JPH0565839B2 - - Google Patents

Info

Publication number
JPH0565839B2
JPH0565839B2 JP59106085A JP10608584A JPH0565839B2 JP H0565839 B2 JPH0565839 B2 JP H0565839B2 JP 59106085 A JP59106085 A JP 59106085A JP 10608584 A JP10608584 A JP 10608584A JP H0565839 B2 JPH0565839 B2 JP H0565839B2
Authority
JP
Japan
Prior art keywords
tank
decontamination
electrolytic
pipe
electrolyte
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP59106085A
Other languages
Japanese (ja)
Other versions
JPS60249099A (en
Inventor
Reiko Fujita
Masami Tooda
Yutaka Hasegawa
Tetsuo Morisue
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Tokyo Shibaura Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokyo Shibaura Electric Co Ltd filed Critical Tokyo Shibaura Electric Co Ltd
Priority to JP10608584A priority Critical patent/JPS60249099A/en
Priority to FR858502984A priority patent/FR2565021B1/en
Priority to DE19853507334 priority patent/DE3507334A1/en
Priority to US06/710,178 priority patent/US4663085A/en
Publication of JPS60249099A publication Critical patent/JPS60249099A/en
Publication of JPH0565839B2 publication Critical patent/JPH0565839B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Cleaning By Liquid Or Steam (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

[発明の技術分野] 本発明は放射性物質で汚染した金属の表面汚染
を除去するための放射能汚染金属の除染装置に関
する。 [発明の技術的背景] 一般に、原子力発電所等で発生する放射性金属
廃棄物は原子力発電所内に永久貯蔵され、環境に
悪影響を与えないようにしている。しかし、この
ように永久貯蔵すると放射性金属廃棄物の貯蔵量
は増加の一途をたどり、貯蔵スペースの確保が困
難となる。特に原子力発電所等の設備の回収等の
際に生じる放射能で汚染された配管等はその寸法
が大きく、また容易に減容処理することができな
いためその廃棄物貯蔵が困難になる。このため、
放射性金属廃棄物を除染し、その放射能レベルを
自然界における放射能レベルつまりバツクグラウ
ンドレベルまで低下させて、一般の産業廃棄物と
同様に取扱い得るようにすることが検討されてい
る。しかしながら、放射性金属廃棄物はその表面
に汚染が固着しているため裏面にゆるく堆積して
いる汚染を除去しただけでは完全な除染はでき
ず、汚染の固着した金属母材表面層を溶解して汚
染を除去する必要がある。 バツクグラウドレベルまでの除染を目的とした
除染方法としては、電気化学的に被除染物である
金属母材の表面層を溶解して除染する電解除染法
と、除染剤を用いて化学的に金属母材の表面層を
溶解して除染する化学除染法が知られている。電
解除染法は除染速度は大きい特長はあるが、反面
電極面を被除染面に対峙させなければならないの
で形状の複雑な被除染物に対しては適用できない
問題点がある。化学除染法は複雑な被除染物への
適用性はあるが、反面、除染速度が小さい問題点
があり、また除染剤は化学的に消費されると使用
できなくなるので、使用済除染剤すなわち二次廃
棄物が大量に発生する問題点がある。 [発明の目的] 本発明は以上の問題点を解決するためになされ
たもので、形状の複雑な被除染物に適用でき、除
染速度が大きく、電解液を再生使用することによ
り使用済電解液の発生量が少なく、作業性が安全
な放射能汚染金属の除染装置を提供することを目
的とする。 [発明の概要] 上記、目的を達成するために本発明は、セリウ
ム3価イオン、セリウム4価イオンを含む硝酸水
溶液を用い、電解酸化還元反応によりセリウム3
価イオンからセリウム4価イオンを生成し、この
生成したセリウム4価イオンがセリウム3価イオ
ンに変化する際の酸化力を利用して、被除染物つ
まり放射能汚染金属の表面を溶解して除染する放
射能汚染金属の除染装置において、前記電解酸化
還元反応専用の電解槽と、前記被除染物の表面を
溶解して除染する汚染槽と、前記電解槽の側壁に
設けた電解槽オーバーフロー管と、前記除染槽の
側壁に設けた除染槽オーバーフロー管と、前記除
染槽の底面に設けた除染槽ドレン管と、前記電解
槽オーバーフロー管、除染槽オーバーフロー管お
よび除染槽ドレン管に連設し、前記電解槽からの
オーバーフロー電解液、除染槽からのオーバーフ
ロー電解液および前記除染槽からのドレン電解液
を受けるドレン槽と、このドレン槽から前記電解
槽へ電解液を戻す電解槽用送液管と、この電解槽
用送液管の途中に設けられ電解液中の不溶分を除
去するフイルターと、このフイルターを包囲した
遮へい体と、前記ドレン槽から前記除染槽へ電解
液を戻す除染槽用送液管と、前記電解槽と除染槽
とドレン槽との上部空間に連設した排ガスダクト
と、この排ガスダクトに連接した硝酸蒸気回収装
置、ミスト回収装置および排風機とからなる排ガ
ス処理装置と、水洗水を貯溜する水洗水槽と、こ
の水洗水槽から前記除染槽へ水洗水を送る水洗水
送液管と、この除染槽で使用した水洗水をこの除
染槽から前記水洗水槽へ戻す水洗水戻り管とを備
えたことを特徴とする放射能汚染金属の除染装置
である。 [発明の実施例] 以下、図面を参照して本発明に係る放射能汚染
金属の除染装置の一実施例について説明する。 図面中、符号1は電解槽であり、この電解槽1
内にはセリウム3価イオンおよびセリウム4価イ
オンを含む硝酸水溶液からなる電解液101が貯
溜されている。この電解液101中には電解酸化
還元反応によりセリウム3価イオンからセリウム
4価イオンを生成させる働きをする陽極および陰
極からなる電極102が浸漬されている。前記電
解槽1には電解液101を加熱するためのヒータ
ー104、および電解液101の温度を検出、制
御するための温度検出器103が設けられてい
る。またこの電解槽1はふた105で気密に覆わ
れている。さらに電解槽1は上部側面に排ガス管
106が接続され、下面にはバルブ107を有す
るドレン管108と、給液管109が接続されて
いる。 図面中符号2は除染槽で、この除染槽2には前
記電解槽1と同様にセリウム3価イオンおよびセ
リウム4価イオンを含む硝酸水溶液からなる電解
液203が貯溜され、この電解液203中には被
除染物3が浸漬されている。この除染槽2中で、
セリウム4価イオンがセリウム3価イオンに変化
する時の酸化力により、前記被除染物3である金
属母材表面層は溶解され、同時に被除染物3の表
面の汚染が除去される。前記除染槽2には電解液
203を加熱するためのヒーター202、および
電解液203の温度を検出、制御するための温度
検出器201が設けられている。また、この除染
槽2はふた204で気密に覆われており、また上
部側面に排ガス管205が接続され、さらに下面
にバルブ206を有する給液管207が接続され
ている。 図面中符号7はドレン槽であつて、このドレン
槽7には前記電解槽1の下端に接続したドレン管
108およびオーバーフロー管4と、除染槽2の
オーバーフロー管5およびドレン管6とから流れ
てきた電解液701が貯溜される。またこのドレ
ン槽7はふた702で気密に覆われており、上部
側面には排ガス管709が接続されている。 また、ドレン槽7の下面にはバルブ703を有
する第1の配管704と、バルブ705を有する
第2の配管706と、バルブ707を有する第3
の配管708が接続されている。 前記電解槽1の側壁には前述したように電解槽
オーバーフロー管4が設けられ、この電解槽オー
バーフロー管4の他端は前記ドレン槽7に連設さ
れている。逆に、このドレン槽7から前記電解槽
1へは、第2の配管706からポンプ801を介
して電解槽用送液管8が接続され、給液管109
に連通している。この電解槽用送液管8と給液管
109との間には、前記ドレン槽7から前記電解
槽1へ第2の配管706を通して電解液701を
送るポンプ801、電解液流量を制御する流量調
整バルブ802、および電解液流量を監視する流
量計803が設けられている。また、この電解槽
用送液管8の途中には、電解液701から不溶分
を除去するためのフイルター9が設けられてい
る。このフイルター9の上流には圧力計901、
前記フイルター9の下流には圧力計902が設け
られており、前記フイルター9の目づまりの具合
が監視できるようになつている。また、このフイ
ルター9はしやへい体16で包囲されている。 前記除染槽2の側壁には前述したようにバルブ
501を有する除染槽オーバーフロー管5が設け
られ、この除染槽オーバーフロー管5の他端は前
記ドレン槽7に連設されている。逆に、このドレ
ン槽7から前記除染槽2へは第1の配管704お
よびポンプ1001を介して除染槽用送液管10
がつながり、給液管207に連通される。この除
染槽用送液管10と給液管207との間には前記
ドレン槽7から前記除染槽2へ第1の配管704
を通して電解液701を送るポンプ1001、電
解液流量を制御する流量調整バルブ1002およ
び電解液流量を監視する流量計1003が設けら
れている。また、この除染槽用送液管10には電
解液701から不溶分を除去するためのフイルタ
ー17が設けられている。このフイルター17の
上流には圧力計1004、前記フイルター17の
下流には圧力計1005が設けられており、前記
フイルター17の目づまりの具合が監視できるよ
うになつている。また、このフイルター17はし
やへい体18に覆われている。前記除染槽2の底
面には除染槽ドレン管6およびバルブ1501を
有する水洗水戻り管15が設けてあり、ドレン管
6はバルブ601を介して前記ドレン槽7につな
がつており、戻り管15は水洗水槽13へ連通し
ている。 前記除染槽1、前記電解槽2および前記ドレン
槽7の上部空間は排ガス管106,205および
704を介してそれぞれ排ガスダクト11につな
がつている。この排ガスダクト11は硝酸蒸気回
収装置1201と、ミスト回収装置1202およ
び排風機1203とが連通されて接続した排ガス
処理装置12につながつている。前記硝酸蒸気回
収装置1201の下方には受槽1204が設けら
れ、この受槽1204と前記ドレン槽7とは回収
液もどり管1206でつながつている。前記受槽
1204には回収液の量を監視する液面計120
5が設けられている。また前記回収液もどり管1
206の途中にはバルブ1207が設けられてお
り、前記液面計1205により前記受槽1204
にあるレベル以上の回収液が貯溜されたならば、
この回収液を前記ドレン槽7へもどせるようにな
つている。前記排ガスダクト11には排ガス温度
を監視する温度検出器1101が設けられてあ
る。また、前記排ガス処理装置12の随所には排
ガス温度を監視する温度検出器1209、排ガス
の圧力を監視する圧力計1210および排ガス流
量を監視する流量計1211が設けられている。
さらにミスト回収装置1202には第1および第
2のフイルター1212,1213とスプレーノ
ズル1214が内蔵されており、スプレーノズル
1214にはポンプ1215から配管1216を
通つて排ガスが吹き出され、循環されるようにな
つている。ミスト回収装置1202を流出した排
ガスは排ガス管から排風機1203を通つて放出
管1218から大気放出される。 前記水洗水槽13には水洗水1301が貯溜さ
れている。この水洗水槽13と前記除染槽2とは
水洗水送液管14でつながつている。この水洗水
送液管14の途中にはバルブ141およびポンプ
1302が設けられてあり、水洗水を水洗水槽1
3から除染槽2に移送できるようになつている。
また前記除染層の底面と前記水洗水槽13とは水
洗水戻り管15でつながつており、この水洗水戻
り管15の途中にはバルブ1501が設けられ、
必要に応じ、前記除染槽2で使用した水洗水を除
染槽2から水洗水槽13に戻せるようになつてい
る。 次に、本発明による放射能汚染金属の除染装置
の使用法および機能について説明する。 ポンプ801をオンにし、ドレン槽7と電解槽
1の間で電解液701,101を循環させる。ポ
ンプ801をオンにすると、ドレン槽7内の電解
液701は第2の配管706から電解槽用送液管
8を通つて電解槽1へ移送され電解槽オーバーフ
ロー管4を通つて、ドレン槽7に戻つてくる。こ
のように、電解槽1の側壁には電解槽オーバーフ
ロー管4を設けてあるので、電解液101の液面
高さは一定に保たれる。したがつて電極102を
電解液101に常に浸漬させておくことができ電
極102の全面積が有効に働く。電解槽用送液管
8の途中にはフイルター9が設けられているの
で、被除染物3の表面から剥れた汚染を含んだ不
溶分はこのフイルター9で捕獲される。したがつ
て、汚染が電解槽1に入る恐れがない。また、電
解液への汚染の蓄積を抑えることができる。汚染
がたまるフイルター9はしやへい体16で覆われ
ているので、作業員の被曝低減がはかれる。温度
検出器103で温度を監視しながらヒーター10
4で電解液101を加熱し、所定温度に保ち、電
極102に電圧を加える。すると、セリウム3価
イオンとセリウム4価イオンを含む硝酸水溶液か
らなる電解液101は以下に示す電解酸化還元反
応により、セリウム3価イオン(Ce3+)はセリ
ウム4価イオン(Ce4+)に変換される。 陽極 Ce3+→Ce4++e- ……(1) 2OH-→H2O+1/2O2(↑)+2e- ……(2) 陰極 H+e-→(1/2)H2(↑) ……(3) 次に除染槽2に被除染物3を入れ、ポンプ10
01をオンにしドレン槽7と除染槽2の間で電解
液701,203を循環させる。ポンプ1001
をオンにするとドレン槽7中の電解液701は第
1の配管704から除染槽用送液管10を通つて
除染槽2へ移送され、除染槽オーバーフロー管5
を通つてドレン槽7に戻つてくる。除染槽2の側
壁には除染槽オーバーフロー管5が設けられてあ
るので、被除染物3の大きさによらず電解液20
3の液面高さは一定に保たれ、電解液203が除
染槽2から溢流する恐れがない。除染槽用送液管
10の途中にはフイルター17が設けられている
ので、被除染物3の表面から剥れた汚染を含んだ
不溶分はこのフイルター17で捕獲され、電解液
への汚染の蓄積を抑えることができる。汚染のた
まるフイルター17はしやへい体18で覆われて
いるので、作業員の被曝低減がはかれる。除染槽
2では温度検出器201で温度を監視しながらヒ
ーター202で電解液203を加熱し、所定温度
に保つ。この除染槽2では電解槽1で生成された
セリウム4価イオンがセリウム3価イオンに変換
されると同様に、その時の酸化力により前記被除
染物3の金属母材表面層は溶解され被除染物3の
表面の汚染が除去される。セリウム4価イオン
(Ce4+)がセリウム3価イオン(Ce3+)に変換さ
れる一方、被除染物3の金属母材表面層が溶解さ
れる反応は金属の化学式をMとして以下に示す通
りである。 M+Ce4+→M++Ce3+ これまで説明したことでわかるように、被除染
物3の表面が電解液203に接触していれば、被
除染物3の表面の溶解、すなわち除染が行われ
る。したがつて、電極を被除染物表面に対峙させ
る必要のある電解除染法に比べて、本発明による
放射能汚染金属の除染装置の方が、形状の複雑な
物に対する適用性が広い。また、被除染物3の表
面の溶解に、セリウム4価の酸化力を利用してい
るので、化学除染法に比べて、本発明による放射
能汚染金属の除染装置の方が除染速度が大きい。
除染槽2で生成されたセリウム3価イオンは電解
槽1でセリウム4価格にもどされる。すなわち、
電解液は再生され、くり返し使用される。したが
つて、使用済電解液の発生がない。 被除染物3の除染が済むと、バルブ601を閉
にし、除染槽2中の電解液203を除染槽ドレン
管6を通してドレン槽7にドレンする。除染槽2
中の電解液203がすべてドレン槽7にドレンさ
れたら、バルブ601を閉にし、ポンプ1302
をONにして水洗水槽13内の水洗水1301を
水洗水送液管14を通して除染槽2へ移送し、除
染後の被除染物3を水洗し付着していた電解液を
洗い流すともに、除染槽2の内壁に付着していた
電解液を洗い流す。バルブ1501は開にしてお
き、除染槽2で使用した水洗水は水洗水戻り管1
5を通して水洗水槽13へ戻す。水洗終了後、除
染槽ふた204を開けて、被除染物3を取り出
す。 上記操作中電解層ふた105、除染槽ふた20
4およびドレン槽ふた702は閉じ、排ガス処理
装置12は常に動かすようにする。これにより、
前記電解槽1、除染槽2およびドレン槽7は常に
弱い負圧に保たれる。電解槽1、除染槽2および
ドレン槽7で発生した硝酸蒸気やミストおよび電
解槽1で電解により発生した水素ガスおよび酸素
ガスは排ガス処理装置12の硝酸蒸気回収装置1
201およびミスト回収装置1202で除染され
た後排気ブロア−1203により排気される。こ
のように、運転中、電解槽ふた105、除染槽ふ
た204およびドレン槽ふた702は閉じ、排ガ
ス処理装置12は常に動かすので、硝酸蒸気、放
射能を含んだ電解液ミストが系外に出ることな
く、また、電解によつて発生する水素ガスが局部
的に滞留して燃焼、爆発を生ずる危険を防止する
ことができ、作業員の安全が保たれる。また、作
業中開けるふたは、除染槽ふた204だけであ
り、除染槽ふた204を開けるのは前述のように
被除染物3および除染槽2の内壁の水洗終了後、
被除染物3を取り出す時である。したがつて、作
業員が硝酸および放射能を含んだ電解液と接触す
る恐れがなく、作業の安全が保たれる。 なお、本発明に係る除染装置で被除染物を処理
した場合の1例を説明する。 除染槽2内に被除染物3としてSUS304製(2B
sch40)の配管を浸漬した。電解液203中の
Ce4+の濃度は0.6mol/である。1時間除染作
業を行つたところ表に示す結果が得られた。表は
温度変化に対する除染結果を示したもので、電解
液温度30℃では除染効果が表われなかつたが、電
解液温度80℃ではバツクグランドまで除染できる
ことが認められた。なお、研磨厚は重量減から算
出した除染量を、α線強度は被除染物の表面汚染
量を示し、除染速度は1秒当り除去される被除染
物の表面汚染量を示す。
[Technical Field of the Invention] The present invention relates to a radioactively contaminated metal decontamination device for removing surface contamination of metals contaminated with radioactive substances. [Technical Background of the Invention] Generally, radioactive metal waste generated at nuclear power plants and the like is permanently stored within the nuclear power plant to prevent it from having a negative impact on the environment. However, when stored permanently in this way, the amount of radioactive metal waste stored continues to increase, making it difficult to secure storage space. In particular, piping contaminated with radioactivity generated during the recovery of equipment from nuclear power plants and the like is large in size and cannot be easily reduced in volume, making it difficult to store the waste. For this reason,
Consideration is being given to decontaminating radioactive metal waste and reducing its radioactivity level to the radioactivity level found in nature, that is, background level, so that it can be handled in the same way as general industrial waste. However, because radioactive metal waste has contamination fixed on its surface, complete decontamination cannot be achieved by simply removing the loosely accumulated contamination on the back side; instead, it is not possible to completely decontaminate radioactive metal waste by dissolving the surface layer of the metal base material with fixed contamination. It is necessary to remove contamination. Decontamination methods aimed at decontaminating down to the background level include the electrochemical decontamination method, which electrochemically dissolves and decontaminates the surface layer of the metal base material that is the object to be decontaminated, and the electrolytic decontamination method, which uses decontamination agents. A chemical decontamination method is known in which the surface layer of a metal base material is chemically dissolved and decontaminated. Although the electrolytic decontamination method has the advantage of high decontamination speed, it has the problem that it cannot be applied to objects to be decontaminated that have complex shapes because the electrode surface must face the surface to be decontaminated. Chemical decontamination methods are applicable to complex objects to be decontaminated, but on the other hand, the decontamination speed is slow, and once the decontamination agent is chemically consumed, it becomes unusable. There is a problem in that a large amount of dyestuff, ie secondary waste, is generated. [Purpose of the Invention] The present invention was made to solve the above-mentioned problems. It can be applied to objects to be decontaminated with complex shapes, has a high decontamination speed, and can be used to recycle spent electrolytes by recycling the electrolyte. The purpose of the present invention is to provide a decontamination device for radioactively contaminated metals that generates a small amount of liquid and has safe workability. [Summary of the Invention] In order to achieve the above objects, the present invention uses a nitric acid aqueous solution containing trivalent cerium ions and tetravalent cerium ions to produce cerium 3 through an electrolytic redox reaction.
Cerium tetravalent ions are generated from valent ions, and the oxidizing power when the generated cerium tetravalent ions change into cerium trivalent ions is used to dissolve and remove the surface of the object to be decontaminated, that is, the radioactively contaminated metal. In a decontamination device for radioactively contaminated metals, the electrolytic tank is dedicated to the electrolytic oxidation-reduction reaction, the contamination tank dissolves and decontaminates the surface of the object to be decontaminated, and the electrolytic tank is provided on a side wall of the electrolytic tank. an overflow pipe, a decontamination tank overflow pipe provided on the side wall of the decontamination tank, a decontamination tank drain pipe provided on the bottom of the decontamination tank, the electrolytic tank overflow pipe, the decontamination tank overflow pipe, and decontamination. A drain tank is connected to the tank drain pipe and receives the overflow electrolyte from the electrolytic tank, the overflow electrolyte from the decontamination tank, and the drain electrolyte from the decontamination tank; A liquid sending pipe for an electrolytic cell to return the liquid, a filter provided in the middle of the liquid sending pipe for an electrolytic cell to remove insoluble matter from the electrolytic solution, a shielding body surrounding this filter, and a filter for removing insoluble matter from the drain tank. A liquid supply pipe for the decontamination tank that returns the electrolyte to the dyeing tank, an exhaust gas duct connected to the upper space of the electrolytic tank, the decontamination tank, and the drain tank, a nitric acid vapor recovery device connected to the exhaust gas duct, and a mist An exhaust gas treatment device consisting of a recovery device and an exhaust fan, a washing water tank that stores washing water, a washing water pipe that sends washing water from this washing water tank to the decontamination tank, and a washing water pipe used in this decontamination tank. This decontamination apparatus for radioactively contaminated metals is characterized by comprising a washing water return pipe that returns water from the decontamination tank to the washing water tank. [Embodiments of the Invention] Hereinafter, an embodiment of a radioactively contaminated metal decontamination apparatus according to the present invention will be described with reference to the drawings. In the drawing, reference numeral 1 indicates an electrolytic cell, and this electrolytic cell 1
An electrolytic solution 101 made of a nitric acid aqueous solution containing trivalent cerium ions and tetravalent cerium ions is stored inside. An electrode 102 consisting of an anode and a cathode is immersed in the electrolytic solution 101, which serves to generate tetravalent cerium ions from trivalent cerium ions through an electrolytic redox reaction. The electrolytic cell 1 is provided with a heater 104 for heating the electrolytic solution 101 and a temperature detector 103 for detecting and controlling the temperature of the electrolytic solution 101. Further, this electrolytic cell 1 is hermetically covered with a lid 105. Furthermore, an exhaust gas pipe 106 is connected to the upper side of the electrolytic cell 1, and a drain pipe 108 having a valve 107 and a liquid supply pipe 109 are connected to the lower side. Reference numeral 2 in the drawing indicates a decontamination tank, and the decontamination tank 2 stores an electrolytic solution 203 made of a nitric acid aqueous solution containing trivalent cerium ions and tetravalent cerium ions, similar to the electrolytic tank 1. The object to be decontaminated 3 is immersed inside. In this decontamination tank 2,
Due to the oxidizing power when tetravalent cerium ions are changed to trivalent cerium ions, the surface layer of the metal base material, which is the object 3 to be decontaminated, is dissolved, and at the same time, the contamination on the surface of the object 3 to be decontaminated is removed. The decontamination tank 2 is provided with a heater 202 for heating the electrolytic solution 203 and a temperature detector 201 for detecting and controlling the temperature of the electrolytic solution 203. Further, this decontamination tank 2 is airtightly covered with a lid 204, and an exhaust gas pipe 205 is connected to the upper side surface, and a liquid supply pipe 207 having a valve 206 is further connected to the lower surface. Reference numeral 7 in the drawing indicates a drain tank, into which water flows from the drain pipe 108 and overflow pipe 4 connected to the lower end of the electrolytic tank 1, and from the overflow pipe 5 and drain pipe 6 of the decontamination tank 2. The electrolyte 701 that has arrived is stored. Further, this drain tank 7 is airtightly covered with a lid 702, and an exhaust gas pipe 709 is connected to the upper side surface. Further, on the lower surface of the drain tank 7, there is a first pipe 704 having a valve 703, a second pipe 706 having a valve 705, and a third pipe having a valve 707.
A pipe 708 is connected to the pipe 708. As described above, the electrolytic cell overflow pipe 4 is provided on the side wall of the electrolytic cell 1, and the other end of the electrolytic cell overflow pipe 4 is connected to the drain tank 7. Conversely, from this drain tank 7 to the electrolytic tank 1, an electrolytic tank liquid feed pipe 8 is connected from a second pipe 706 via a pump 801, and a liquid supply pipe 109 is connected to the electrolytic tank 1.
is connected to. Between the electrolytic tank liquid feed pipe 8 and the liquid supply pipe 109, there is a pump 801 that sends an electrolytic solution 701 from the drain tank 7 to the electrolytic tank 1 through a second pipe 706, and a flow rate that controls the flow rate of the electrolytic solution. A regulating valve 802 and a flow meter 803 for monitoring the electrolyte flow rate are provided. Further, a filter 9 for removing insoluble matter from the electrolytic solution 701 is provided in the middle of the electrolytic cell liquid sending pipe 8 . Upstream of this filter 9 is a pressure gauge 901,
A pressure gauge 902 is provided downstream of the filter 9, so that the degree of clogging of the filter 9 can be monitored. Further, this filter 9 is surrounded by a shield body 16. As described above, the decontamination tank overflow pipe 5 having the valve 501 is provided on the side wall of the decontamination tank 2, and the other end of the decontamination tank overflow pipe 5 is connected to the drain tank 7. Conversely, the decontamination tank liquid feed pipe 10 is connected from the drain tank 7 to the decontamination tank 2 via the first pipe 704 and the pump 1001.
are connected and communicated with the liquid supply pipe 207. A first pipe 704 from the drain tank 7 to the decontamination tank 2 is connected between the decontamination tank liquid feed pipe 10 and the liquid supply pipe 207.
A pump 1001 that sends the electrolytic solution 701 through the electrolytic solution, a flow rate adjustment valve 1002 that controls the electrolytic solution flow rate, and a flow meter 1003 that monitors the electrolytic solution flow rate are provided. Further, the decontamination tank liquid sending pipe 10 is provided with a filter 17 for removing insoluble matter from the electrolytic solution 701. A pressure gauge 1004 is provided upstream of this filter 17, and a pressure gauge 1005 is provided downstream of the filter 17, so that the degree of clogging of the filter 17 can be monitored. Further, this filter 17 is covered with a shield body 18. A washing water return pipe 15 having a decontamination tank drain pipe 6 and a valve 1501 is provided at the bottom of the decontamination tank 2, and the drain pipe 6 is connected to the drain tank 7 via the valve 601. 15 communicates with the washing water tank 13. The upper spaces of the decontamination tank 1, the electrolytic tank 2, and the drain tank 7 are connected to the exhaust gas duct 11 via exhaust gas pipes 106, 205, and 704, respectively. This exhaust gas duct 11 is connected to an exhaust gas treatment device 12 in which a nitric acid vapor recovery device 1201, a mist recovery device 1202, and an exhaust fan 1203 are connected in communication. A receiving tank 1204 is provided below the nitric acid vapor recovery device 1201, and this receiving tank 1204 and the drain tank 7 are connected by a recovered liquid return pipe 1206. The receiving tank 1204 is equipped with a liquid level gauge 120 for monitoring the amount of recovered liquid.
5 is provided. In addition, the recovered liquid return pipe 1
A valve 1207 is provided in the middle of the tank 206, and the liquid level gauge 1205 allows the water to flow through the receiving tank 1204.
If the recovered liquid is stored above a certain level,
This recovered liquid can be returned to the drain tank 7. The exhaust gas duct 11 is provided with a temperature detector 1101 for monitoring the exhaust gas temperature. Furthermore, a temperature detector 1209 for monitoring the temperature of the exhaust gas, a pressure gauge 1210 for monitoring the pressure of the exhaust gas, and a flow meter 1211 for monitoring the flow rate of the exhaust gas are provided at various locations in the exhaust gas treatment device 12.
Furthermore, the mist collection device 1202 includes first and second filters 1212, 1213 and a spray nozzle 1214, and exhaust gas is blown out from a pump 1215 through a pipe 1216 to the spray nozzle 1214 and is circulated. It's summery. The exhaust gas that has flown out of the mist collection device 1202 is discharged into the atmosphere from an exhaust pipe 1218 through an exhaust fan 1203 through an exhaust gas pipe. The washing water tank 13 stores washing water 1301. The washing water tank 13 and the decontamination tank 2 are connected by a washing water supply pipe 14. A valve 141 and a pump 1302 are provided in the middle of the washing water supply pipe 14 to supply washing water to the washing tank 1.
3 to the decontamination tank 2.
Further, the bottom surface of the decontamination layer and the washing water tank 13 are connected by a washing water return pipe 15, and a valve 1501 is provided in the middle of this washing water return pipe 15.
If necessary, the washing water used in the decontamination tank 2 can be returned from the decontamination tank 2 to the washing water tank 13. Next, the usage and function of the radioactively contaminated metal decontamination apparatus according to the present invention will be explained. Pump 801 is turned on to circulate electrolytes 701 and 101 between drain tank 7 and electrolytic tank 1. When the pump 801 is turned on, the electrolytic solution 701 in the drain tank 7 is transferred from the second pipe 706 to the electrolytic tank 1 through the electrolytic tank liquid feed pipe 8, passes through the electrolytic tank overflow pipe 4, and is transferred to the drain tank 7. come back to. As described above, since the electrolytic cell overflow pipe 4 is provided on the side wall of the electrolytic cell 1, the liquid level height of the electrolytic solution 101 is kept constant. Therefore, the electrode 102 can be constantly immersed in the electrolytic solution 101, and the entire area of the electrode 102 can be used effectively. Since a filter 9 is provided in the middle of the electrolytic cell liquid feed pipe 8, insoluble matter containing contamination that has peeled off from the surface of the object 3 to be decontaminated is captured by the filter 9. Therefore, there is no risk of contamination entering the electrolytic cell 1. Furthermore, accumulation of contamination in the electrolyte can be suppressed. Since the filter 9 where contamination accumulates is covered with a shield 16, it is possible to reduce the exposure of workers to radiation. Heater 10 while monitoring temperature with temperature detector 103
4, the electrolytic solution 101 is heated and maintained at a predetermined temperature, and a voltage is applied to the electrode 102. Then, the electrolytic solution 101 made of a nitric acid aqueous solution containing trivalent cerium ions and tetravalent cerium ions undergoes the electrolytic redox reaction shown below, and the trivalent cerium ions (Ce 3+ ) are converted into the tetravalent cerium ions (Ce 4+ ). converted. Anode Ce 3+ →Ce 4+ +e - ...(1) 2OH - →H 2 O+1/2O 2 (↑) +2e - ...(2) Cathode H + e - →(1/2)H 2 (↑) ...(3) Next, put the object 3 to be decontaminated into the decontamination tank 2, and turn on the pump 10.
01 is turned on to circulate the electrolytes 701 and 203 between the drain tank 7 and the decontamination tank 2. pump 1001
When turned on, the electrolytic solution 701 in the drain tank 7 is transferred from the first pipe 704 to the decontamination tank 2 through the decontamination tank liquid supply pipe 10, and the decontamination tank overflow pipe 5
It returns to the drain tank 7 through the Since a decontamination tank overflow pipe 5 is provided on the side wall of the decontamination tank 2, the electrolyte 20 can be removed regardless of the size of the object 3 to be decontaminated.
3 is kept constant, and there is no fear that the electrolytic solution 203 will overflow from the decontamination tank 2. Since a filter 17 is provided in the middle of the decontamination tank liquid feed pipe 10, the insoluble matter containing contamination that has peeled off from the surface of the object 3 to be decontaminated is captured by the filter 17, thereby preventing contamination of the electrolyte. The accumulation of can be suppressed. Since the filter 17, where contamination accumulates, is covered with a shield 18, it is possible to reduce the exposure of workers to radiation. In the decontamination tank 2, the electrolytic solution 203 is heated with a heater 202 and maintained at a predetermined temperature while the temperature is monitored with a temperature detector 201. In this decontamination tank 2, when the cerium tetravalent ions generated in the electrolytic tank 1 are converted into cerium trivalent ions, the surface layer of the metal base material of the object to be decontaminated 3 is dissolved by the oxidizing power at that time. Contamination on the surface of the decontaminated object 3 is removed. The reaction in which tetravalent cerium ions (Ce 4+ ) is converted to trivalent cerium ions (Ce 3+ ) and the surface layer of the metal base material of object 3 to be decontaminated is dissolved is shown below with the chemical formula of the metal being M. That's right. M+Ce 4+ →M + +Ce 3+ As can be seen from the explanation so far, if the surface of the object 3 to be decontaminated is in contact with the electrolyte 203, the surface of the object 3 to be decontaminated will be dissolved, that is, decontamination will be carried out. be exposed. Therefore, compared to the electrolytic decontamination method which requires electrodes to face the surface of the object to be decontaminated, the apparatus for decontaminating radioactively contaminated metals according to the present invention has wider applicability to objects with complex shapes. In addition, since the oxidizing power of tetravalent cerium is used to dissolve the surface of the object 3 to be decontaminated, the decontamination apparatus for radioactively contaminated metals according to the present invention has a faster decontamination speed than chemical decontamination methods. is large.
The trivalent cerium ions generated in the decontamination tank 2 are returned to the cerium 4 value in the electrolytic tank 1. That is,
The electrolyte is regenerated and used repeatedly. Therefore, there is no generation of used electrolyte. When the decontamination of the object 3 is completed, the valve 601 is closed, and the electrolytic solution 203 in the decontamination tank 2 is drained into the drain tank 7 through the decontamination tank drain pipe 6. Decontamination tank 2
Once all the electrolyte 203 inside has been drained into the drain tank 7, close the valve 601 and turn off the pump 1302.
is turned ON, the washing water 1301 in the washing water tank 13 is transferred to the decontamination tank 2 through the washing water supply pipe 14, and the object 3 to be decontaminated after decontamination is washed with water to wash away the electrolyte that has adhered to it. The electrolyte adhering to the inner wall of the dye tank 2 is washed away. The valve 1501 is left open, and the washing water used in the decontamination tank 2 is passed through the washing water return pipe 1.
5 and return to the washing tank 13. After washing with water, the decontamination tank lid 204 is opened and the object 3 to be decontaminated is taken out. Electrolyte layer lid 105 and decontamination tank lid 20 during the above operation
4 and the drain tank lid 702 are closed, and the exhaust gas treatment device 12 is kept in operation at all times. This results in
The electrolytic tank 1, decontamination tank 2, and drain tank 7 are always maintained at a weak negative pressure. Nitric acid vapor and mist generated in the electrolytic tank 1, decontamination tank 2, and drain tank 7, as well as hydrogen gas and oxygen gas generated by electrolysis in the electrolytic tank 1, are collected in the nitric acid vapor recovery device 1 of the exhaust gas treatment device 12.
201 and a mist recovery device 1202, and then exhausted by an exhaust blower 1203. In this way, during operation, the electrolytic tank lid 105, decontamination tank lid 204, and drain tank lid 702 are closed, and the exhaust gas treatment device 12 is constantly operated, so that electrolyte mist containing nitric acid vapor and radioactivity escapes from the system. In addition, it is possible to prevent the hydrogen gas generated by electrolysis from locally accumulating and causing combustion or explosion, thereby maintaining the safety of workers. Also, the only lid that can be opened during work is the decontamination tank lid 204, and the decontamination tank lid 204 is opened after the object to be decontaminated 3 and the inner wall of the decontamination tank 2 have been washed with water, as described above.
It is time to take out the object 3 to be decontaminated. Therefore, there is no risk that the worker will come into contact with the electrolyte containing nitric acid and radioactivity, and work safety is maintained. An example of a case where an object to be decontaminated is treated with the decontamination apparatus according to the present invention will be described. Inside the decontamination tank 2, the object to be decontaminated 3 is made of SUS304 (2B
sch40) piping was immersed. in the electrolyte 203
The concentration of Ce 4+ is 0.6 mol/. After 1 hour of decontamination work, the results shown in the table were obtained. The table shows the decontamination results as a result of temperature changes. Although no decontamination effect was seen at an electrolyte temperature of 30°C, it was confirmed that decontamination down to the background could be achieved at an electrolyte temperature of 80°C. Note that the polishing thickness indicates the amount of decontamination calculated from the weight loss, the alpha ray intensity indicates the amount of surface contamination of the object to be decontaminated, and the decontamination speed indicates the amount of surface contamination of the object to be decontaminated removed per second.

【表】 [発明の効果] 本発明によれば、以下の効果がある。 (1) 被除染物の表面が電解液に接触していれば除
染できるので形状の複雑な物に適用できる。 (2) セリウム4価イオンがセリウム3価イオンに
変化する時の酸化力を利用して、被除染物であ
る放射能汚染金属表面を溶解するので除染速度
が大きい。 (3) 電解槽の側壁に電解槽オーバーフロー管を設
けてあるので、電解液液面高さは一定に保たれ
電極全面積が有効に働く。 (4) 除染槽の側壁に除染槽オーバーフロー管を設
けてあるので、被除染物の大きさによらず電解
液液面高さは一定に保たれ電解液が除染槽から
こぼれる恐れがない。 (5) ドレン槽から電解槽への電解槽用送液管の途
中にはフイルターが設けられ、このフイルター
はしやへい体で覆われているため、汚染が電解
槽に入る恐れがなく、電解液への汚染の蓄積を
抑え、作業員の被曝低減がはかれる。 (6) 運転中、電解槽ふた、除染槽ふた、ドレン槽
ふたは閉じ、排ガス処理装置は常に動かすの
で、硝酸蒸気、放射能を含んだ電解液ミストが
系外に出ることがなく作業員の安全が保たれ
る。 (7) 被除染物および被除槽内壁の水洗が終了して
から、除染槽ふたを開け被除染物を取り出せる
ので、作業員が硝酸および放射能を含んだ電解
液と接触する恐れがなく、作業員の安全が保た
れる。
[Table] [Effects of the Invention] According to the present invention, there are the following effects. (1) Decontamination can be performed as long as the surface of the object to be decontaminated is in contact with the electrolyte, so it can be applied to objects with complex shapes. (2) The decontamination speed is high because the oxidizing power when cerium tetravalent ions change to cerium trivalent ions is used to dissolve the radioactively contaminated metal surface that is the object to be decontaminated. (3) Since an electrolytic cell overflow pipe is provided on the side wall of the electrolytic cell, the electrolyte level is kept constant and the entire electrode area is used effectively. (4) Since a decontamination tank overflow pipe is installed on the side wall of the decontamination tank, the electrolyte level remains constant regardless of the size of the object to be decontaminated, and there is no risk of electrolyte spilling from the decontamination tank. do not have. (5) A filter is installed in the middle of the electrolytic cell liquid pipe from the drain tank to the electrolytic cell, and since this filter is covered with a thin material, there is no risk of contamination entering the electrolytic cell. It suppresses the accumulation of contamination in the liquid and reduces the exposure of workers to radiation. (6) During operation, the electrolytic tank lid, decontamination tank lid, and drain tank lid are closed, and the exhaust gas treatment equipment is always in operation, so that nitric acid vapor and electrolyte mist containing radioactivity do not escape from the system and are safe for workers. safety is maintained. (7) After the decontamination target objects and the inner walls of the decontamination tank have been washed with water, the decontamination tank lid can be opened and the decontaminated objects can be taken out, so there is no risk of workers coming into contact with the electrolyte containing nitric acid and radioactivity. , worker safety is maintained.

【図面の簡単な説明】[Brief explanation of the drawing]

図面は、本発明による放射能汚染金属の除染装
置の一実施例を示す系統図である。 1……電解槽、101……電解液、102……
電極、103……温度検出器、104……ヒータ
ー、2……除染槽、201……温度検出器、20
2……ヒーター、3……被除染物、4……電解槽
オーバーフロー管、5……除染槽オーバーフロー
管、6……除染槽ドレン管、601……バルブ、
7……ドレン槽、701……電解液、8……電解
槽用送液管、801……ポンプ、802……流量
調整バルブ、803……流量計、9……フイルタ
ー、901……圧力計、902……圧力計、10
……除染槽用送液管、1001……ポンプ、10
02……流量調整バルブ、1003……流量計、
1004……圧力計、1005……圧力計、11
……排ガスダクト、1101……温度検出器、1
2……排ガス処理装置、1201……硝酸蒸気回
収装置、1202……ミスト回収装置、1203
……排風機、1204……受槽、1205……液
面計、1206……回収液もどり管、1207…
…バルブ、1208……圧力計、1209……温
度検出器、1210……圧力計、1211……流
量計、13……水洗水槽、1302……ポンプ、
14……水洗水送液管、15……水洗水もどり
管、1501……バルブ16……しやへい体、1
7……フイルター、18……しやへい体。
The drawing is a system diagram showing an embodiment of the radioactively contaminated metal decontamination apparatus according to the present invention. 1... Electrolytic cell, 101... Electrolyte, 102...
Electrode, 103... Temperature detector, 104... Heater, 2... Decontamination tank, 201... Temperature detector, 20
2... Heater, 3... Decontamination object, 4... Electrolytic tank overflow pipe, 5... Decontamination tank overflow pipe, 6... Decontamination tank drain pipe, 601... Valve,
7... Drain tank, 701... Electrolyte, 8... Liquid feed pipe for electrolytic tank, 801... Pump, 802... Flow rate adjustment valve, 803... Flow meter, 9... Filter, 901... Pressure gauge , 902...pressure gauge, 10
...Liquid pipe for decontamination tank, 1001 ...Pump, 10
02...Flow rate adjustment valve, 1003...Flow meter,
1004...Pressure gauge, 1005...Pressure gauge, 11
...Exhaust gas duct, 1101 ...Temperature detector, 1
2... Exhaust gas treatment device, 1201... Nitric acid vapor recovery device, 1202... Mist recovery device, 1203
...Exhaust fan, 1204...Receiving tank, 1205...Liquid level gauge, 1206...Collected liquid return pipe, 1207...
... Valve, 1208 ... Pressure gauge, 1209 ... Temperature detector, 1210 ... Pressure gauge, 1211 ... Flow meter, 13 ... Washing water tank, 1302 ... Pump,
14... Rinsing water supply pipe, 15... Rinsing water return pipe, 1501... Valve 16... Shyahei body, 1
7... Filter, 18... Shiyahei body.

Claims (1)

【特許請求の範囲】[Claims] 1 セリウム3価イオン、セリウム4価イオンを
含む硝酸水溶液を用いて、電解酸化還元反応によ
りセリウム3価イオンをセリウム4価イオンに生
成して、この生成したセリウム4価イオンがセリ
ウム3価イオンに変化する際の酸化力を利用して
被除染物の表面を溶解し除染する放射能汚染金属
の除染装置において、前記電解酸化還元反応専用
の電解槽と、前記被除染物の表面を溶解して除染
する除染槽と、前記電解槽の側壁に設けた電解槽
オーバーフロー管と、前記除染槽の側壁に設けた
除染槽オーバーフロー管と、前記除染槽の底面に
設けた除染槽ドレン管と、前記電解槽オーバーフ
ロー管、除染槽オーバーフロー管および除染槽ド
レン管に連設し、前記電解槽からのオーバーフロ
ー電解液、前記除染槽からのオーバーフロー電解
液および前記除染槽からのドレン電解液を受ける
ドレン槽と、このドレン槽から前記電解槽へ電解
液をもどす電解槽用送液管と、この電解槽用送液
管の途中に設けられ、電解液中の不溶分を除去す
るしやへい体で包囲されたフイルターと、前記ド
レン槽から前記除染槽へ電解液をもどす除染槽用
送液管と、前記電解槽、除染槽およびドレン槽の
上部空間に連設した排ガスダクトと、この排ガス
ダクトに接続された硝酸蒸気回収装置、ミスト回
収装置および排風機とからなる排ガス処理装置
と、水洗水を貯溜する水洗水槽と、この水洗水槽
から前記除染槽へ水洗水を送る水洗水送液管と、
前記除染槽で使用した水洗水を該除染槽から前記
水洗水槽へ戻す水洗水戻り管とを備えたことを特
徴とする放射能汚染金属の除染装置。
1 Using a nitric acid aqueous solution containing trivalent cerium ions and tetravalent cerium ions, trivalent cerium ions are generated into tetravalent cerium ions through an electrolytic redox reaction, and the generated tetravalent cerium ions are converted into trivalent cerium ions. In a radioactively contaminated metal decontamination device that uses the oxidizing power of the decontaminating object to melt and decontaminate the surface of the decontaminated object, the electrolytic cell dedicated to the electrolytic redox reaction and the electrolytic cell for dissolving the surface of the decontaminated object are used. a decontamination tank for decontamination, an electrolytic tank overflow pipe installed on the side wall of the electrolytic tank, a decontamination tank overflow pipe installed on the side wall of the decontamination tank, and a decontamination tank installed on the bottom of the decontamination tank. The dye tank drain pipe is connected to the electrolytic tank overflow pipe, the decontamination tank overflow pipe, and the decontamination tank drain pipe, and the overflow electrolyte from the electrolytic tank, the overflow electrolyte from the decontamination tank, and the decontamination tank are connected to each other. A drain tank that receives drain electrolyte from the tank, an electrolytic tank liquid feed pipe that returns the electrolyte from this drain tank to the electrolytic tank, and a liquid feed pipe for the electrolytic cell that is installed in the middle of the electrolytic cell liquid feed pipe to remove insolubles in the electrolyte. a filter surrounded by a shield body for removing electrolyte, a decontamination tank liquid feed pipe for returning electrolyte from the drain tank to the decontamination tank, and spaces above the electrolytic tank, decontamination tank, and drain tank. an exhaust gas treatment device consisting of an exhaust gas duct connected to the exhaust gas duct, a nitric acid vapor recovery device, a mist recovery device, and an exhaust fan connected to the exhaust gas duct, a washing water tank that stores washing water, and the decontamination from the washing water tank. A flushing water supply pipe that sends flushing water to the tank;
A decontamination device for radioactively contaminated metals, comprising: a wash water return pipe for returning wash water used in the decontamination tank from the decontamination tank to the wash tank.
JP10608584A 1984-05-25 1984-05-25 Decontamination device for radioactive contaminated metal Granted JPS60249099A (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP10608584A JPS60249099A (en) 1984-05-25 1984-05-25 Decontamination device for radioactive contaminated metal
FR858502984A FR2565021B1 (en) 1984-05-25 1985-02-28 APPARATUS FOR DECONTAMINATION OF RADIOACTIVE METAL WASTE
DE19853507334 DE3507334A1 (en) 1984-05-25 1985-03-01 DEVICE FOR DETECTING RADIATION-POLLUTED METALLIC OBJECTS
US06/710,178 US4663085A (en) 1984-05-25 1985-03-11 Apparatus for decontamination of radiation contaminated metallic waste

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10608584A JPS60249099A (en) 1984-05-25 1984-05-25 Decontamination device for radioactive contaminated metal

Publications (2)

Publication Number Publication Date
JPS60249099A JPS60249099A (en) 1985-12-09
JPH0565839B2 true JPH0565839B2 (en) 1993-09-20

Family

ID=14424715

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10608584A Granted JPS60249099A (en) 1984-05-25 1984-05-25 Decontamination device for radioactive contaminated metal

Country Status (1)

Country Link
JP (1) JPS60249099A (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS516803A (en) * 1974-06-10 1976-01-20 Hitachi Ltd KINZOKUYOKAISHORIHOHO OYOBI SONOSOCHI
JPS5452297A (en) * 1977-09-08 1979-04-24 Gen Electric Method and device for recovering nuclear fuel
JPS58210600A (en) * 1982-06-01 1983-12-07 株式会社東芝 Maintenance and inspection facility for control rod drive mechanism
JPS5914000A (en) * 1982-07-14 1984-01-24 神鋼フアウドラ−株式会社 Method of removing radioactive material in electrolyte in electrolytic decontamination

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS516803A (en) * 1974-06-10 1976-01-20 Hitachi Ltd KINZOKUYOKAISHORIHOHO OYOBI SONOSOCHI
JPS5452297A (en) * 1977-09-08 1979-04-24 Gen Electric Method and device for recovering nuclear fuel
JPS58210600A (en) * 1982-06-01 1983-12-07 株式会社東芝 Maintenance and inspection facility for control rod drive mechanism
JPS5914000A (en) * 1982-07-14 1984-01-24 神鋼フアウドラ−株式会社 Method of removing radioactive material in electrolyte in electrolytic decontamination

Also Published As

Publication number Publication date
JPS60249099A (en) 1985-12-09

Similar Documents

Publication Publication Date Title
US4663085A (en) Apparatus for decontamination of radiation contaminated metallic waste
EP1054413B1 (en) Method of chemically decontaminating components of radioactive material handling facility and system for carrying out the same
CN112176145B (en) Method for recovering radioactive waste metal
JP3481746B2 (en) Decontamination method of metal contaminated by radioactivity
US4701246A (en) Method for production of decontaminating liquid
JP4533514B2 (en) Radioactive waste disposal method
JPH0565839B2 (en)
KR100444844B1 (en) Electrolytic polishing utilization radioactive contamination meatal type clear system
JPH0565838B2 (en)
JP2876230B2 (en) Decontamination equipment for radioactive contamination equipment
KR101292373B1 (en) Electrochemical decontaminating system of radioactive metal waste and the system using the same
JPS62257098A (en) Decontaminator for metal contaminated by radioactivity
JP2653445B2 (en) Radioactive waste decontamination system
JP2010101762A (en) Method for decontaminating radioactive metal waste
JPH0574799B2 (en)
KR101130270B1 (en) Appratus of metal decontamination with recovering decontamination agent simultaneously, and the method of decontamination thereby
JPH032596A (en) Decontamination device for metal contaminated with radioactivity
KR200261686Y1 (en) Decontamination Unit of Radioactivity-Contaminated Metallic Materials Using Electro-Polishing
KR200377504Y1 (en) Decontamination device for surface of radioactive contaminated metallic waste
RU2695811C2 (en) Complex plant for decontamination of solid radioactive wastes and conditioning of formed liquid radioactive wastes
JPH0572559B2 (en)
JP3175522B2 (en) How to remove radioactive materials
JPH06242295A (en) Method and device for decontaminating radioactive metal waste
JPH05223988A (en) Chemical decontamination method of radioactive metal waste
JPH0527092A (en) Removal of contamination of radioactive metallic waste