JPH02310917A - System for controlling wafer surface temperature - Google Patents

System for controlling wafer surface temperature

Info

Publication number
JPH02310917A
JPH02310917A JP1132175A JP13217589A JPH02310917A JP H02310917 A JPH02310917 A JP H02310917A JP 1132175 A JP1132175 A JP 1132175A JP 13217589 A JP13217589 A JP 13217589A JP H02310917 A JPH02310917 A JP H02310917A
Authority
JP
Japan
Prior art keywords
temperature
wafer surface
surface temperature
heater
furnace
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP1132175A
Other languages
Japanese (ja)
Inventor
Katsumi Oyama
勝美 大山
Hitoshi Hikima
引間 仁
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi High Tech Corp
Original Assignee
Hitachi Electronics Engineering Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Electronics Engineering Co Ltd filed Critical Hitachi Electronics Engineering Co Ltd
Priority to JP1132175A priority Critical patent/JPH02310917A/en
Publication of JPH02310917A publication Critical patent/JPH02310917A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To increase a speed of a film-formation treatment and to enhance a throughput by a method wherein a wafer surface temperature which is changed by a pressure inside a furnace and by a heater sputtering temperature is measured in advance, the result of measuring the wafer surface temperature is stored in an apparatus, the heater setting temperature corresponding to a formation condition which has been input is determined and the heater setting temperature is controlled. CONSTITUTION:A pressure inside a furnace is waved to several points with reference to a heater setting temperature in several points; a wafer surface temperature corresponding to these points is measured. A value of the wafer surface temperature which has become stabilized after its increase is read out; the value is input to a graph formation part 26 for temperature calibration use together with the heater setting temperature and the pressure inside the furnace at this readout. A graph for temperature calibration use is formed from these data and is stored in an overall control system part 32. When formation conditions such as the pressure, the wafer surface temperature and the like are input to the overall control system part 32 at a film formation treatment, the heater setting temperature is determined and controlled automatically. The pressure inside the furnace is always monitored during the film formation treatment; the pressure inside the furnace is kept definite.

Description

【発明の詳細な説明】 [産業上の利用分野コ 本発明は気相反応装置のヒータ設定温度の制御方式に関
する。更に詳細には1本発明はプラズマCVD装置のウ
ェハ加熱用ヒータの設定温度を制御することによるウェ
ハ表面温度制御方式に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a method for controlling the heater temperature setting of a gas phase reactor. More specifically, the present invention relates to a wafer surface temperature control method by controlling the set temperature of a heater for heating a wafer in a plasma CVD apparatus.

[従来技術] 薄膜の形成方法として゛μ導体E業において一般  1
に広く用いられているものの一つに化学的気相成長法(
CVD:Chemical  Vapourl)el)
os i t 1on)がある。CVDとは、ガス状物
質を化学反応で固体物質にし、基板[−に堆積すること
をいう。
[Prior art] As a thin film forming method, commonly used in the μ conductor E industry 1
One of the methods widely used is chemical vapor deposition (
CVD:Chemical Vaporl)el)
OS it 1 on). CVD refers to turning a gaseous substance into a solid substance through a chemical reaction and depositing it on a substrate.

CV I)の特徴は、成長しようとする薄膜の融点より
かなり低い堆積温度で種々の薄膜が得られること、およ
び、成長した薄膜の純度が高<SStやSiLの熱酸化
膜[−に成長した場合も電気的特性が安定であることで
、広り゛ト導体表面のパッシベー7gン膜として利用さ
れている。
The characteristics of CV I) are that various thin films can be obtained at a deposition temperature considerably lower than the melting point of the thin film to be grown, and that the purity of the grown thin film is high < thermal oxide film of SSt or SiL [- Because of its stable electrical properties, it is also used as a passive vane film on the surface of a wide conductor.

CV f)法は大別すると、(1)常圧、(2)減圧お
よび(3)プラズマの3種類がある。
CV f) methods can be roughly divided into three types: (1) normal pressure, (2) reduced pressure, and (3) plasma.

プラズマCVD法は、反応の活性化に必要なエネルギー
を、真空中におけるグロー放電のプラズマによって得る
もので、成長は300’C〜400℃前後の低温で起こ
り、ステップカバレージ(まわりこみ、またはパターン
段差部被覆性))が良く、膜の強度が強く、史に耐湿性
に優れているといった特長を有する。また、プラズマC
VD法による成膜生成速度(デポレート)は、減圧CV
D法に比べて極めて速い。
In the plasma CVD method, the energy required to activate the reaction is obtained by glow discharge plasma in a vacuum. Growth occurs at a low temperature of around 300'C to 400°C, and step coverage (wrapping or pattern step part) is achieved. It has the characteristics of good coating properties), strong film strength, and historically excellent moisture resistance. Also, plasma C
The deposition rate (deposition rate) by the VD method is
It is extremely fast compared to the D method.

[発明が解決しようとする課!] プラズマCVD法においても、ウェハは300〜400
’C程度にまで加熱しなければならない。
[The problem that the invention tries to solve! ] Even in the plasma CVD method, the wafer size is 300 to 400.
It must be heated to about 'C.

このため、ウェハが載置される金属製均熱板の下部には
ヒータ等の加熱手段が配設されている。
For this reason, heating means such as a heater is provided at the bottom of the metal heat-uniforming plate on which the wafer is placed.

しかし、プラズマCVD等の低圧下でウエハヒに薄膜を
形成する装置で実際にウェハ表面温度を測定した結果、
ウェハ表面温度はヒータ設定温度に対してかなり低い値
を示し、炉内圧力の増大に伴って大きくなっていくこと
がわかった。
However, as a result of actually measuring the wafer surface temperature using a device that forms thin films on wafers under low pressure such as plasma CVD,
It was found that the wafer surface temperature was considerably lower than the heater setting temperature, and increased as the furnace pressure increased.

これは、ヒータと均熱板、均熱板とウェハとの間に熱の
ための反りによる隙間が発生するためと考えられる。炉
内圧力によってウェハ表面温度が変化するのは、隙間に
存在する分子の数が違うために、分子運動による熱伝達
が変化するためと考えられる。
This is thought to be because gaps are generated between the heater and the heat soaking plate, and between the heat soaking plate and the wafer due to warping due to heat. The reason why the wafer surface temperature changes depending on the furnace pressure is thought to be because the number of molecules existing in the gap changes, which changes the heat transfer due to molecular motion.

今までは常圧ドで測定した表面温度を元にヒータ設定温
度を決定していたが、常圧下ではウェハ表面iQ度はヒ
ータ設定温度よりも約25℃低いだけであったが、低圧
下ではヒータの熱がウェハに伝わり難く、機械的構成次
第ではヒータ[・、で感知している温度よりウェハの実
際温度は100〜200℃低い場合がある。
Until now, the heater set temperature was determined based on the surface temperature measured under normal pressure.Under normal pressure, the wafer surface iQ degree was only about 25°C lower than the heater set temperature. Heat from the heater is difficult to transfer to the wafer, and depending on the mechanical configuration, the actual temperature of the wafer may be 100 to 200° C. lower than the temperature sensed by the heater.

また、均熱板もウェハのサイズに応じて交換する必要が
あり、均熱板の大きさも相違してくる。
Furthermore, it is necessary to replace the heat equalizing plate depending on the size of the wafer, and the size of the heat equalizing plate also differs.

そのため、同じ炉内圧力およびヒータ設定温度であって
も、ウェハ表面温度は変わってくる。均熱板の大きさが
違うと、熱のための反り量が変わってきて、隙間の大き
さも違ってくるからである。
Therefore, even if the furnace pressure and heater setting temperature are the same, the wafer surface temperature changes. This is because if the size of the heat equalizing plate differs, the amount of warping due to heat will change, and the size of the gap will also differ.

史に、同じサイズの均熱板でも加工精度が違うので、個
々のウェハの表面温度も相違してくる。また、均熱板の
材質の変化により、ウェハ表面温度も変化する。
Historically, even heat soaking plates of the same size have different processing precision, resulting in differences in the surface temperature of individual wafers. Further, due to a change in the material of the heat soaking plate, the wafer surface temperature also changes.

このように、均熱板を取り巻く生成条件の変化に応じて
、その度毎に下作業でウェハ表面温度を測定してM度校
1「用グラフを作成し、そのグラフから数値を読み取っ
て均熱板ヒータにフィードバプクするのでは手間が懸か
り過ぎ、生産効率は全(向上されない。
In this way, as the generation conditions surrounding the heat soaking plate change, the wafer surface temperature is measured each time in the preliminary work, a graph is created for M degree calibration 1, and the values are read from the graph and the temperature is averaged. Feedback to the hot plate heater takes too much time and does not improve production efficiency.

従って、本発明の目的は、生成条件をインプットするだ
けで自動的にそれに対応するヒータ設定温度が決定され
、ウェハ表面温度が制御される気相反応装置を提供する
ことである。
Accordingly, an object of the present invention is to provide a gas phase reaction apparatus in which, simply by inputting production conditions, a corresponding heater setting temperature is automatically determined and the wafer surface temperature is controlled.

[課題を解決するための手段] 前記の問題点を解決するための手段として、本発明では
、気相反応装置でウェハ表面に成膜処理する際、炉内圧
力およびヒータ設定温度によって変動するウェハ表面温
度を予めfllll定し、該条件下におけるウェハ表面
温度の測定結果を装置に記憶させておき、生成条件をイ
ンプットすることにより該条件に対応するヒータ設定温
度を決定し、ヒータ設定温度を制御することからなるウ
ェハ表面温度制御方式を提供する。
[Means for Solving the Problems] As a means for solving the above-mentioned problems, the present invention provides a method for forming a film on a wafer surface using a gas-phase reaction apparatus, in which the wafer temperature varies depending on the furnace pressure and heater setting temperature. The surface temperature is fully determined in advance, the measurement results of the wafer surface temperature under the conditions are stored in the device, and the heater setting temperature corresponding to the conditions is determined by inputting the generation conditions, and the heater setting temperature is controlled. A method for controlling wafer surface temperature is provided.

[作用コ 前記のように、本発明によれば、炉内圧力やヒータ設定
温度などの生成条件に応じたウェハ表面温度をEめ測定
しておき、これを装置に記憶させてお(ことにより、具
体的な生成条件をインプットするだけで、自動的に該′
条件に対応する最適なヒータ設定温度が決定され、ヒー
タ設定温度が制御される。その結果、成膜処理のスピー
ドアップが図られ、スルーブツトを向上させることがで
きる。
[Operations] As described above, according to the present invention, the wafer surface temperature is measured in accordance with the production conditions such as the furnace pressure and the heater setting temperature, and this is stored in the device (possibly by , just by inputting the specific generation conditions, the corresponding
The optimum heater setting temperature corresponding to the conditions is determined, and the heater setting temperature is controlled. As a result, it is possible to speed up the film forming process and improve throughput.

[実施例コ 以ド、図面を参!I6シながら本発明のウェハ表面温度
制御方式の一例について詳細に説明する。
[See example code and drawings! An example of the wafer surface temperature control method of the present invention will be described in detail.

第1図はプラズマCVD装置により本発明のウェハ表面
温度制御方式を実施する場合の構成の一例を示す模式図
である。
FIG. 1 is a schematic diagram showing an example of a configuration in which the wafer surface temperature control method of the present invention is implemented using a plasma CVD apparatus.

プラズマCVD装置1は反応室3を有する。この反応室
のL部には電極5が配設されており、電極内には反応ガ
スを導入するための通路7が設けられている。電極のF
面側には前記通路に連通ずる微小な孔が穿設されていて
、反応ガスをシャワーのようにウェハ」−に流ドするこ
とができる。また、電極5は高周波電源10に接続され
ている。
The plasma CVD apparatus 1 has a reaction chamber 3. An electrode 5 is disposed in the L portion of this reaction chamber, and a passage 7 for introducing a reaction gas is provided within the electrode. F of the electrode
A fine hole communicating with the passageway is formed on the surface side, and the reaction gas can be flowed onto the wafer like a shower. Further, the electrode 5 is connected to a high frequency power source 10.

電極5に対峙して均熱板12が配設されており、均熱板
12の外周縁は絶縁カバー14で取り囲まれている。均
熱板12の下部にはヒータ16が配設されている。史に
、反応室3の下部には排気ダクト18が設けられており
、このダクトは適当なυ1気系に接続されている。
A heat equalizing plate 12 is disposed facing the electrode 5, and the outer periphery of the heat equalizing plate 12 is surrounded by an insulating cover 14. A heater 16 is disposed below the heat equalizing plate 12. Historically, an exhaust duct 18 is provided at the bottom of the reaction chamber 3, and this duct is connected to a suitable υ1 gas system.

ウェハ表面温度の測定は実際の成膜処理中にはできない
ので、高周波を印加しないで反応ガスの代わりに窒素ガ
スのみを流して一定圧力ドで行う。
Since the wafer surface temperature cannot be measured during the actual film forming process, it is carried out at a constant pressure without applying high frequency and by flowing only nitrogen gas instead of the reaction gas.

均熱板12の上部にウエノ120を載置し、このウェハ
20に無機接着剤およびAgペーストでCA線22を固
着させる。CA線は温度表示部24に接続されており、
また、測定温度信号はこの温度表示部24を経て温度校
正用グラフ作成部26に伝達される。この温度校正用グ
ラフ作成部26には史にヒータ温度制御部28と圧力制
御部30が接続されている。前記温度校正用グラフ作成
部26、ヒータ温度制御部28および圧力制御部30は
総合管理システム部32に接続されている。ヒータ温度
制御部28はヒータ16に接続されており、圧力制御部
30は排気ダクトの途中に設けられた圧力N11l定用
バラトロン34および自動圧力制御装置36に接続され
ている。
A wafer 120 is placed on the top of the heat-uniforming plate 12, and a CA wire 22 is fixed to the wafer 20 using an inorganic adhesive and Ag paste. The CA line is connected to the temperature display section 24,
Further, the measured temperature signal is transmitted to the temperature calibration graph creation section 26 via the temperature display section 24. A heater temperature control section 28 and a pressure control section 30 are connected to this temperature calibration graph creation section 26 . The temperature calibration graph creation section 26, heater temperature control section 28, and pressure control section 30 are connected to a comprehensive management system section 32. The heater temperature control section 28 is connected to the heater 16, and the pressure control section 30 is connected to a pressure N11l regulating baratron 34 and an automatic pressure control device 36 provided in the middle of the exhaust duct.

数点のヒータ設定温度に対して炉内圧力をそれぞれ数点
ずつ振って、それに対応するウェハ表面温度を測定する
。ウェハ表面温度は1−昇後安定したところの値を読取
、温度校正用グラフ作成部26へ、その時のヒータ設定
温度および炉内圧力と共にインプットされる。データを
取り終わったら、それらのデータから温度校正用グラフ
を作成しく直線は最小2乗法を用いて引り)、総合管理
システム部32に記憶させておく。
The furnace pressure is varied at several points for each heater setting temperature, and the corresponding wafer surface temperature is measured. As for the wafer surface temperature, the value at which it becomes stable after being increased by 1 is read and inputted to the temperature calibration graph creation section 26 together with the heater setting temperature and furnace pressure at that time. After collecting the data, a temperature calibration graph is created from the data (straight lines are drawn using the method of least squares) and stored in the comprehensive management system unit 32.

実際に成膜処理する時には、圧力やウェハ表面温度など
の生成条件を総合管理システム部32にインプットすれ
ば、自動的にヒータ設定7Aム度が決定され、制御され
る。成膜処理中も炉内圧力を常にモニターし、炉内圧力
を一定に維b)する。
When actually performing a film forming process, if the production conditions such as pressure and wafer surface temperature are input to the integrated management system section 32, the heater setting of 7 Amps is automatically determined and controlled. The pressure inside the furnace is constantly monitored during the film forming process, and the pressure inside the furnace is kept constant b).

本発明のウェハ表面温度制御方式をプラズマCVD装置
について説明してきたが、本発明の方式はプラズ、マC
V I)装置に限定されることなく、低圧ドで温度制御
する必殻のある装置(例えば、減圧CVD装置など)全
般について適用可能である。
Although the wafer surface temperature control method of the present invention has been explained with respect to a plasma CVD apparatus, the method of the present invention
VI) The present invention is not limited to devices, but can be applied to all devices that require temperature control at low pressure (eg, low-pressure CVD devices, etc.).

[発明の効果コ 以−L説明したように、本発明によれば、炉内圧力やヒ
ータ設定温度などの生成条件に応じたウェハ表面温度を
tめ測定しておき、これを装置に記憶させておくことに
より、具体的な生成条件をインプットするだけで、自動
的に該条件に対応する最適なヒータ設定温度が決定され
、制御される。
[Effects of the Invention] As explained above, according to the present invention, the wafer surface temperature is measured in advance according to the production conditions such as the furnace pressure and the heater setting temperature, and this is stored in the device. By simply inputting specific production conditions, the optimum heater setting temperature corresponding to the conditions is automatically determined and controlled.

その結果、成膜処理のスピードアップが図られ、スルー
プットを向−卜させることができる。
As a result, it is possible to speed up the film forming process and improve throughput.

【図面の簡単な説明】[Brief explanation of drawings]

第1図はプラズマCVD装置により本発明のウェハ表面
温度制御方式を実施する場合の構成の一例を示す模式図
である。 1・・・プラズマCVD装置、3・・・反応室。 5・・・電極、7・・・反応ガス通路。 10・・・高周波電源、12・・・均熱板。 14・・・絶縁カバー、16・・・ヒータ。 18・・・排気ダクト、20・・・ウェハ。 22・・・CA線、24・・・温度表示部。 26・・・温度校正用グラフ作成部。 28・・・ヒータ温度制御部、30・・・圧力制御部。 32・・・総合管理システム部。 34・・・圧力測定用バラトロン。 36・・・自動圧力制御装置
FIG. 1 is a schematic diagram showing an example of a configuration in which the wafer surface temperature control method of the present invention is implemented using a plasma CVD apparatus. 1... Plasma CVD apparatus, 3... Reaction chamber. 5... Electrode, 7... Reaction gas passage. 10... High frequency power supply, 12... Soaking plate. 14... Insulating cover, 16... Heater. 18...Exhaust duct, 20...Wafer. 22...CA line, 24...Temperature display section. 26... Temperature calibration graph creation section. 28... Heater temperature control section, 30... Pressure control section. 32...Comprehensive management system department. 34...Baratron for pressure measurement. 36... Automatic pressure control device

Claims (1)

【特許請求の範囲】[Claims] (1)気相反応装置でウエハ表面に成膜処理する際、炉
内圧力およびヒータ設定温度によって変動するウエハ表
面温度を予め測定し、該条件下におけるウエハ表面温度
の測定結果を装置に記憶させておき、生成条件をインプ
ットすることにより該条件に対応するヒータ設定温度を
決定し、ヒータ設定温度を制御することからなるウエハ
表面温度制御方式。
(1) When forming a film on a wafer surface using a gas phase reaction device, the wafer surface temperature, which fluctuates depending on the furnace pressure and heater setting temperature, is measured in advance, and the measurement results of the wafer surface temperature under these conditions are stored in the device. A wafer surface temperature control method that involves inputting production conditions, determining a heater setting temperature corresponding to the conditions, and controlling the heater setting temperature.
JP1132175A 1989-05-25 1989-05-25 System for controlling wafer surface temperature Pending JPH02310917A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1132175A JPH02310917A (en) 1989-05-25 1989-05-25 System for controlling wafer surface temperature

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1132175A JPH02310917A (en) 1989-05-25 1989-05-25 System for controlling wafer surface temperature

Publications (1)

Publication Number Publication Date
JPH02310917A true JPH02310917A (en) 1990-12-26

Family

ID=15075131

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1132175A Pending JPH02310917A (en) 1989-05-25 1989-05-25 System for controlling wafer surface temperature

Country Status (1)

Country Link
JP (1) JPH02310917A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5359693A (en) * 1991-07-15 1994-10-25 Ast Elektronik Gmbh Method and apparatus for a rapid thermal processing of delicate components

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5359693A (en) * 1991-07-15 1994-10-25 Ast Elektronik Gmbh Method and apparatus for a rapid thermal processing of delicate components

Similar Documents

Publication Publication Date Title
US11024522B2 (en) Virtual sensor for spatially resolved wafer temperature control
JP3103227B2 (en) Method for manufacturing semiconductor device
JPS6233773A (en) Chemical vapor deposition apparatus
JPS6233774A (en) Chemical vapor deposition apparatus
US6471780B1 (en) Process for fabricating films of uniform properties on semiconductor devices
US5232509A (en) Apparatus for producing low resistivity tungsten thin film comprising reaction temperature measuring thermocouples
JP3077582B2 (en) Plasma CVD apparatus and cleaning method therefor
JPH04210476A (en) Formation of silicon carbide film
JPH02310917A (en) System for controlling wafer surface temperature
CN111139444A (en) Heating system of semiconductor processing equipment and control method thereof
WO2007081185A1 (en) Heating apparatus for batch type reaction chamber
WO2020048981A3 (en) Method for controlling the ceiling temperature of a cvd reactor
JPH06132231A (en) Cvd equipment
JP3103228B2 (en) Gas treatment equipment
JP2004072030A (en) Semiconductor manufacturing apparatus
JPH0382017A (en) Manufacture apparatus for semiconductor device
JP3872304B2 (en) Semiconductor manufacturing apparatus and semiconductor manufacturing method
TWI837124B (en) Virtual sensor for spatially resolved wafer temperature control
JP3276471B2 (en) Heat treatment apparatus and heat treatment method
JP2502582B2 (en) Plasma CVD equipment
JPH02190473A (en) Raw gas feeder for plasma cvd
JPH07283159A (en) Heat treatment device
KR100712391B1 (en) Multicoating heater using ceramic thermal spray coating for processing wafer
JPS63270471A (en) Plasma cvd device
JPH03252127A (en) Temperature control method for vapor growth device