JPH0565496B2 - - Google Patents

Info

Publication number
JPH0565496B2
JPH0565496B2 JP63262603A JP26260388A JPH0565496B2 JP H0565496 B2 JPH0565496 B2 JP H0565496B2 JP 63262603 A JP63262603 A JP 63262603A JP 26260388 A JP26260388 A JP 26260388A JP H0565496 B2 JPH0565496 B2 JP H0565496B2
Authority
JP
Japan
Prior art keywords
quinone
hydroquinone
exchange resin
column
hydrogen
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP63262603A
Other languages
Japanese (ja)
Other versions
JPH02108645A (en
Inventor
Kazuhiko Tanaka
Ryozo Nakajima
Riichi Kurokawa
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
Agency of Industrial Science and Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Agency of Industrial Science and Technology filed Critical Agency of Industrial Science and Technology
Priority to JP63262603A priority Critical patent/JPH02108645A/en
Publication of JPH02108645A publication Critical patent/JPH02108645A/en
Priority to JP5085397A priority patent/JPH07580B2/en
Publication of JPH0565496B2 publication Critical patent/JPH0565496B2/ja
Granted legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/52Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts

Landscapes

  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)

Description

【発明の詳細な説明】 産業上の利用分野 本発明は、水素型陽イオン交換体によるキノン
のヒドロキノンへの還元反応を利用したヒドロキ
ノンの製造法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION Field of Industrial Application The present invention relates to a method for producing hydroquinone using a reduction reaction of quinone to hydroquinone using a hydrogen-type cation exchanger.

さらに詳しくいえば、本発明は陽イオン交換体
を用いて簡単なプロセスで収率よくヒドロキノン
を製造する方法に関する。
More specifically, the present invention relates to a method for producing hydroquinone in high yield through a simple process using a cation exchanger.

従来の技術 ヒドロキノンは有機合成化学工業における中間
工業原料として有用であり、そのほとんどが有機
化学的な方法により製造されているが、反応の複
雑さ、収率の低さ、副生物の生成等、数多くの問
題があり、この分野では高収率で副生物の生じな
い簡便な製造工程を用いる方法によるヒドロキノ
ンの製造法が望まれていた。
Prior Art Hydroquinone is useful as an intermediate industrial raw material in the organic synthetic chemical industry, and most of it is produced by organic chemical methods, but it suffers from problems such as the complexity of the reaction, low yield, and the production of by-products. There are many problems, and in this field there has been a desire for a method for producing hydroquinone using a simple production process that produces high yields and does not produce by-products.

発明が解決しようとする課題 本発明は、このような従来方法の欠点を克服
し、副生物を伴わずに、収率よくヒドロキノンを
製造するための工学的方法を開発するためになさ
れたものである。
Problems to be Solved by the Invention The present invention was made in order to overcome the drawbacks of such conventional methods and to develop an engineering method for producing hydroquinone in good yield without producing by-products. be.

課題を解決するための手段 本発明者らは、上記の目的を達成するために
種々研究を重ねた結果、水素型陽イオン交換樹脂
のもつ酸化還元作用に着目して、極めて簡便に出
発原料としてのキノンからヒドロキノンを定量的
に生成可能なことを見出し、この知見に基づいて
本発明をなすに至つた。
Means for Solving the Problems As a result of various studies to achieve the above object, the present inventors have focused on the redox action of hydrogen-type cation exchange resins, and have found that they can be used as starting materials in a very simple manner. We have discovered that hydroquinone can be quantitatively produced from quinone, and based on this knowledge, we have accomplished the present invention.

すなわち、本発明は水素型陽イオン交換樹脂を
充填したカラムあるいは中空型の水素型陽イオン
交換樹脂中に水あるいは水−有機溶媒からなる溶
離液と連続的に流入させ、その上部からキノンを
注入して水素型イオン交換樹脂中の固定水素イオ
ンによりキノンを還元させて、下部よりヒドロキ
ノンを回収することを特徴とするヒドロキノンの
製造法を提供するものである。
That is, in the present invention, an eluent consisting of water or a water-organic solvent is continuously introduced into a column filled with a hydrogen-type cation exchange resin or a hollow hydrogen-type cation exchange resin, and quinone is injected from the top of the column. The present invention provides a method for producing hydroquinone, which is characterized in that quinone is reduced by fixed hydrogen ions in a hydrogen-type ion exchange resin, and hydroquinone is recovered from the lower part.

本発明で用いる陽イオン交換体としては、陽イ
オン交換樹脂又はそのイオン交換膜であるがこれ
らはいずれも通常市販されているものでよい。
The cation exchanger used in the present invention is a cation exchange resin or an ion exchange membrane thereof, and any of these may be commercially available.

本発明において陽イオン交換樹脂を用いた場合
には回分式操作により変換反応が行われるが、イ
オン交換膜を用いると再生液により再生操作を同
時に行えるので連続変換操作が可能になる。
In the present invention, when a cation exchange resin is used, the conversion reaction is carried out in a batchwise operation, but when an ion exchange membrane is used, the regeneration operation can be performed simultaneously using a regeneration liquid, so that a continuous conversion operation is possible.

溶離液としては、水あるいは水−有機溶媒が用
いられる。有機溶媒としてはアセトニトリル、メ
チルアルコール、エチルアルコールなどが用いら
れる。
As the eluent, water or a water-organic solvent is used. Acetonitrile, methyl alcohol, ethyl alcohol, etc. are used as the organic solvent.

発明の効果 本発明によると、ヒドロキノンを簡単なプロセ
スで収率よく製造することができ、有機合成化学
における中間工業原料として用いることができ
る。
Effects of the Invention According to the present invention, hydroquinone can be produced in high yield through a simple process, and can be used as an intermediate industrial raw material in organic synthetic chemistry.

実施例 次に実施例により本発明をさらに詳細に説明す
る。
Examples Next, the present invention will be explained in more detail with reference to Examples.

実施例 1 粒径5ミクロンの水素型強酸性陽イオン交換樹
脂を充填した長さ20cm、内径8mmのプラスチツク
カラムに定流量ポンプによつて1ml/minの流量
で水あるいは10%アセトニトリル−水を流してお
く。次に、このカラムの上部に0.5mMのキノン
の0.1mlを6方弁方式の試料注入器を用いて注入
し、キノンを水素型陽イオン交換樹脂と接触させ
る。カラムからの溶出物はその直後に配置したフ
オトダイオードアレーを用いた紫外吸光検出器に
よつて検出する。
Example 1 Water or 10% acetonitrile-water was flowed at a flow rate of 1 ml/min using a constant flow pump into a plastic column with a length of 20 cm and an inner diameter of 8 mm filled with a hydrogen-type strongly acidic cation exchange resin with a particle size of 5 microns. I'll keep it. Next, 0.1 ml of 0.5 mM quinone is injected into the upper part of this column using a six-way valve type sample injector to bring the quinone into contact with the hydrogen-type cation exchange resin. The eluate from the column is detected by an ultraviolet absorption detector using a photodiode array placed immediately after the column.

第1図はカラムに注入する前のキノンの標準溶
液の紫外吸収スペクトルを、第2図はキノンをカ
ラムに注入し、それからの溶出物の紫外吸収スペ
クトルをそれぞれを示したものである。
Figure 1 shows the ultraviolet absorption spectrum of a standard solution of quinone before it was injected into the column, and Figure 2 shows the ultraviolet absorption spectrum of the eluate after injecting quinone into the column.

第1図から明らかなように、キノンの吸収スペ
クトルは247nmに最大吸収波長を示した。しかし
ながら、第2図に示したカラムからの溶出液の紫
外吸収スペクトルはキノンのそれと明らかに異な
り、220及び289nmに吸収ピークを示した。した
がつて、イオン交換樹脂との接触により、キノン
は類似の構造を有する別の化合物に変化したこと
が推定された。次に、ヒドロキノンの標準液のス
ペクトルを検出し、第3図に示した。これとキノ
ンのカラムからの溶出液のそれと比較したとこ
ろ、両者のスペクトルは完全に一致し、キノンが
イオン交換樹脂中の固定スルホン酸からの固定水
素イオンと反応して、ヒドロキノンを生成してい
ることが確認された。
As is clear from FIG. 1, the absorption spectrum of quinone showed a maximum absorption wavelength at 247 nm. However, the ultraviolet absorption spectrum of the eluate from the column shown in Figure 2 was clearly different from that of quinone, showing absorption peaks at 220 and 289 nm. Therefore, it was presumed that the quinone was changed into another compound with a similar structure upon contact with the ion exchange resin. Next, the spectrum of the standard solution of hydroquinone was detected and is shown in FIG. When this was compared with that of the eluate from the quinone column, their spectra matched perfectly, indicating that the quinone reacted with fixed hydrogen ions from the fixed sulfonic acid in the ion exchange resin to form hydroquinone. This was confirmed.

この例では水素型の陽イオン交換樹脂を充填し
たカラムを用いて回分式操作により変換反応を進
行させ、一定時間ごとに再生液(硫酸)による再
生操作を行つたが、連続的操作が可能な中空型の
陽イオン交換樹脂膜を用いればイオン交換樹脂膜
中の固定水素イオンによるキノンのヒドロキノン
への還元反応と硫酸による再生操作を同時に行え
るので、連続変換操作が可能であつた。
In this example, the conversion reaction was carried out in a batch manner using a column packed with a hydrogen-type cation exchange resin, and the regeneration operation was performed using a regeneration solution (sulfuric acid) at regular intervals, but continuous operation is also possible. If a hollow cation exchange resin membrane was used, the reduction reaction of quinone to hydroquinone by the fixed hydrogen ions in the ion exchange resin membrane and the regeneration operation using sulfuric acid could be performed simultaneously, so a continuous conversion operation was possible.

実施例 2 実施例1と同様の装置、溶離液及びカラムを用
い、キノンのヒドロキノンへの変換反応がカラム
内で定量的に進行していることを明らかにした。
すなわち0.02から0.5mMのキノン水溶液をカラム
内に注入して、その濃度とカラムから溶出したヒ
ドロキノンの吸収スペクトル(289nm)の吸光度
の間の関係を示すグラフ(検量線)を作成した。
その結果、キノンの注入濃度の増大に比例してヒ
ドロキノンの吸光度はほぼ直線的に増大し、カラ
ム内での変換反応が化学量論的に進行しているこ
とが明らかとなつた。濃度既知のキノンとヒドロ
キノンの標準液の吸収スペクトルの吸光度からキ
ノンのヒドロキノンへの変換効率(収率)を計算
したところ、その値は95%であり、ほぼ完全に変
換反応が進行していることを示した。
Example 2 Using the same apparatus, eluent, and column as in Example 1, it was revealed that the conversion reaction of quinone to hydroquinone progressed quantitatively within the column.
That is, a 0.02 to 0.5 mM quinone aqueous solution was injected into the column, and a graph (calibration curve) showing the relationship between the concentration and the absorbance of the absorption spectrum (289 nm) of hydroquinone eluted from the column was created.
As a result, it was revealed that the absorbance of hydroquinone increased almost linearly in proportion to the increase in the injection concentration of quinone, indicating that the conversion reaction within the column proceeded stoichiometrically. When the conversion efficiency (yield) of quinone to hydroquinone was calculated from the absorbance of the absorption spectrum of a standard solution of quinone and hydroquinone with known concentrations, the value was 95%, indicating that the conversion reaction was almost complete. showed that.

【図面の簡単な説明】[Brief explanation of drawings]

第1図はキノンの標準水溶液の紫外吸収スペク
トル、第2図はキノンの処理物の紫外吸収スペク
トル、第3図はヒドロキノンの標準溶液の紫外吸
収スペクトルである。
FIG. 1 shows the ultraviolet absorption spectrum of a standard aqueous solution of quinone, FIG. 2 shows the ultraviolet absorption spectrum of the treated quinone, and FIG. 3 shows the ultraviolet absorption spectrum of a standard solution of hydroquinone.

Claims (1)

【特許請求の範囲】[Claims] 1 水素型陽イオン交換樹脂を充填したカラムあ
るいは中空型の水素型陽イオン交換樹脂膜中に水
あるいは水−有機溶媒からなる溶離液を連続的に
流入させ、その上部からキノンを注入して水素型
イオン交換樹脂中の固定水素イオンによりキノン
を還元させて、下部よりヒドロキノンを回収する
ことを特徴とするヒドロキノンの製造法。
1. An eluent consisting of water or a water-organic solvent is continuously flowed into a column filled with a hydrogen-type cation exchange resin or a hollow hydrogen-type cation exchange resin membrane, and quinone is injected from the top of the column to remove hydrogen. A method for producing hydroquinone, which comprises reducing quinone with fixed hydrogen ions in a type ion exchange resin and recovering hydroquinone from the lower part.
JP63262603A 1988-10-18 1988-10-18 Production of hydroquinone from quinone or hydroquinone from quinone with cation exchange resin Granted JPH02108645A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP63262603A JPH02108645A (en) 1988-10-18 1988-10-18 Production of hydroquinone from quinone or hydroquinone from quinone with cation exchange resin
JP5085397A JPH07580B2 (en) 1988-10-18 1993-03-19 Quinone production method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP63262603A JPH02108645A (en) 1988-10-18 1988-10-18 Production of hydroquinone from quinone or hydroquinone from quinone with cation exchange resin
JP5085397A JPH07580B2 (en) 1988-10-18 1993-03-19 Quinone production method

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP5085397A Division JPH07580B2 (en) 1988-10-18 1993-03-19 Quinone production method

Publications (2)

Publication Number Publication Date
JPH02108645A JPH02108645A (en) 1990-04-20
JPH0565496B2 true JPH0565496B2 (en) 1993-09-17

Family

ID=26426414

Family Applications (2)

Application Number Title Priority Date Filing Date
JP63262603A Granted JPH02108645A (en) 1988-10-18 1988-10-18 Production of hydroquinone from quinone or hydroquinone from quinone with cation exchange resin
JP5085397A Expired - Lifetime JPH07580B2 (en) 1988-10-18 1993-03-19 Quinone production method

Family Applications After (1)

Application Number Title Priority Date Filing Date
JP5085397A Expired - Lifetime JPH07580B2 (en) 1988-10-18 1993-03-19 Quinone production method

Country Status (1)

Country Link
JP (2) JPH02108645A (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09145099A (en) * 1995-11-20 1997-06-06 Burest Kogyo Kenkyusho Co Ltd Foundation block for channel material frame base

Also Published As

Publication number Publication date
JPH0640997A (en) 1994-02-15
JPH07580B2 (en) 1995-01-11
JPH02108645A (en) 1990-04-20

Similar Documents

Publication Publication Date Title
EP2918574A1 (en) Purification of succinic acid from the fermentation broth containing ammonium succinate
EP3200891B1 (en) Preparation and separation of a dicarboxylic acid-containing mixture using a dicarboxylate form of an anion exchange chromatography resin
EP0684941A1 (en) Lactic acid extraction and purification process.
FI107528B (en) Method for the preparation of formic acid
CN111747998B (en) Method for removing inorganic acid and acetic acid in xylose hydrolysate by using intermittent simulated moving bed chromatography
CN101575302A (en) Method for preparing high-purity acetonitrile by combination of continuous oxidation and composite absorption
CN106565425B (en) Method for recovering catechol and levodopa from levodopa mother liquor
CN107261846B (en) Method for continuously separating enriched boron isotopes by ion exchange chromatography based on gradient elution
Roeda et al. An improvement of [11C] acetate synthesis—non-radioactive contaminants by irradiation-induced species emanating from the [11C] carbon dioxide production target
JPH0565496B2 (en)
CN111285788B (en) Preparation method of alliin
CN1745914A (en) Recovering method of acetone and ammonia in hydrated hydrazine waste salt water by ketone azine method
Hutchins et al. Cyanoborohydride supported on an anion exchange resin as a selective reducing agent
CN109406685B (en) High performance liquid chromatography method for separating carfilzomib and isomers thereof
US20210214326A1 (en) Preparation of hmf catalyzed by a mixture of salt and acid
JP2989477B2 (en) Purification method of ultra-high purity acetonitrile and crude acetonitrile
JPH04368347A (en) Production of mannitol and mannose
CA2482294A1 (en) Multicolumn selectivity inversion generator for production of ultrapure radionuclides
JP3175872B2 (en) Purification method of crude acetonitrile
CN1312101C (en) Acetic acid refining method for improving acetic acid potassium permanganate test time
GB2091580A (en) Chromatographic method for recovery of ethylene glycol
WO2002051827A1 (en) Process for producing ascorbic acid in the presence of a sulfit
JP3837467B2 (en) Method for producing lactam
CN106986839A (en) A kind of ultra-violet absorber UVT 150 preparation method
Brajter et al. Studies on optimization of conditions for separating rhodium and platinum by cation-exchange

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term