JPH0565589B2 - - Google Patents

Info

Publication number
JPH0565589B2
JPH0565589B2 JP10051884A JP10051884A JPH0565589B2 JP H0565589 B2 JPH0565589 B2 JP H0565589B2 JP 10051884 A JP10051884 A JP 10051884A JP 10051884 A JP10051884 A JP 10051884A JP H0565589 B2 JPH0565589 B2 JP H0565589B2
Authority
JP
Japan
Prior art keywords
temperature
heaters
substrate electrode
temperature detection
thin film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP10051884A
Other languages
Japanese (ja)
Other versions
JPS60245778A (en
Inventor
Tsuneo Ogawa
Yutaka Saito
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP10051884A priority Critical patent/JPS60245778A/en
Publication of JPS60245778A publication Critical patent/JPS60245778A/en
Publication of JPH0565589B2 publication Critical patent/JPH0565589B2/ja
Granted legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/46Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for heating the substrate
    • C23C16/463Cooling of the substrate
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/54Controlling or regulating the coating process
    • C23C14/541Heating or cooling of the substrates
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/46Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for heating the substrate

Description

【発明の詳細な説明】 〔発明の利用分野〕 本発明は、成膜装置の基板電極構造に係り、特
に真空中で基板の表面に薄膜を形成させる成膜装
置の基板電極構造に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Application of the Invention] The present invention relates to a substrate electrode structure for a film forming apparatus, and particularly to a substrate electrode structure for a film forming apparatus that forms a thin film on the surface of a substrate in vacuum.

〔発明の背景〕[Background of the invention]

基板上に薄膜を形成する方法の一つとして、真
空中で基板上に薄膜を気相成長させる化学蒸着を
利用した方法があるが、そのための成膜装置は、
真空室内に原料ガス制御部と反応室部を備えてお
り、反応室部では基板を加熱する手段が採られて
いる。
One method of forming a thin film on a substrate is to use chemical vapor deposition to grow the thin film on the substrate in a vacuum using a vapor phase.
A source gas control section and a reaction chamber are provided in the vacuum chamber, and a means for heating the substrate is employed in the reaction chamber.

従来、このような成膜装置の基板電極構造とし
ては、第1図に示すようなものが知られている。
1は基板電極で、フランジ9によつて大気とシー
ルされて真空容器壁4に固定されることにより、
真空容器内に配設されている。基板電極1の内部
には複数のヒータ2が埋設してある。このヒータ
2は、真空用フランジ3を介して真空容器壁4の
外部の大気中で、電源5と接続している。基板電
極1上には、薄膜を形成すべき基板(図示せず)
が配置されており、この基板はヒータ2で加熱さ
れる。また、基板電極1の内部には、基板の温度
状態を検知するための温度検出素子6が埋設して
ある。この温度検出素子6は電線7a,7bによ
り真空用フランジ3を通つて温度測定器8と接続
している。
Conventionally, as a substrate electrode structure of such a film forming apparatus, the one shown in FIG. 1 is known.
1 is a substrate electrode, which is sealed from the atmosphere by a flange 9 and fixed to the vacuum container wall 4;
It is placed inside a vacuum container. A plurality of heaters 2 are embedded inside the substrate electrode 1 . This heater 2 is connected to a power source 5 in the atmosphere outside the vacuum container wall 4 via a vacuum flange 3 . On the substrate electrode 1 is a substrate (not shown) on which a thin film is to be formed.
is arranged, and this substrate is heated by a heater 2. Furthermore, a temperature detection element 6 for detecting the temperature state of the substrate is embedded inside the substrate electrode 1. This temperature detection element 6 is connected to a temperature measuring device 8 through the vacuum flange 3 by electric wires 7a and 7b.

このような基板電極構造において、電源5によ
つてヒータ2に電圧を印加すると、ヒータ2は発
熱し基板電極1は加熱される。そして、基板電極
1上に配置した基板も加熱されることとなる。基
板電極1の温度は、温度検出素子6で検知されて
おり、温度測定器8が所望の基準温度Tを感知す
ると、ヒータ2に対する電圧供給を断つ様になつ
ている。
In such a substrate electrode structure, when a voltage is applied to the heater 2 by the power source 5, the heater 2 generates heat and the substrate electrode 1 is heated. Then, the substrate placed on the substrate electrode 1 is also heated. The temperature of the substrate electrode 1 is detected by a temperature detection element 6, and when the temperature measurement device 8 senses a desired reference temperature T, the voltage supply to the heater 2 is cut off.

ところが、従来の基板電極構造では、基板電極
1の1点の温度しか監視しておらずしかも基板電
極1内部のヒータ2からの熱放出率は一様ではな
く場所によつて異なるために、基板電極1の全面
に渡つて基準温度Tである保障は得られなかつ
た。この為、基板の均一な加熱が期待できないと
いう欠点を有していた。
However, in the conventional substrate electrode structure, the temperature at only one point on the substrate electrode 1 is monitored, and the heat release rate from the heater 2 inside the substrate electrode 1 is not uniform and varies depending on the location. It was not possible to guarantee that the reference temperature T was maintained over the entire surface of the electrode 1. For this reason, there was a drawback that uniform heating of the substrate could not be expected.

〔発明の目的〕[Purpose of the invention]

本発明の目的は、基板の全面に渡つて高品質で
均一な薄膜を形成するために、基板を均一に加熱
するとともに高い精度で温度を制御することを可
能ならしめる薄膜形成装置提供することにある。
An object of the present invention is to provide a thin film forming apparatus that can uniformly heat a substrate and control the temperature with high precision in order to form a high quality and uniform thin film over the entire surface of the substrate. be.

〔発明の概要〕[Summary of the invention]

上記目的を達成するために本発明においては、
基板電極内部に複数のヒータとそれらの一群と対
をなす温度検出体をそれぞれ分散して埋設すると
ともに、各ヒータと略対を成す冷却溝を基板電極
内部に設け、各ヒータの温度並びに各冷却溝に流
す冷却用媒体の流量をそれぞれ個別に制御するよ
うにした薄膜形成装置を提供する。
In order to achieve the above object, in the present invention,
A plurality of heaters and a temperature sensing body that pairs with a group of heaters are embedded in a distributed manner inside the substrate electrode, and cooling grooves that almost pair with each heater are provided inside the substrate electrode to determine the temperature of each heater and each cooling. A thin film forming apparatus is provided in which the flow rate of a cooling medium flowing through grooves is individually controlled.

〔発明の実施例〕[Embodiments of the invention]

以下、本発明の一実施例を第2図及び第3図に
よつて説明する。
An embodiment of the present invention will be described below with reference to FIGS. 2 and 3.

真空室11内には、基板電極12と高周波電極
26が収容され、基板電極12はフランジ20に
よつて真空室11にシールして固着され、電極板
30を備えた高周波電極26はフランジ29によ
つて真空室11にシールして固着されている。高
周波電極29と基板電極12には、高周波電源3
3から高周波電圧が印加されている。真空室11
内は排気口32a,32bを介して図示しない排
気系によつて排気され、高真空状態になる構造に
なつている。
A substrate electrode 12 and a high-frequency electrode 26 are housed in the vacuum chamber 11. The substrate electrode 12 is sealed and fixed to the vacuum chamber 11 by a flange 20, and the high-frequency electrode 26 with an electrode plate 30 is attached to a flange 29. Therefore, it is sealed and fixed to the vacuum chamber 11. A high frequency power source 3 is connected to the high frequency electrode 29 and the substrate electrode 12.
A high frequency voltage is applied from 3. Vacuum chamber 11
The interior is evacuated via exhaust ports 32a and 32b by an exhaust system (not shown), creating a high vacuum state.

基板電極12内には、外側ヒータ13a,13
b,13cと内側ヒータ14a,14bが第3図
に示す様に埋設され、更には外側ヒータ13aと
13bの間に温度検出素子15aが埋設され、内
側ヒータ14aと14bの間には温度検出素子1
5bが埋設されている。又、基板電極12には、
外側ヒータ13a,13b,13cと内側ヒータ
14a,14bに対向して冷却ガス導入溝16
a,16b,17a,17bが設けられている。
冷却ガス導入溝16a,16b,は互いに連通し
ており(図示せず)、ガス導入パイプ18aによ
つて冷却ガスを導入し、ガス排出パイプ18bに
よつて排出する構造になつている。同様に、冷却
ガス導入溝17a,17bも互いに連通しており
(図示せず)ガス導入パイプ19aによつて冷却
ガスを導入し、ガス排出パイプ19bによつて排
出する構造になつている。ガス導入パイプ18
a,19aとガス導出パイプ18b,19bは、
第2図に示す様に真空用フランジ21を介して大
気側に導出され、ガス導入パイプ18a,19a
に流すガス流量はそれぞれガス流量調整器25
a,25bによつて調整される様になつている。
又、各外側ヒータ13a,13b,13cは外側
ヒータ用の電源22aからの電力により加熱さ
れ、各内側ヒータ14a,14bは内側ヒータ用
の電源22bからの電力により加熱される。又、
各温度検出素子15a,15bの出力は、それぞ
れ第2図に示す温度検出器23a,23bに入力
される。各外側ヒータ13a,13b,13cと
電源22aを結ぶ電力線及び内側ヒータ14a,
14bと電源22bを結ぶ電力線及び各温度検出
素子15a,15bと温度検出器23a,23b
を結ぶ信号線は、それぞれ第2図及び第3図に示
す様に、真空用フランジ21を介して大気側に導
出されている。温度検出器23a,23bの出力
信号は、温度制御器24に入力され、温度制御器
24は電源22a,22bとガス流量調整器25
a,25bに制御信号を出力する。
Inside the substrate electrode 12, outer heaters 13a, 13 are provided.
b, 13c and inner heaters 14a, 14b are embedded as shown in FIG. 1
5b is buried. Further, the substrate electrode 12 has
A cooling gas introduction groove 16 is provided facing the outer heaters 13a, 13b, 13c and the inner heaters 14a, 14b.
a, 16b, 17a, and 17b are provided.
The cooling gas introduction grooves 16a and 16b communicate with each other (not shown), and have a structure in which the cooling gas is introduced through a gas introduction pipe 18a and exhausted through a gas discharge pipe 18b. Similarly, the cooling gas introduction grooves 17a and 17b communicate with each other (not shown), and the cooling gas is introduced through a gas introduction pipe 19a and discharged through a gas discharge pipe 19b. Gas introduction pipe 18
a, 19a and gas outlet pipes 18b, 19b,
As shown in FIG. 2, the gas introduction pipes 18a and 19a are led out to the atmosphere through the vacuum flange 21.
The gas flow rate to flow into each is determined by a gas flow rate regulator 25.
a, 25b.
Further, each of the outer heaters 13a, 13b, and 13c is heated by electric power from the outer heater power source 22a, and each inner heater 14a, 14b is heated by electric power from the inner heater power source 22b. or,
The outputs of each temperature detection element 15a, 15b are input to temperature detectors 23a, 23b shown in FIG. 2, respectively. Power lines connecting each outer heater 13a, 13b, 13c and power supply 22a and inner heater 14a,
14b and the power line connecting the power supply 22b, each temperature detection element 15a, 15b and the temperature detector 23a, 23b
As shown in FIGS. 2 and 3, the signal lines connecting the two are led out to the atmosphere through a vacuum flange 21. The output signals of the temperature detectors 23a, 23b are input to the temperature controller 24, and the temperature controller 24 connects the power supplies 22a, 22b and the gas flow regulator 25.
A control signal is output to a and 25b.

一方、高周波電極26には、反応ガス用ボンベ
28から反応ガス導入管27を介して反応ガスが
導入され、電極板30に設けられた多数のガス噴
出口31から噴出される。
On the other hand, a reaction gas is introduced into the high-frequency electrode 26 from a reaction gas cylinder 28 through a reaction gas introduction pipe 27 and is ejected from a large number of gas ejection ports 31 provided on an electrode plate 30 .

以上の構成より成る成膜装置において、排気口
32a,32bから排気して真空室11を所定の
気圧にした後、反応ガスボンベ28から反応ガス
導入管27を通して反応ガスを供給すると、反応
ガスは電極板30のガス噴出口31から一様な流
れとなつて基板電極12に達する。ここで高周波
電源33により高周波電圧を印加すると、高周波
電極26と基板電極12との間にプラズマが発生
し、励起された反応ガスの一部が基板電極12上
の基板(図示せず)表面に付着して薄膜を形成す
る。その際、本実施例によれば、基板(図示せ
ず)は基板電極12に埋設された外側ヒータ13
a,13b,13c及び内側ヒータ14a,14
bにより苛烈され、温度検出素子15a,15b
により温度が検出される。外側ヒータ13a,1
3b,13cと内側ヒータ14a,14bとはそ
れぞれ別個の電源22a及び22bとにより加熱
され、温度検出器23a,23bの検出値が所定
の値となるように温度制御器24からの制御信号
によりヒータ電源22a及び22bが制御され
る。更に外側ヒータ13a,13b,13cに対
応する位置にある冷却ガス導入溝16a,16b
と内側ヒータ14a,14bに対応する位置にあ
る冷却ガス導入溝17a,17bとには別個に冷
却ガスが導入される。流量調整器25a及び25
bはそれぞれ温度制御器24からの制御信号を受
け、冷却ガスの流量を調整して、基板電極12の
冷却を制御する。
In the film forming apparatus having the above configuration, after the vacuum chamber 11 is brought to a predetermined atmospheric pressure by exhausting air from the exhaust ports 32a and 32b, the reaction gas is supplied from the reaction gas cylinder 28 through the reaction gas introduction pipe 27, and the reaction gas is supplied to the electrodes. The gas flows uniformly from the gas outlet 31 of the plate 30 and reaches the substrate electrode 12 . When a high frequency voltage is applied by the high frequency power source 33, plasma is generated between the high frequency electrode 26 and the substrate electrode 12, and a part of the excited reaction gas is transferred to the surface of the substrate (not shown) on the substrate electrode 12. It adheres to form a thin film. At this time, according to this embodiment, the substrate (not shown) is connected to the outer heater 13 embedded in the substrate electrode 12.
a, 13b, 13c and inner heaters 14a, 14
temperature detection elements 15a, 15b
The temperature is detected by Outside heater 13a, 1
3b, 13c and the inner heaters 14a, 14b are heated by separate power supplies 22a, 22b, respectively, and the heaters are heated by a control signal from the temperature controller 24 so that the detected values of the temperature detectors 23a, 23b become predetermined values. Power supplies 22a and 22b are controlled. Furthermore, cooling gas introduction grooves 16a, 16b are located at positions corresponding to the outer heaters 13a, 13b, 13c.
Cooling gas is separately introduced into cooling gas introduction grooves 17a and 17b located at positions corresponding to inner heaters 14a and 14b. Flow regulators 25a and 25
b receives a control signal from the temperature controller 24, adjusts the flow rate of the cooling gas, and controls the cooling of the substrate electrode 12.

以上のように、分割した外側ヒータ13a,1
3b,13cと内側ヒータ14a,14bへの印
加電圧及び冷却ガス導入溝16a,16b,17
a,17bへの冷却ガス導入量を、温度検出素子
15a,15bで検出した値に基き、それぞれ個
別に制御することにより、基板電極12上に取付
けた基板の表面温度を、より均一にしかも精度良
く保つことが可能になる。
As described above, the divided outer heaters 13a, 1
3b, 13c and the applied voltage to the inner heaters 14a, 14b and the cooling gas introduction grooves 16a, 16b, 17
By individually controlling the amount of cooling gas introduced into a and 17b based on the values detected by temperature detection elements 15a and 15b, the surface temperature of the substrate mounted on the substrate electrode 12 can be made more uniform and accurate. It can be kept well.

尚、本実施例では、反応ガスを用いた例を示し
たが、本発明は基板を加熱して成膜する方法には
全てに適用することができ、またヒータ及び冷却
ガス溝の分割数を多くすることにより、高精度の
温度制御が得られる。
Although this example shows an example using a reactive gas, the present invention can be applied to any method of forming a film by heating a substrate, and the number of divisions of the heater and cooling gas grooves can be reduced. By increasing the number, highly accurate temperature control can be obtained.

〔発明の効果〕〔Effect of the invention〕

本発明の薄膜形成装置によれば、薄膜を形成す
る基板面の温度を高精度で制御できるとともに広
範囲にわたり温度分布を均一にできるので、膜質
の向上、広範囲にわたる膜特性の均一性および膜
厚分布の均一性をはかることができる。
According to the thin film forming apparatus of the present invention, it is possible to control the temperature of the substrate surface on which a thin film is formed with high precision and to make the temperature distribution uniform over a wide range, thereby improving film quality, uniformity of film characteristics over a wide range, and film thickness distribution. uniformity can be measured.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は従来の成膜装置の基板電極構造を示す
断面図、第2図は本発明の一実施例に係る基板電
極を装備した成膜装置の基本構成を示す構成図、
第3図は第2図の基板電極部の構造を示す拡大断
面図である。 12……基板電極、13a,13b,13c,
14a,14b……ヒータ、15a,15b…温
度検出素子、16a,16b,17a,17b…
…冷却ガス導入溝、22a,22b……電源、2
3a,23b……温度検出器、24……温度制御
器、25a,25b……ガス流量調整器。
FIG. 1 is a sectional view showing the substrate electrode structure of a conventional film forming apparatus, and FIG. 2 is a configuration diagram showing the basic structure of a film forming apparatus equipped with a substrate electrode according to an embodiment of the present invention.
FIG. 3 is an enlarged sectional view showing the structure of the substrate electrode section of FIG. 2. FIG. 12...Substrate electrode, 13a, 13b, 13c,
14a, 14b...Heater, 15a, 15b...Temperature detection element, 16a, 16b, 17a, 17b...
...Cooling gas introduction groove, 22a, 22b...Power supply, 2
3a, 23b...Temperature detector, 24...Temperature controller, 25a, 25b...Gas flow rate regulator.

Claims (1)

【特許請求の範囲】 1 真空処理室の内部で被処理基板の表面に薄膜
を形成する薄膜形成装置において、前記真空処理
室に、前記被処理基板を載置し内部に複数の加熱
手段と複数の冷却手段と複数の温度検出手段とを
有する基板電極を設け、前記真空処理室の外部
に、前記複数の加熱手段と前記複数の冷却手段と
前記複数の温度検出手段とに接続する温度制御手
段を設け、前記複数の温度検出手段の検出結果に
基づいて前記温度制御手段で前記複数の加熱手段
及び前記複数の冷却手段を制御することにより前
記基板電極を所定の温度及び温度分布に維持する
ことを特徴とする薄膜形成装置。 2 前記制御手段は、前記複数の温度検出手段で
検出した前記基板電極の温度データに基づき、前
記複数の加熱手段の加熱量を個々に制御し、及
び/又は、前記複数の冷却手段の冷却量を個々に
制御することを特徴とする特許請求の範囲第1項
記載の薄膜形成装置。 3 前記複数の加熱手段は、前記基板電極の中央
部付近に埋設された第1の複数のヒータと、該第
1の複数のヒータの外側に埋設された第2の複数
のヒータとから成り、前記複数の冷却手段は前記
第1の複数のヒータの近傍に設けた冷却媒体を流
すための第1の流路部と、前記第2の複数のヒー
タの近傍に設けた冷却媒体を流すための第2の流
路部とから成ることを特徴とする特許請求の範囲
第1項記載の薄膜形成装置。 4 前記複数の温度検出手段は、前記基板電極の
内部において、少なくとも、前記第1の複数のヒ
ータと前記第1の流路部とに隣接する位置に埋設
された第1の温度検出部と、前記第2の複数のヒ
ータと前記第2の流路部とに隣接する位置に埋設
された第2の温度検出部とを備え、前記第1の温
度検出部と前記第2の温度検出部とにより前記基
板電極の内部の温度を検出することを特徴とする
特許請求の範囲第1項記載の薄膜形成装置。
[Scope of Claims] 1. A thin film forming apparatus for forming a thin film on the surface of a substrate to be processed inside a vacuum processing chamber, wherein the substrate to be processed is placed in the vacuum processing chamber, and a plurality of heating means and a plurality of heating means are placed inside the vacuum processing chamber. A substrate electrode having cooling means and a plurality of temperature detection means is provided, and temperature control means is connected to the plurality of heating means, the plurality of cooling means, and the plurality of temperature detection means outside the vacuum processing chamber. and maintaining the substrate electrode at a predetermined temperature and temperature distribution by controlling the plurality of heating means and the plurality of cooling means with the temperature control means based on the detection results of the plurality of temperature detection means. A thin film forming device featuring: 2. The control means individually controls the amount of heating of the plurality of heating means and/or the amount of cooling of the plurality of cooling means based on the temperature data of the substrate electrode detected by the plurality of temperature detection means. 2. The thin film forming apparatus according to claim 1, wherein the thin film forming apparatus is configured to individually control the following. 3. The plurality of heating means includes a first plurality of heaters embedded near the center of the substrate electrode and a second plurality of heaters embedded outside the first plurality of heaters, The plurality of cooling means includes a first flow path section provided near the first plurality of heaters for flowing a cooling medium, and a first flow path section provided near the second plurality of heaters for flowing a cooling medium. 2. The thin film forming apparatus according to claim 1, further comprising a second flow path section. 4. The plurality of temperature detection means includes a first temperature detection section embedded inside the substrate electrode at a position adjacent to at least the first plurality of heaters and the first flow path section; a second temperature detection section embedded in a position adjacent to the second plurality of heaters and the second flow path section, the first temperature detection section and the second temperature detection section; 2. The thin film forming apparatus according to claim 1, wherein the temperature inside the substrate electrode is detected by:
JP10051884A 1984-05-21 1984-05-21 Construction of substrate electrode for film forming device Granted JPS60245778A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10051884A JPS60245778A (en) 1984-05-21 1984-05-21 Construction of substrate electrode for film forming device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10051884A JPS60245778A (en) 1984-05-21 1984-05-21 Construction of substrate electrode for film forming device

Publications (2)

Publication Number Publication Date
JPS60245778A JPS60245778A (en) 1985-12-05
JPH0565589B2 true JPH0565589B2 (en) 1993-09-20

Family

ID=14276170

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10051884A Granted JPS60245778A (en) 1984-05-21 1984-05-21 Construction of substrate electrode for film forming device

Country Status (1)

Country Link
JP (1) JPS60245778A (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3943482C2 (en) * 1989-05-08 1994-07-07 Balzers Hochvakuum Workpiece carrier for a disc-shaped workpiece, as well as vacuum process chamber
FR2646861B1 (en) * 1989-05-09 1991-07-26 Philips Nv PARTIAL VACUUM PLANAR SUBSTRATE PROCESSING APPARATUS
WO1990013687A2 (en) * 1989-05-08 1990-11-15 N.V. Philips' Gloeilampenfabrieken Apparatus and method for treating flat substrates under reduced pressure
JPH09157846A (en) * 1995-12-01 1997-06-17 Teisan Kk Temperature controller
US6706541B1 (en) 1999-10-20 2004-03-16 Advanced Micro Devices, Inc. Method and apparatus for controlling wafer uniformity using spatially resolved sensors

Also Published As

Publication number Publication date
JPS60245778A (en) 1985-12-05

Similar Documents

Publication Publication Date Title
US6676804B1 (en) Method and apparatus for plasma processing
WO2015034659A1 (en) Tunable temperature controlled electrostatic chuck assembly
US4430547A (en) Cleaning device for a plasma etching system
US11024522B2 (en) Virtual sensor for spatially resolved wafer temperature control
TW201421575A (en) Showerhead electrode assembly in a capacitively coupled plasma processing apparatus
KR19990087819A (en) Plasma processing equipment
CN1212363A (en) Semiconductor wafer temperature measurement and control thereof using gas temperature measurement
US8282848B2 (en) Plasma processing method and plasma processing apparatus
US20080078504A1 (en) Self-Calibrating Optical Emission Spectroscopy for Plasma Monitoring
JP3103227B2 (en) Method for manufacturing semiconductor device
JP2000216140A (en) Wafer stage and wafer treating apparatus
JPH0565589B2 (en)
JP3204866B2 (en) Vacuum processing device and vacuum processing method
JP2579809Y2 (en) Single wafer CVD system
KR102137886B1 (en) Low Pressure chemical vapor deposition system for hexagonal boron nitride growth
KR20200131172A (en) Plasma processing apparatus and calculation method
US7105080B2 (en) Vacuum treatment system and method of manufacturing same
KR200145300Y1 (en) Plasma etching device capable of end point detection
JPH11111692A (en) Plasma etching system
US20160273097A1 (en) Method for monitoring se vapor in vacuum reactor apparatus
JPH04297054A (en) Method and apparatus for processing semiconductor wafer
JPH029121A (en) Plasma etching apparatus
JPS602667A (en) Sublimating and supplying device of solid raw material
JPH0758080A (en) Method and apparatus for plasma treatment and temperature control method thereof
JPH02310917A (en) System for controlling wafer surface temperature