JPH0565400B2 - - Google Patents

Info

Publication number
JPH0565400B2
JPH0565400B2 JP59007625A JP762584A JPH0565400B2 JP H0565400 B2 JPH0565400 B2 JP H0565400B2 JP 59007625 A JP59007625 A JP 59007625A JP 762584 A JP762584 A JP 762584A JP H0565400 B2 JPH0565400 B2 JP H0565400B2
Authority
JP
Japan
Prior art keywords
infrared
guide
detector
stray light
radiation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP59007625A
Other languages
Japanese (ja)
Other versions
JPS60151200A (en
Inventor
Tokuji Hashimoto
Mitsuo Nakatani
Masayuki Ando
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Original Assignee
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd filed Critical Fujitsu Ltd
Priority to JP762584A priority Critical patent/JPS60151200A/en
Publication of JPS60151200A publication Critical patent/JPS60151200A/en
Publication of JPH0565400B2 publication Critical patent/JPH0565400B2/ja
Granted legal-status Critical Current

Links

Description

【発明の詳細な説明】 (a) 発明の技術分野 本発明は人口衛星に搭載された放射冷却器に具
備され、赤外線検知器に赤外線を誘導する赤外線
ガイドの改良に関するものである。
DETAILED DESCRIPTION OF THE INVENTION (a) Technical Field of the Invention The present invention relates to an improvement in an infrared guide that is included in a radiation cooler mounted on an artificial satellite and guides infrared rays to an infrared detector.

(b) 技術の背景 最近の資源探査衛星に搭載される赤外線カメラ
用の赤外線検知器にはHgCdTe等の素子構成をも
つ光量子検知器が用いられている。これらは高感
度でかつ応答速度も早いけれども100〓という超
低温でなければ作動しないため、特殊な冷却機構
が必要とされる。そして宇宙空間という特殊な環
境下にあつても該検知器が高度の信頼性を発揮し
得る構造でなければならない。このため迷光とア
ウトガスの影響をほぼ完全に防止し得る赤外線ガ
イドを備えた放射冷却器の開発が強く要望されて
いる。
(b) Background of the technology Photon detectors with elements such as HgCdTe are used in infrared detectors for infrared cameras mounted on recent resource exploration satellites. Although these are highly sensitive and have a fast response time, they only operate at extremely low temperatures of 100°C, so a special cooling mechanism is required. The detector must also have a structure that allows it to exhibit a high degree of reliability even under the special environment of outer space. Therefore, there is a strong demand for the development of a radiation cooler equipped with an infrared guide that can almost completely prevent the effects of stray light and outgas.

(e) 従来技術と問題点 第1図は人口衛星に搭載された放射冷却器と地
球との関係を概略的に説明するための図、第2図
は放射冷却器に具備された従来型赤外線ガイドの
構造を説明するための側断面図である。
(e) Conventional technology and problems Figure 1 is a diagram to schematically explain the relationship between the radiation cooler mounted on a satellite and the earth, and Figure 2 is a diagram to schematically explain the relationship between the radiation cooler mounted on the artificial satellite and the earth. It is a side sectional view for explaining the structure of a guide.

第1図に示す如く放射冷却器50は人口衛星本
体2(以下衛星2と称する)に搭載され地球1か
ら矢印A方向に入射される赤外線9を衛星2に付
設されたミラー3を介して受光する赤外線検知器
4と、該検知器4が取着されている冷却板5と、
一端が冷却板5に固定され検知器4の外周を筒状
に覆うように形成された赤外線ガイド10と、矢
印B方向から入射する熱光線8を宇宙空間100
方向へ反射させる反射板6と、反射板6の全側面
を蔽うように形成されたシールド7とによつて構
成されている。さてこのように構成された放射冷
却器50の冷却板5は環境温度が4〓の宇宙空間
100への放熱によつて冷却され該冷却板5に取
着されている赤外線検知器4も作動温度である
100〓まで冷却される。そして赤外線検知器4に
よつて衛星2および赤外線ガイド10を介して入
射する前記赤外線9が観測される。
As shown in FIG. 1, the radiation cooler 50 is mounted on the artificial satellite main body 2 (hereinafter referred to as satellite 2) and receives infrared rays 9 incident from the earth 1 in the direction of arrow A through a mirror 3 attached to the satellite 2. an infrared detector 4, a cooling plate 5 to which the detector 4 is attached,
An infrared guide 10 whose one end is fixed to a cooling plate 5 and formed to cover the outer periphery of the detector 4 in a cylindrical shape, and a thermal ray 8 incident from the direction of arrow B are directed to outer space 100.
It is composed of a reflecting plate 6 that reflects the light in the direction, and a shield 7 formed to cover all sides of the reflecting plate 6. Now, the cooling plate 5 of the radiation cooler 50 configured in this way is cooled by heat radiation to the outer space 100 whose environmental temperature is 4〓, and the infrared detector 4 attached to the cooling plate 5 also has an operating temperature. is
Cooled down to 100㎓. The infrared rays 9 incident through the satellite 2 and the infrared guide 10 are observed by the infrared detector 4.

ここで上記赤外線ガイド10は、反射板6とシ
ールド板7との間に介装された断熱材(図示せ
ず)から洩れ出したアウトガス20が検知器4の
受光窓面に付着して凍結するのを防止する役目を
持つている。第2図はこの部分の主要構成を拡大
して模式的に表現した側断面図であり、前図と同
等の部分については同一符号が付されている。
Here, in the infrared guide 10, outgas 20 leaking from a heat insulating material (not shown) interposed between the reflection plate 6 and the shield plate 7 adheres to the light receiving window surface of the detector 4 and freezes. It has the role of preventing FIG. 2 is an enlarged side sectional view schematically expressing the main structure of this part, and parts equivalent to those in the previous figure are given the same reference numerals.

第2図から明らかな如く、検知器受光窓4′の
前方に筒状のガイド10を設けることによつて断
熱材から発生したアウトガス20が受光窓4′に
回り込んで付着するのを遮ぎることができる。と
ころでこのガイド10はできるだけ熱の吸収をし
ないようにその内面を鏡面にするのが好ましいの
であるが、鏡面仕上げしたガイド構成では、迷光
30(観測対象となる正規のルートを経た純枠な
赤外線ではなく二次反射光や衛星2の内部で発生
した熱線等の総称)が検知器に入射するのを阻止
できず、したがつてたとえば矢印C方向から侵入
して赤外線ガイド10の内面10′に反射して受
光窓4′に入射する迷光30によつて検知器4に
よる赤外線9の観測信頼性が阻害される問題を生
じていた。
As is clear from FIG. 2, by providing a cylindrical guide 10 in front of the detector light receiving window 4', outgas 20 generated from the heat insulating material is prevented from going around and adhering to the light receiving window 4'. be able to. By the way, it is preferable that the inner surface of this guide 10 be mirror-finished so as not to absorb heat as much as possible, but with a mirror-finished guide structure, stray light 30 (infrared light that is a pure frame that has passed through the regular route to be observed) is It is not possible to prevent secondary reflected light (generic term for heat rays generated inside the satellite 2) from entering the detector. Therefore, a problem arises in that the reliability of the observation of infrared rays 9 by the detector 4 is impaired by the stray light 30 that enters the light receiving window 4'.

(d) 発明の目的 本発明は上記のような従来の欠点を補正するた
めになされたもので赤外線ガイドの内面に設けた
迷光反射構造によつて赤外線検知器の信頼性を向
上させた放射冷却器を提供することを目的とする
ものである。
(d) Purpose of the Invention The present invention has been made to correct the above-mentioned drawbacks of the conventional technology, and includes a radiation cooling system that improves the reliability of an infrared detector by means of a stray light reflecting structure provided on the inner surface of an infrared guide. The purpose is to provide equipment.

(e) 発明の構成 そしてこの目的は、人口衛星本体2の内部を経
通して入射する赤外線9を赤外線検知器4の受光
窓4′に誘導する赤外線ガイド10を具備して成
り、前記赤外線検知器4を宇宙空間100への熱
放射によつて冷却する放射冷却器において、前記
赤外線9に混入して入射する迷光30をその入射
方向と反対方向に反射する迷光反射構造を前記赤
外線ガイド10の内面部分に有してなる放射冷却
器を提供することによつて達成される。
(e) Structure of the Invention This object comprises an infrared guide 10 that guides infrared rays 9 incident through the interior of the artificial satellite main body 2 to a light receiving window 4' of an infrared detector 4, In the radiation cooler that cools the device 4 by thermal radiation into outer space 100, the infrared guide 10 includes a stray light reflection structure that reflects stray light 30 mixed with the infrared rays 9 and reflected in the direction opposite to the direction of incidence of the stray light 30. This is accomplished by providing a radiant cooler with an internal surface.

(f) 発明の実施例 以下本発明の実施例を図面によつて詳述する。(f) Examples of the invention Embodiments of the present invention will be described in detail below with reference to the drawings.

第3図は本発明による放射冷却器の特徴である
赤外線ガイドの構造を説明するための側断面図、
第4図a〜dは赤外線ガイドの構造の変形例を模
式的に表現した側断面図であり、これらの図にお
いて前図と同等の部分については同一符号を付し
ている。また以下の説明において第1図、第2図
の説明と重複する部分は適宜省略する。なお本発
明は赤外線ガイドの内面を迷光反射構造とした点
に特徴を有するものであるから、この特徴につい
ての説明を重点的に行なう。
FIG. 3 is a side sectional view for explaining the structure of the infrared guide, which is a feature of the radiation cooler according to the present invention;
4A to 4D are side sectional views schematically expressing a modification of the structure of the infrared guide, and in these figures, the same parts as in the previous figure are designated by the same reference numerals. In addition, in the following explanation, parts that overlap with the explanations of FIGS. 1 and 2 will be omitted as appropriate. Since the present invention is characterized in that the inner surface of the infrared guide has a stray light reflecting structure, the description will focus on this characteristic.

第3図は筒状に形成された赤外線ガイド10の
内面10′を衛星2側へ接近するにしたがつて断
面積が縮小するようなテーパ状に形成するととも
に金メツキを施して、たとえば矢印C方向から侵
入する迷光30(不要熱輻射)を内面10′と底
面10″の2面で反射して赤外線検知器4の受光
窓4′へは入射させない構造とした例であつて、
このような構造とすることによつて迷光30が赤
外線検知器4の受光窓4′に入射し、正規ルート
である矢印A方向から入射する赤外線9を妨害し
て赤外線検知器4による観測データの信頼性を低
下させる現象が極めて効率的に改良される。
FIG. 3 shows that the inner surface 10' of the cylindrical infrared guide 10 is tapered so that the cross-sectional area decreases as it approaches the satellite 2 side, and is plated with gold. This is an example of a structure in which stray light 30 (unnecessary thermal radiation) entering from the direction is reflected by two surfaces, an inner surface 10' and a bottom surface 10'', and is not allowed to enter the light receiving window 4' of the infrared detector 4,
With such a structure, the stray light 30 enters the light receiving window 4' of the infrared detector 4, and interferes with the infrared rays 9 that enter from the direction of arrow A, which is the normal route, so that the observation data by the infrared detector 4 is Phenomena that reduce reliability are improved very efficiently.

第4図aはガイド10の内面10′に第3図と
同様のテーパ形状を複数個形成させた迷光30の
反射構造で、第3図構造と同等の効果をねらつた
第1の変形例であり、矢印D方向から内面10′
に入射した迷光30は第3図で説明したとおりの
経路を経て矢印D′方向に放出される。
FIG. 4a shows a reflection structure for stray light 30 in which a plurality of tapered shapes similar to those shown in FIG. Yes, inner surface 10' from the direction of arrow D
The stray light 30 that has entered is emitted in the direction of arrow D' through the path explained in FIG.

第4図bは赤外線ガイド10の内面10′が
“ねじ状”に形成され、矢印E方向から入射する
迷光30が、ねじ面101に反射して矢印E′方向
へ放出され、検知器4には入射しない構造とした
第2の変形例である。
In FIG. 4b, the inner surface 10' of the infrared guide 10 is formed into a "screw shape", and stray light 30 incident from the direction of arrow E is reflected on the threaded surface 101 and emitted in the direction of arrow E', and is emitted to the detector 4. This is a second modification example having a structure in which no light is incident.

第4図cはガイド10の内面10′を蛇腹状の
ベローズ形状102とし矢印F方向から入射する
迷光30を反射し反対側の面で再び反射させて矢
印F′方向へ放出する第3の変形例を示す。
FIG. 4c shows a third modification in which the inner surface 10' of the guide 10 is shaped like a bellows 102 to reflect stray light 30 incident from the direction of arrow F, reflect it again on the opposite surface, and emit it in the direction of arrow F'. Give an example.

第4図dはガイド10の内面10′に検知器4
側が拡張され反対側が縮小された漏斗に似た形状
の阻光壁103を複数個設け、矢印G方向から入
射する迷光30を図の如く反射して矢印G′方向
へ放出する構造とした第4の変形例である。
FIG. 4d shows a detector 4 mounted on the inner surface 10' of the guide 10.
A fourth light-blocking wall 103 is provided with a plurality of light-blocking walls 103 shaped like a funnel with one side expanded and the other side contracted to reflect the stray light 30 incident from the direction of arrow G as shown in the figure and emit it in the direction of arrow G'. This is a modified example.

このように赤外線ガイド10の内面10′を構
成することによつて赤外線検知器4の受光窓4′
には正規ルートからの赤外線9のみが有効に入射
され、迷光30は反射によつて減衰させられなが
ら検知器4の反対側へ放出される。
By configuring the inner surface 10' of the infrared guide 10 in this way, the light receiving window 4' of the infrared detector 4 is
Only the infrared rays 9 from the regular route are effectively incident on the detector 4, and the stray light 30 is emitted to the opposite side of the detector 4 while being attenuated by reflection.

(g) 発明の効果 以上詳細に説明したように本発明の放射冷却器
は赤外線検知器に赤外線を誘導する赤外線ガイド
の内面構造の改良によつて検知器の機能を妨害す
る迷光の入射を的確に阻止し得るといつた効果大
なるものである。
(g) Effects of the Invention As explained in detail above, the radiation cooler of the present invention can accurately prevent the incidence of stray light that may interfere with the function of the infrared detector by improving the inner structure of the infrared guide that guides infrared rays to the infrared detector. It is said to be highly effective in preventing this.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は放射冷却器と地球との関係を説明する
ための図、第2図は放射冷却器に具備された従来
型赤外線ガイドを説明するための図、第3図は本
発明による放射冷却器の赤外線ガイドの構造を説
明するための図、第4図a〜dは本発明に係る赤
外線ガイドの変形例を説明するための図である。 図面において、1は地球、2は人工衛星本体、
3はミラー、4は赤外線検知器、4′は受光窓、
5は冷却板、6は反射板、7はシールド板、8は
熱光線、9は赤外線、10は赤外線ガイド、1
0′はガイド内面、14は受光窓の外周部、20
はアウトガス、30は迷光、50は冷却板5、反
射板6、シールド板7を具備した放射冷却器、1
00は宇宙空間、101はねじ面、102はベロ
ーズ形状、103は阻光壁をそれぞれ示す。
Figure 1 is a diagram to explain the relationship between the radiation cooler and the earth, Figure 2 is a diagram to explain the conventional infrared guide equipped in the radiation cooler, and Figure 3 is the radiation cooling according to the present invention. Figures 4a to 4d are diagrams for explaining the structure of the infrared guide of the device, and diagrams for explaining modified examples of the infrared guide according to the present invention. In the drawing, 1 is the earth, 2 is the satellite itself,
3 is a mirror, 4 is an infrared detector, 4' is a light receiving window,
5 is a cooling plate, 6 is a reflector, 7 is a shield plate, 8 is a heat ray, 9 is an infrared ray, 10 is an infrared guide, 1
0' is the inner surface of the guide, 14 is the outer periphery of the light receiving window, 20
1 is an outgas, 30 is a stray light, 50 is a radiation cooler equipped with a cooling plate 5, a reflection plate 6, and a shield plate 7.
00 represents outer space, 101 represents a screw surface, 102 represents a bellows shape, and 103 represents a light blocking wall.

Claims (1)

【特許請求の範囲】 1 人工衛星本体2の内部を経通して入射する赤
外線9を赤外線検知器4の受光窓4′に誘導する
赤外線ガイド10を具備してなり、前記赤外線検
知器4を宇宙空間100への熱放射によつて冷却
する放射冷却器において、 前記赤外線9に混入して入射する迷光30をそ
の入射方向と反対方向に反射する迷光反射構造を
前記赤外線ガイド10の内面部分に有してなるこ
とを特徴とする放射冷却器。
[Scope of Claims] 1. An infrared guide 10 for guiding infrared rays 9 incident through the interior of the satellite main body 2 to a light receiving window 4' of an infrared detector 4. In the radiation cooler that cools the space 100 by heat radiation, the infrared guide 10 has a stray light reflection structure on its inner surface that reflects the stray light 30 that enters the infrared ray 9 in a direction opposite to the direction of incidence thereof. A radiation cooler characterized by:
JP762584A 1984-01-18 1984-01-18 Radiative cooler Granted JPS60151200A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP762584A JPS60151200A (en) 1984-01-18 1984-01-18 Radiative cooler

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP762584A JPS60151200A (en) 1984-01-18 1984-01-18 Radiative cooler

Publications (2)

Publication Number Publication Date
JPS60151200A JPS60151200A (en) 1985-08-09
JPH0565400B2 true JPH0565400B2 (en) 1993-09-17

Family

ID=11671003

Family Applications (1)

Application Number Title Priority Date Filing Date
JP762584A Granted JPS60151200A (en) 1984-01-18 1984-01-18 Radiative cooler

Country Status (1)

Country Link
JP (1) JPS60151200A (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0515117Y2 (en) * 1986-07-16 1993-04-21
JP5444629B2 (en) * 2008-04-03 2014-03-19 富士通株式会社 Light guide mechanism for illuminance sensor and mobile phone

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4897552A (en) * 1972-01-27 1973-12-12

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6033120Y2 (en) * 1981-05-09 1985-10-02 富士通株式会社 radiant cooler

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4897552A (en) * 1972-01-27 1973-12-12

Also Published As

Publication number Publication date
JPS60151200A (en) 1985-08-09

Similar Documents

Publication Publication Date Title
US4507551A (en) Optical detection system having a detector lens comprising a rear landscape lens
KR100258710B1 (en) Solid catadioptric lens
US4795907A (en) Infrared detector
JPH03142330A (en) Radiation shield for infrared detector cooled thermoelectrically
US4521068A (en) Cooled field optical system for infrared telescopes
US4937450A (en) Infrared detector comprising an evacuated and cooled Dewar having an elliptical spheroid end window
JPH0565400B2 (en)
US6677588B1 (en) Detector assembly having reduced stray light ghosting sensitivity
US5739845A (en) Optical imaging arrangement for use with radiation shielded enclosures
WO1995024720A9 (en) Optical imaging arrangement for use with radiation shielded enclosures
JPS6033120Y2 (en) radiant cooler
JPH0568400B2 (en)
JPH0222522A (en) Infrared-ray optical device
JP2760789B2 (en) Infrared lens
US5015857A (en) Infrared detector
JPH033154B2 (en)
JP2531197B2 (en) Compound optical system device
JPH08193880A (en) Infrared detector
JPH022760B2 (en)
US5698853A (en) Infrared image pickup apparatus
JPH09166400A (en) Double wavelength infrared image homing equipment by double wavelength separation optical system
JPS60209397A (en) Radiational cooler
JPH01155220A (en) Infrared optical system
JPH0718753B2 (en) Infrared optics
JPS6242209A (en) Optical device