JPH07580B2 - Quinone production method - Google Patents

Quinone production method

Info

Publication number
JPH07580B2
JPH07580B2 JP5085397A JP8539793A JPH07580B2 JP H07580 B2 JPH07580 B2 JP H07580B2 JP 5085397 A JP5085397 A JP 5085397A JP 8539793 A JP8539793 A JP 8539793A JP H07580 B2 JPH07580 B2 JP H07580B2
Authority
JP
Japan
Prior art keywords
quinone
hydroquinone
exchange resin
type
cation exchange
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP5085397A
Other languages
Japanese (ja)
Other versions
JPH0640997A (en
Inventor
一彦 田中
良三 中島
利一 黒川
Original Assignee
工業技術院長
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority to JP63262603A priority Critical patent/JPH02108645A/en
Application filed by 工業技術院長 filed Critical 工業技術院長
Priority to JP5085397A priority patent/JPH07580B2/en
Publication of JPH0640997A publication Critical patent/JPH0640997A/en
Publication of JPH07580B2 publication Critical patent/JPH07580B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/52Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts

Landscapes

  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、ナトリウム型陽イオン
交換体によるヒドロキノンのキノンへの酸化反応を利用
したキノンの製造方法に関するものである。さらに詳し
くいえば、本発明は陽イオン交換体を用いて簡単なプロ
セスで収率よくキノンを製造する方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for producing quinone utilizing the oxidation reaction of hydroquinone to quinone by a sodium type cation exchanger. More specifically, the present invention relates to a method for producing quinone in high yield by a simple process using a cation exchanger.

【0002】[0002]

【従来の技術】キノンは、各種有機合成工業分野におけ
る原料として用いられ、これまで、ジフェノール、アミ
ノフェノール、ジアミノベンゼンを酸化するか、あるい
はベンゼンを酸化することにより製造されている。
2. Description of the Related Art Quinone is used as a raw material in various fields of organic synthesis industry, and has been produced by oxidizing diphenol, aminophenol, diaminobenzene or benzene.

【0003】しかしながら、多くの副反応を伴うことに
より、収率が低い上に、副生物の分離に手間がかかるな
どの欠点があり、工業的に実施する上に、多くの課題を
抱えていた。
[0003] However, since many side reactions are involved, there are drawbacks such as low yield and time-consuming separation of by-products, and there are many problems in industrial implementation. .

【0004】[0004]

【発明が解決しようとする課題】本発明は、従来方法の
欠点を克服し、ヒドロキノンから、副生物を伴わずに高
収率でキノンを得ることができる工業的に実施可能な製
造方法を提供することを目的としてなされたものであ
る。
DISCLOSURE OF THE INVENTION The present invention overcomes the drawbacks of conventional methods and provides an industrially practicable production method capable of obtaining quinone from hydroquinone in high yield without by-products. It was made for the purpose of doing.

【0005】[0005]

【課題を解決するための手段】本発明者らは、上記の目
的を達成するために、種々研究を重ねた結果、ナトリウ
ム型陽イオン交換樹脂が有する酸化作用に着目し、これ
を用いればヒドロキノンからキノンを効率よく製造しう
ることを見出し、この知見に基づいて本発明をなすに至
った。
Means for Solving the Problems As a result of various studies to achieve the above-mentioned object, the present inventors have paid attention to the oxidative action of a sodium cation exchange resin. Based on this finding, it was found that quinone can be produced efficiently, and the present invention has been completed based on this finding.

【0006】すなわち、本発明はナトリウム型又は中性
塩型の陽イオン交換樹脂を充填したカラムあるいは中空
型の陽イオン交換樹脂膜中に水あるいは水‐有機溶媒か
らなる溶離液を連続的に流入させ、その上部にヒドロキ
ノンの一定量を注入してナトリウム型あるいは中性塩型
の陽イオン交換樹脂中の固定陽イオンによりヒドロキノ
ンを酸化させ、下部よりキノンを回収することを特徴と
するキノンの製造方法を提供するものである。
That is, according to the present invention, water or an eluent composed of a water-organic solvent is continuously flowed into a column or a hollow type cation exchange resin membrane packed with a sodium type or neutral salt type cation exchange resin. The quinone is characterized by injecting a certain amount of hydroquinone into the upper part of the quinone and oxidizing the hydroquinone with a fixed cation in a sodium-type or neutral salt-type cation exchange resin, and recovering the quinone from the lower part. It provides a method.

【0007】本発明方法で用いる陽イオン交換体は、ナ
トリウム型や中性塩型の陽イオン交換樹脂又はそのイオ
ン交換膜であるがこれらはいずれも通常市販されている
ものでよい。
The cation exchanger used in the method of the present invention is a sodium type or neutral salt type cation exchange resin or an ion exchange membrane thereof, and any of these may be commercially available.

【0008】本発明において陽イオン交換樹脂を用いた
場合には回分式操作により交換反応が行われるが、イオ
ン交換膜を用いると再生液により再生操作を同時に行い
得るので連続変換操作が可能になる。
When a cation exchange resin is used in the present invention, the exchange reaction is carried out by a batch operation, but when an ion exchange membrane is used, the regeneration operation can be carried out at the same time by a regenerant, so that a continuous conversion operation becomes possible. .

【0009】溶離液としては、水あるいは水‐有機溶媒
が用いられる。この場合の有機溶媒としてはアセトニト
リル、メチルアルコール、エチルアルコールなどが用い
られる。
Water or a water-organic solvent is used as the eluent. As the organic solvent in this case, acetonitrile, methyl alcohol, ethyl alcohol or the like is used.

【0010】[0010]

【発明の効果】本発明によると、キノンが、簡単なプロ
セスで収率よく製造することができ、有機合成における
中間工業原料の製造方法として好適である。
INDUSTRIAL APPLICABILITY According to the present invention, quinone can be produced in high yield by a simple process and is suitable as a method for producing an intermediate industrial raw material in organic synthesis.

【0011】[0011]

【実施例】次に実施例により本発明をさらに詳細に説明
する。
EXAMPLES The present invention will be described in more detail with reference to examples.

【0012】実施例1 粒径5ミクロンのナトリウム型強酸性陽イオン交換樹脂
が充填された長さ20cm、内径8mmのプラスチック
カラムに定流量ポンプによって1ml/minの流量で
水あるいは10%アセトニトリル‐水を流しておく。次
に、このカラムの上部に0.5mMのヒドロキノンの
0.1mlを6方弁方式の試料注入器を用いて注入し、
ヒドロキノンを中性塩(ナトリウム)型イオン交換樹脂
と接触させる。カラムからの溶出物はその直後に配置し
たフォトダイオードアレーを用いた紫外吸光検出器によ
って検出し、紫外吸収スペクトルを得る。
Example 1 A plastic column having a length of 20 cm and an inner diameter of 8 mm packed with a sodium-type strongly acidic cation exchange resin having a particle size of 5 μm and water or 10% acetonitrile-water at a flow rate of 1 ml / min by a constant flow pump. Discharge. Next, 0.1 ml of 0.5 mM hydroquinone was injected into the upper part of the column using a 6-way valve type sample injector,
The hydroquinone is contacted with a neutral salt (sodium) type ion exchange resin. The eluate from the column is detected by an ultraviolet absorption detector using a photodiode array arranged immediately after that to obtain an ultraviolet absorption spectrum.

【0013】カラムに注入する前のヒドロキノンは、図
1に示すように220及び289nmで最大吸収波長を
示した。図2に示すようにカラムからの溶出液の紫外吸
収スペクトルはヒドロキノンのそれと明らかに異なり、
247nmに吸収ピークを示した。したがって、イオン
交換樹脂との接触により、ヒドロキノンは類似の構造を
有する別の化合物に変化したことが推定されたので、図
3のキノンの標準液のスペクトルと比較したところ、両
者のスペクトルは完全に一致し、ヒドロキノンがイオン
交換樹脂の作用によりキノンに酸化されていることが明
らかとなった。
Prior to injection into the column, hydroquinone exhibited maximum absorption wavelengths at 220 and 289 nm as shown in FIG. As shown in Fig. 2, the ultraviolet absorption spectrum of the eluate from the column was clearly different from that of hydroquinone,
It showed an absorption peak at 247 nm. Therefore, it was estimated that hydroquinone was changed to another compound having a similar structure by contact with the ion-exchange resin. Therefore, when compared with the spectrum of the quinone standard solution in FIG. 3, both spectra were completely In agreement, it was revealed that hydroquinone was oxidized to quinone by the action of the ion exchange resin.

【0014】この例ではナトリウム型陽イオン交換樹脂
を充填したカラムを用いて回分式操作により変換反応を
進行させ、一定時間ごとに再生液として塩化ナトリウム
水溶液を用い、再生操作を行ったが、再生液として塩化
ナトリウム水溶液を用いて連続操作が可能な中空型の陽
イオン交換樹脂膜で行った場合も同じ結果が得られた。
In this example, a conversion reaction was carried out by a batch operation using a column packed with a sodium type cation exchange resin, and a regenerating operation was carried out using an aqueous sodium chloride solution as a regenerating solution at regular intervals. The same result was obtained when a hollow cation exchange resin membrane capable of continuous operation was used with an aqueous solution of sodium chloride as the liquid.

【0015】実施例2 実施例1と同様の装置、溶離液及びカラムを用い、ヒド
ロキノンのキノンへの変換反応がカラム内で定量的に進
行していることを実証するために、0.02から0.5
mMのヒドロキノン水溶液をカラム内に注入して、その
濃度とカラムから溶出したキノンの吸収スペクトル(2
47nm)の吸光度の間の関係(検量線)を作成した。
その結果、ヒドロキノンの注入濃度の増大に比例してキ
ノンの吸光度は増大し、カラム内での変換反応が化学量
論的に進行していることが明らかとなった。
Example 2 Using the same apparatus, eluent and column as in Example 1, from 0.02 to demonstrate that the conversion reaction of hydroquinone to quinone is proceeding quantitatively in the column. 0.5
An aqueous solution of mM hydroquinone was injected into the column, and the concentration and absorption spectrum of quinone eluted from the column (2
A relationship (calibration curve) between the absorbance at 47 nm) was created.
As a result, it was clarified that the absorbance of quinone increased in proportion to the increase of the injection concentration of hydroquinone, and the conversion reaction in the column proceeded stoichiometrically.

【0016】濃度既知のヒドロキノンとキノンの標準液
の吸収スペクトルの吸光度からヒドロキノンのキノンへ
の変換効率(収率)を計算したところ、その値は約95
%であり、ほぼ完全に変換反応が進行していることを示
した。
The conversion efficiency (yield) of hydroquinone to quinone was calculated from the absorbance of the absorption spectra of hydroquinone of a known concentration and a standard solution of quinone. The value was about 95.
%, Which indicated that the conversion reaction was almost complete.

【図面の簡単な説明】[Brief description of drawings]

【図1】 ヒドロキノンの標準溶液の紫外吸収スペクト
ル図。
FIG. 1 is an ultraviolet absorption spectrum diagram of a standard solution of hydroquinone.

【図2】 実施例1で得た生成物の紫外吸収スペクトル
図。
FIG. 2 is an ultraviolet absorption spectrum chart of the product obtained in Example 1.

【図3】 キノンの標準水溶液の紫外吸収スペクトル
図。
FIG. 3 is an ultraviolet absorption spectrum diagram of a standard aqueous solution of quinone.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 ナトリウム型又は中性塩型の陽イオン交
換樹脂を充填したカラムあるいは中空型の陽イオン交換
樹脂膜中に水あるいは水‐有機溶媒からなる溶離液を連
続的に流入させ、その上部にヒドロキノンの一定量を注
入してナトリウム型あるいは中性塩型の陽イオン交換樹
脂中の固定陽イオンによりヒドロキノンを酸化させ、下
部よりキノンを回収することを特徴とするキノンの製造
方法。
1. A column filled with a sodium-type or neutral salt-type cation exchange resin or a hollow cation exchange resin membrane is continuously flowed with an eluent consisting of water or a water-organic solvent, A process for producing a quinone, comprising injecting a certain amount of hydroquinone into the upper portion, oxidizing the hydroquinone with a fixed cation in a sodium-type or neutral salt-type cation exchange resin, and recovering the quinone from the lower portion.
JP5085397A 1988-10-18 1993-03-19 Quinone production method Expired - Lifetime JPH07580B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP63262603A JPH02108645A (en) 1988-10-18 1988-10-18 Production of hydroquinone from quinone or hydroquinone from quinone with cation exchange resin
JP5085397A JPH07580B2 (en) 1988-10-18 1993-03-19 Quinone production method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP63262603A JPH02108645A (en) 1988-10-18 1988-10-18 Production of hydroquinone from quinone or hydroquinone from quinone with cation exchange resin
JP5085397A JPH07580B2 (en) 1988-10-18 1993-03-19 Quinone production method

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP63262603A Division JPH02108645A (en) 1988-10-18 1988-10-18 Production of hydroquinone from quinone or hydroquinone from quinone with cation exchange resin

Publications (2)

Publication Number Publication Date
JPH0640997A JPH0640997A (en) 1994-02-15
JPH07580B2 true JPH07580B2 (en) 1995-01-11

Family

ID=26426414

Family Applications (2)

Application Number Title Priority Date Filing Date
JP63262603A Granted JPH02108645A (en) 1988-10-18 1988-10-18 Production of hydroquinone from quinone or hydroquinone from quinone with cation exchange resin
JP5085397A Expired - Lifetime JPH07580B2 (en) 1988-10-18 1993-03-19 Quinone production method

Family Applications Before (1)

Application Number Title Priority Date Filing Date
JP63262603A Granted JPH02108645A (en) 1988-10-18 1988-10-18 Production of hydroquinone from quinone or hydroquinone from quinone with cation exchange resin

Country Status (1)

Country Link
JP (2) JPH02108645A (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09145099A (en) * 1995-11-20 1997-06-06 Burest Kogyo Kenkyusho Co Ltd Foundation block for channel material frame base

Also Published As

Publication number Publication date
JPH02108645A (en) 1990-04-20
JPH0640997A (en) 1994-02-15
JPH0565496B2 (en) 1993-09-17

Similar Documents

Publication Publication Date Title
JP5987068B2 (en) Method for separating organic acids and amino acids from fermentation broth
EP2918574A1 (en) Purification of succinic acid from the fermentation broth containing ammonium succinate
ES2657664T3 (en) Method to separate betaine
CA2097478A1 (en) Process for the production of acetic acid
VanNieuwenhze et al. Kinetic resolution of racemic olefins via asymmetric dihydroxylation
Ferris et al. Chemical evolution. 31. Mechanism of the condensation of cyanide to hydrogen cyanide oligomers
JP7219319B2 (en) Crystals of reduced glutathione and method for producing the same
JPS6061549A (en) Separation of fatty acid
CN101575302A (en) Method for preparing high-purity acetonitrile by combination of continuous oxidation and composite absorption
RU2001117237A (en) Method for the production of formic acid
CN106565425B (en) Method for recovering catechol and levodopa from levodopa mother liquor
Minnaard et al. Some aspects of the solution photochemistry of 1, 3‐cyclohexadiene,(Z)‐and (E)‐1, 3, 5‐hexatriene
JPH07580B2 (en) Quinone production method
Yamaguchi et al. New selective oxidation of alcohols containing ester group with an oxoaminium salt.
CA2688830A1 (en) Separation of citric acid from gluconic acid in fermentation broth using a weakly or strongly basic anionic exchange resin adsorbent
CN109406685B (en) High performance liquid chromatography method for separating carfilzomib and isomers thereof
CA2007126A1 (en) Process of separating acids from substrates containing salts and carbohydrates
JP2989477B2 (en) Purification method of ultra-high purity acetonitrile and crude acetonitrile
US5440068A (en) Acetonitrile purification via an adsorption-based process
Scheffer et al. Enantioselective photochemical synthesis of a β-lactam via the solid state ionic chiral auxiliary method
EP1357103A4 (en) Reaction method utilizing diaphram type catalyst and apparatus therefor
TWI532839B (en) Producing method of trehalose
EP3262199B1 (en) Isoidide manufacture and purification
CN1312101C (en) Acetic acid refining method for improving acetic acid potassium permanganate test time
JPS6212613A (en) Recovery of alkali metal iodide

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term