根が重なる拡大流路部分に
おける羽根車側板側のデイフユーザ側壁に近い流
路では前記羽根間流路の拡大を小さくし、羽根車
心板側のデイフユーザ側壁に近い流路では前記羽
根間流路の拡大を大きくするように形成してなる
多段遠心ポンプにおいて、 上記最終段デイフユーザの羽根形状のみを、当
該デイフユーザの隣接する羽根が重なる拡大流路
部分における羽根車側板側のデイフユーザ側壁に
近い流路では前記羽根間流路の拡大を大きくし、
羽根車心板側のデイフユーザ側壁に近い流路では
前記羽根間流路の拡大を小さくするように形成し
たことを特徴とする多段遠心ポンプ。 2 特許請求の範囲第1項記載ものにおいて、最
終段デイフユーザの羽根形状は、当該デイフユー
ザ羽根の入口から、羽根負圧面が隣接するデイフ
ユーザ羽根と重なる位置までを二次元形状とし、
この位置より後流側の羽根形状については、前記
隣接するデイフユーザ羽根との間の拡大流路が羽
根車側板側のデイフユーザ側壁では拡大を大き
く、羽根車心板側のデイフユーザ側壁では拡大を
小さくするように羽根形状を三次元翼化したこと
を特徴とする多段遠心ポンプ。 3 特許請求の範囲第1項または第2項記載のも
ののいずれかにおいて、最終段デイフユーザの羽
根形状は、当該デイフユーザ羽根の出口付近の羽
根肉厚を、羽根車側板側のデイフユーザ側壁付近
で薄く、羽根車心板側のデイフユーザ側壁付近で
厚くなるように形成したことを特徴とする多段遠
心ポンプ。 4 特許請求の範囲第1項記載のものにおいて、
最終段のデイフユーザは、羽根車側板側のデイフ
ユーザ側壁および羽根車心板側のデイフユーザ側
壁を、当該デイフユーザ入口付近は主軸に直交す
る平面とし、当該デイフユーザ出口付近は吐出側
から吸込側へ向う軸方向へわん曲または屈曲させ
るように形成したことを特徴とする多段遠心ポン
プ。
[Scope of Claims] 1. A centrifugal impeller that is fitted onto the main shaft and rotates together with the main shaft; a diff user that is located on the outer periphery of the centrifugal impeller and that guides the flow exiting from the centrifugal impeller outward to restore static pressure; There are multiple stages in the axial direction, each consisting of a curved channel that guides the outward flow from the differential user into an inward flow, and a return channel that collects the flow exiting from the curved channel inward and guides it to the inlet of the centrifugal impeller at the next stage. A flow path and a pump discharge port are formed to collect the flow from the final stage differential user to the pump discharge port located on the suction side of the final stage differential user, and the blade shape of the multiple stage differential user is In the expanded flow path portion where adjacent blades of the differential user overlap, the expansion of the inter-blade flow path is reduced in the flow path close to the differential user side wall on the side of the impeller side plate, and in the flow path close to the differential user side wall on the impeller core plate side. In the multi-stage centrifugal pump formed to increase the expansion of the flow path between the blades, only the blade shape of the final stage differential user is changed to the diffuser on the side of the impeller side plate in the enlarged flow path portion where adjacent blades of the differential user overlap. In the flow path near the side wall, the expansion of the flow path between the blades is increased,
A multi-stage centrifugal pump characterized in that a flow path close to a diffuser side wall on the impeller core plate side is formed so as to reduce expansion of the inter-blade flow path. 2. In the product described in claim 1, the blade shape of the final stage differential user blade has a two-dimensional shape from the inlet of the differential user blade to the position where the negative pressure surface of the blade overlaps an adjacent diffuser blade,
Regarding the shape of the blades on the downstream side from this position, the enlarged flow path between the adjacent differential user blades has a large expansion at the differential user side wall on the side of the impeller side plate, and a small expansion on the differential user side wall on the side of the impeller core plate. A multi-stage centrifugal pump characterized by a three-dimensional blade shape. 3. In either of claims 1 or 2, the shape of the final stage differential user blade is such that the blade wall thickness near the outlet of the differential user blade is thinner near the differential user side wall on the side of the impeller side plate, A multi-stage centrifugal pump characterized in that the thickness is formed near the differential user side wall on the impeller core plate side. 4 In what is stated in claim 1,
The final stage diff user has a diff user side wall on the impeller side plate side and a diff user side wall on the impeller core plate side, and the area near the inlet of the diff user is a plane perpendicular to the main axis, and the area near the outlet of the diff user is in the axial direction from the discharge side to the suction side. A multistage centrifugal pump characterized by being formed to be curved or curved.
JP62167732A 1987-07-07 1987-07-07 Multi-stage centrifugal pump Granted JPS6415498A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62167732A JPS6415498A (en) 1987-07-07 1987-07-07 Multi-stage centrifugal pump

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62167732A JPS6415498A (en) 1987-07-07 1987-07-07 Multi-stage centrifugal pump

Publications (2)

Publication Number Publication Date
JPS6415498A JPS6415498A (en) 1989-01-19
JPH0511238B2 true JPH0511238B2 (en) 1993-02-12

Family

ID=15855121

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62167732A Granted JPS6415498A (en) 1987-07-07 1987-07-07 Multi-stage centrifugal pump

Country Status (1)

Country Link
JP (1) JPS6415498A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0520218U (en) * 1991-08-29 1993-03-12 信越ポリマー株式会社 Anti-glare illuminated display device
JP2013209883A (en) * 2012-03-30 2013-10-10 Kubota Corp Diffuser pump

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0618698U (en) * 1992-08-21 1994-03-11 三菱重工業株式会社 Centrifugal compressor
CN1070270C (en) * 1995-03-13 2001-08-29 株式会社日立制作所 Centrifugal fluid machine
US6162015A (en) * 1995-03-13 2000-12-19 Hitachi, Ltd. Centrifugal type fluid machine
JP5649055B2 (en) 2011-01-05 2015-01-07 株式会社日立製作所 Barrel type multistage pump

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS562499A (en) * 1979-06-22 1981-01-12 Hitachi Ltd Guide vane for multistage oblique flow pump
JPS61258998A (en) * 1985-05-13 1986-11-17 Hitachi Ltd Centrifugal type multistage fluid machine

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS562499A (en) * 1979-06-22 1981-01-12 Hitachi Ltd Guide vane for multistage oblique flow pump
JPS61258998A (en) * 1985-05-13 1986-11-17 Hitachi Ltd Centrifugal type multistage fluid machine

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0520218U (en) * 1991-08-29 1993-03-12 信越ポリマー株式会社 Anti-glare illuminated display device
JP2013209883A (en) * 2012-03-30 2013-10-10 Kubota Corp Diffuser pump

Also Published As

Publication number Publication date
JPS6415498A (en) 1989-01-19

Similar Documents

Publication Publication Date Title
JP5316365B2 (en) Turbo fluid machine
US3861826A (en) Cascade diffuser having thin, straight vanes
US6203275B1 (en) Centrifugal compressor and diffuser for centrifugal compressor
US6302640B1 (en) Axial fan skip-stall
EP0305879B1 (en) Diffuser for centrifugal compressor
JP2010001851A (en) Centrifugal compressor having vaneless diffuser and vaneless diffuser thereof
JPH0512560B2 (en)
JPH0511238B2 (en)
JP3350934B2 (en) Centrifugal fluid machine
JPH07103874B2 (en) Mixed flow compressor
JP7429810B2 (en) Multi-stage centrifugal fluid machine
JP4174693B2 (en) Centrifugal compressor diffuser
JPH09203394A (en) Return vane of multiple centrifugal compressor
JPS58122391A (en) Liquid ring pump, inside of liquid ring thereof has blade
JPH01318790A (en) Flashing vane of multistage pump
JPH0738641Y2 (en) Multi-stage axial turbine
JPH01247798A (en) High speed centrifugal compressor
JPS6344960B2 (en)
JPS644041B2 (en)
JPS63266199A (en) Centrifugal fluid machine
JPS61258998A (en) Centrifugal type multistage fluid machine
JPH1077997A (en) Centrifugal compressor
JPH1182389A (en) Turbo-fluid machinery
JPS6345599Y2 (en)
JPH0615878B2 (en) High-speed centrifugal compressor diffuser

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees