JPH0564982B2 - - Google Patents

Info

Publication number
JPH0564982B2
JPH0564982B2 JP62262310A JP26231087A JPH0564982B2 JP H0564982 B2 JPH0564982 B2 JP H0564982B2 JP 62262310 A JP62262310 A JP 62262310A JP 26231087 A JP26231087 A JP 26231087A JP H0564982 B2 JPH0564982 B2 JP H0564982B2
Authority
JP
Japan
Prior art keywords
polymer
organic solvent
present
porous
sucrose
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP62262310A
Other languages
Japanese (ja)
Other versions
JPH01104635A (en
Inventor
Takao Okada
Hironobu Fukuzaki
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Taki Chemical Co Ltd
Original Assignee
Taki Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Taki Chemical Co Ltd filed Critical Taki Chemical Co Ltd
Priority to JP62262310A priority Critical patent/JPH01104635A/en
Publication of JPH01104635A publication Critical patent/JPH01104635A/en
Publication of JPH0564982B2 publication Critical patent/JPH0564982B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Manufacture Of Porous Articles, And Recovery And Treatment Of Waste Products (AREA)
  • Materials For Medical Uses (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

(産業上の利用分野) 本発明は、生分解性多孔質体の製造方法に関
し、更に詳しくは生体内に於いて、一定期間で分
解、消失することを特徴とする生分解性多孔質体
の製造方法に関する。 (従来の技術) 医療用の補綴材料は、生体組織反応が極めて僅
少であることが要求れており、近年、生体親和性
材料として、ポリ乳酸、ポリグリコール酸等の材
料の医療面での応用例が数多く挙げられている。
また、これらポリ乳酸、ポリグリコール酸等の材
料は、生体内での分解性があることで、縫合糸、
整形外科用の補綴材等で生体埋め込み型の材料と
して応用されている。 しかしながら、この材料を各種インプラント材
として加工を行つた場合には、生体組織反応面で
未だ完全なものとはいえず、その要因となる材料
の形状、表面構造での改良が問題となつている。
生体材料への組織の成長は、材料の孔径が20μm
を超えると生じることが知られており、例えば、
骨細胞の成長では、材料孔径が100〜250μmであ
ることが必要とされている。 その為に、生体材料の多孔質化の検討により、
生体の炎症を減少することが試みられている。 従来、多孔質材料の製法として、乳酸、グリコ
ール酸等のポリマーをトルエン等の有機溶媒に溶
解し、これを乾燥する方法。また、一般に多孔質
化の手段として用いられる凍結乾燥法が知られて
いる。 またポリ乳酸をクロロホルムに溶解し、これに
クエン酸ナトリウム等を溶解したクロロホルム−
エタノール混合液を加え、溶媒を蒸発させて結晶
化させた後、クエン酸ナトリウムをエタノールで
抽出除去する方法が知られている。(A.J.
Pennings、Colloid.Polym.Sci.、261、477
(1983)) しかし、これらの方法によると、孔径が小さい
多孔質体しか得られない上に、微量残存する溶媒
を除去するために、高温、長時間の熱処理を必要
とし、結果としてポリマーの分解、収縮を生じ、
また、微量残存する有機溶媒は生体組織の炎症を
起こすことにより問題となる。 また、前記Penningsらの方法によれば、ある
程度の孔径調節は可能であるものの、添加物の抽
出に際し、エタノールによる長時間の抽出にも係
わらず、完全には除去されないし、高温での加熱
により、前記と同様にポリマーの分解、収縮を生
じる。 更に、特開昭61−149160号では、乳酸等の重合
体をベンゼン等の有機溶媒に溶解し、この液を凍
結乾燥させることにより生分解性のスポンジを得
ることを開示している。 しかしこの方法によれば、多孔質化は可能であ
るものの、その孔径は小さく、数十μ程度であ
り、前述の骨細胞の成長を目的とするような場合
には使用できないばかりでなく、目的に応じた孔
径調整が困難である。 従つて、生体組織の癒着性が材料の孔径に拘る
ことが知られている現在に於いても、生体親和
性、無害安全性に優れ、孔調整が可能な優れた多
孔質材料が未だ見出されていないのが現状であ
る。 (発明が解決しようとす問題点) 本発明者らは、前記問題点を解決すべく、安全
性の高い、また生体親和性に優れる材料の任意の
孔調整が可能である。優れた生体分解性の多孔質
体を得るべく鋭意研究を重ねた結果、本発明を完
成させるに至つたものである。 (問題点を解決するための手段) 即ち、本発明は乳酸の重合体または乳酸とグリ
コール酸との共重合体を有機溶媒に溶解し、これ
に実質的に前記有機溶媒に不活性で、且つ水溶性
の充填物質を添加後、次いでこれを固化し、前記
有機溶媒を除去した後、これに水を加えて充填物
質を除去することからなる多孔質体の製造方法に
関する。 (作用) 以下に、本発明の多孔質体の製造方法について
更に詳記する。 本発明で使用する乳酸の重合体または乳酸とグ
リコール酸との共重合体は、L−、D−、DL−
乳酸、グリコール酸を原料として重合したもので
あつても、あるいはL−、D−、DL−ラクチド、
グリコリドを重合したものであつても良く、その
製法に特段限定はない。 また、その分子量は概ね5000〜200000のものを
使用する。 グリコール酸あるいはグリコリドは、生体内で
の分解性の面で、乳酸あるいはラクチドとの共重
合体で用いることが好ましく、その組成比は、乳
酸/グリコール酸モル比として、概ね40モル%以
上である。 本発明では先ず、これらのポリマーを有機溶媒
に溶解する。有機溶媒の種類は、ジオキサン、P
−キシレン、ベンゼンを使用する。 この際のポリマーの濃度は、使用するポリマー
の種類、組成比、分子量、また使用する有機溶媒
の種類等により異なり特段限定できないが、有機
溶媒に対するポリマー量が、概ね0.8〜30重量%
となる範囲で溶解する。 溶媒に溶解したポリマーは、次いでこれに実質
的に前記有機溶媒に不活性で、且つ水溶性の充填
物質を添加混合する。 この充填物質としては、塩化カリウム、塩化ナ
トリウム等の水溶性の無機塩、しよ糖、ブドウ
糖、D−マンニツト等の糖類、ゼラチン等の蛋白
質、ポリビニルアルコール、ポリアクリルアミド
等の水溶性合成ポリマーを用いることができる
が、安全性、処理の容易さより、通常しよ糖を用
いることが好ましい。 本発明では、この時使用するしよ糖等の添加物
の粒径により、多孔質体として所望する孔径を調
整できる点が特徴である。 即ち、孔径が大きな多孔質体を製造する場合に
は、添加物の粒径が大きなものを用い、また孔径
が小さいものは添加物の粒径が小さいものを選択
すればよく、その調整方法は至つて容易なもので
ある。添加物の使用量に関していえば、その使用
量は、ポリマー量とこれを溶解した有機溶媒量の
含量に対して、大略2倍重量の添加物を使用す
る。 即ち、この使用割合は、ポリマーを溶解した有
機溶媒液が、添加物粒子の空隙間を充分に満たす
量であり、両者に過不足を生じると均質な多孔質
体を得ることができない。 尚、本発明では生分解性多孔質として、例えば
こえを骨補綴材として用いる場合には、ヒドロキ
シアパタイトの粉体等を前記の添加物を添加混合
する際に同時に添加すればよく、ヒドロキシアパ
タイト成分の含有と多孔質体であることで、骨補
綴材としては、極めて有効な生体内特性を有する
ものとなる。 前記本発明の充填物質を添加し、次いでこれを
固化した後、添加した前述の有機溶媒を除去す
る。固化の手段としては、通常、温度0〜5℃で
凍結を行なう。 また、有機溶媒の除去手段としては、凍結後に
低温、もしくは常温で1〜25mmHgの減圧下で行
う。尚、この際に有機溶媒としてジオキサンを使
用している場合には、この乾燥除去操作は適度に
行えばよく、後段の水による添加物の除去操作時
に、水との溶解度の高いジオキサンは完全に除去
される。 尚、この場合には多孔質体は不織布様となり、
布状の多孔質体を所望する場合に於いては有効で
ある。 有機溶媒の除去後、しよ糖等の添加物を含有す
るこのポリマーに水を加え、湿潤状態とし、これ
を数回繰り返すことにより、添加物を抽出除去す
る。 添加物の抽出除去後、湿潤した多孔質体を室温
で風乾することにより、本発明の不純物を含有し
ない、調整された孔径を有する。生分解性材料と
して優れた多孔質体を得ることができる。 (実施例) 以下に本発明の実施例を掲げて更に説明を行う
が、本発明はこれらに限定されるものではない。
尚、%は特に断わらない限り全て重量%を示す。 実施例 1 L−乳酸とグリコール酸との共重合体(L−乳
酸49モル%、分子量1.5×104)1.0gに1,4−ジ
オキサン(関東化学(株)製試薬)を加えて50gと
し、これを加熱溶解した。 次いで、このポリマー液を室温まで冷却した
後、これを顆粒状のしよ糖(粒子径約0.5mm)117
gを充填したステンレスパツト(20×20cm)に加
え、しよ糖とポリマー液が均一となつたものを0
℃で凍結させた。 凍結後、これを2時間、1mmHgで減圧乾燥し、
乾燥後、27℃の水に浸漬してしよ糖を抽出した。 比色定量法により、多孔質体からのしよ糖の溶
出が認められなくなるまでこの水による抽出操作
を繰り返し、次いでこれを取り出し、ろ紙上で風
乾して本発明の多孔質体を得た。 尚、しよ糖の定量に用いた比色定量法は、フエ
ノール−硫酸法(瓜谷都三ら、生物化学実験法
I、P44、学界出版センター発行(1969))に基
づき、486nmでの比色定量で行つた。 また別に、上記1,4−ジオキサンに代えて、
有機溶媒としてP−キシレン、ベンゼンを用いて
同様に本発明の多孔質体を製造した。 更に、比較のために有機溶媒としてクロロホル
ムを使用し、同様に比較例品を製造した。 本発明品及び比較例品の孔径を電子顕微鏡観察
により測定し、また気孔率を見掛比重と真比重か
ら算出した。 これらの結果を第1表に示した。
(Industrial Application Field) The present invention relates to a method for producing a biodegradable porous material, and more specifically to a method for producing a biodegradable porous material that is characterized by decomposing and disappearing in a living body over a certain period of time. Regarding the manufacturing method. (Prior art) Medical prosthetic materials are required to have extremely minimal reactions in living tissue, and in recent years, biocompatible materials such as polylactic acid and polyglycolic acid have been used for medical applications. Many examples are given.
In addition, these materials such as polylactic acid and polyglycolic acid are degradable in vivo, so sutures,
It is used as a bio-implantable material in orthopedic prosthetics, etc. However, when this material is processed into various implant materials, it is still not perfect in terms of biological tissue reaction, and improvements in the shape and surface structure of the material are the main causes of this. .
Tissue growth on biomaterials is possible when the pore size of the material is 20 μm.
It is known that this occurs when the temperature exceeds, for example,
Bone cell growth requires material pore diameters of 100 to 250 μm. For this purpose, by considering making biomaterials porous,
Attempts have been made to reduce inflammation in the body. Conventionally, porous materials have been produced by dissolving a polymer such as lactic acid or glycolic acid in an organic solvent such as toluene, and then drying the solution. Furthermore, a freeze-drying method that is generally used as a means of making the material porous is known. In addition, polylactic acid is dissolved in chloroform, and sodium citrate etc. are dissolved in the chloroform.
A known method is to add an ethanol mixture, evaporate the solvent, crystallize it, and then extract and remove sodium citrate with ethanol. (A.J.
Pennings, Colloid.Polym.Sci., 261 , 477
(1983)) However, these methods only yield porous bodies with small pore diameters, and require heat treatment at high temperatures and for long periods of time to remove trace amounts of residual solvent, resulting in decomposition of the polymer. , causing contraction;
Further, trace amounts of organic solvents remaining may cause inflammation of living tissues, causing problems. In addition, according to the method of Pennings et al., although it is possible to adjust the pore size to some extent, the additives are not completely removed even though the additives are extracted for a long time with ethanol, and they cannot be completely removed by heating at high temperatures. , decomposition and shrinkage of the polymer occur in the same manner as above. Furthermore, JP-A-61-149160 discloses that a biodegradable sponge can be obtained by dissolving a polymer such as lactic acid in an organic solvent such as benzene and freeze-drying the solution. However, although it is possible to create porosity using this method, the pore size is small, on the order of several tens of microns, and it is not only unusable when the purpose is the growth of bone cells mentioned above, but also It is difficult to adjust the pore size accordingly. Therefore, even though it is known that the adhesion of living tissues is dependent on the pore size of the material, excellent porous materials that are biocompatible, harmless, and safe, and whose pores can be adjusted have not yet been found. The current situation is that this has not been done. (Problems to be Solved by the Invention) In order to solve the above-mentioned problems, the present inventors are able to arbitrarily adjust the pores of a material that is highly safe and has excellent biocompatibility. The present invention was completed as a result of extensive research in order to obtain a porous material with excellent biodegradability. (Means for Solving the Problems) That is, the present invention involves dissolving a polymer of lactic acid or a copolymer of lactic acid and glycolic acid in an organic solvent, and adding a polymer that is substantially inert to the organic solvent and The present invention relates to a method for producing a porous body, which comprises adding a water-soluble filler material, solidifying the same, removing the organic solvent, adding water thereto, and removing the filler material. (Function) The method for producing a porous body of the present invention will be described in further detail below. The polymer of lactic acid or the copolymer of lactic acid and glycolic acid used in the present invention is L-, D-, DL-
Even if it is polymerized using lactic acid or glycolic acid as a raw material, or L-, D-, DL-lactide,
It may be one obtained by polymerizing glycolide, and there are no particular limitations on the manufacturing method. Moreover, those having a molecular weight of approximately 5,000 to 200,000 are used. Glycolic acid or glycolide is preferably used as a copolymer with lactic acid or lactide in terms of in vivo degradability, and the composition ratio thereof is approximately 40 mol% or more as a lactic acid/glycolic acid molar ratio. . In the present invention, these polymers are first dissolved in an organic solvent. Types of organic solvents include dioxane, P
- Use xylene and benzene. The concentration of the polymer at this time varies depending on the type of polymer used, composition ratio, molecular weight, type of organic solvent used, etc., and cannot be particularly limited, but the amount of polymer relative to the organic solvent is approximately 0.8 to 30% by weight.
It dissolves within the range. The polymer dissolved in the solvent is then mixed with a filler material that is substantially inert to the organic solvent and soluble in water. As the filling material, water-soluble inorganic salts such as potassium chloride and sodium chloride, sugars such as sucrose, glucose, and D-mannite, proteins such as gelatin, and water-soluble synthetic polymers such as polyvinyl alcohol and polyacrylamide are used. However, in terms of safety and ease of processing, it is usually preferable to use sucrose. The present invention is characterized in that the desired pore size of the porous body can be adjusted by adjusting the particle size of the additive such as sucrose used at this time. In other words, when producing a porous body with a large pore size, it is sufficient to use additives with a large particle size, and when producing a porous body with a small pore size, it is sufficient to select an additive with a small particle size.The adjustment method is as follows. It's quite easy. Regarding the amount of additive used, the amount of additive used is approximately twice the weight of the amount of polymer and the amount of organic solvent in which it is dissolved. That is, this usage ratio is such that the organic solvent solution in which the polymer is dissolved sufficiently fills the voids in the additive particles, and if there is an excess or deficiency in both, a homogeneous porous body cannot be obtained. In addition, in the present invention, when using the biodegradable porous material, for example, as a bone prosthesis material, hydroxyapatite powder etc. may be added at the same time when adding and mixing the above-mentioned additives, and the hydroxyapatite component As a bone prosthetic material, it has extremely effective in-vivo properties due to its inclusion of and the porous nature of the material. After the filler material of the present invention is added and then solidified, the added organic solvent is removed. As a means of solidification, freezing is usually carried out at a temperature of 0 to 5°C. Further, as a means for removing the organic solvent, it is carried out at a low temperature after freezing or at room temperature under a reduced pressure of 1 to 25 mmHg. Note that if dioxane is used as the organic solvent at this time, this drying and removal operation only needs to be carried out moderately; dioxane, which is highly soluble in water, will be completely removed during the subsequent step of removing additives with water. removed. In this case, the porous material becomes like a nonwoven fabric,
This is effective when a cloth-like porous body is desired. After removing the organic solvent, water is added to this polymer containing additives such as sucrose to make it wet, and this process is repeated several times to extract and remove the additives. After extraction and removal of the additives, the wetted porous body is air-dried at room temperature to have a controlled pore size that does not contain the impurities of the present invention. A porous body excellent as a biodegradable material can be obtained. (Example) The present invention will be further explained below with reference to Examples, but the present invention is not limited thereto.
It should be noted that all percentages are by weight unless otherwise specified. Example 1 1,4-dioxane (reagent manufactured by Kanto Kagaku Co., Ltd.) was added to 1.0 g of a copolymer of L-lactic acid and glycolic acid (L-lactic acid 49 mol%, molecular weight 1.5 × 10 4 ) to make 50 g. This was heated and dissolved. Next, after cooling this polymer liquid to room temperature, it was mixed with granulated sucrose (particle size approximately 0.5 mm)117
In addition to the stainless steel pot (20 x 20 cm) filled with g, add the homogeneous sugar and polymer solution to
Frozen at °C. After freezing, this was dried under reduced pressure at 1 mmHg for 2 hours.
After drying, it was immersed in water at 27°C to extract the sucrose. This extraction operation with water was repeated until no elution of sucrose from the porous material was observed by colorimetric method, and then the material was taken out and air-dried on filter paper to obtain the porous material of the present invention. The colorimetric method used for the determination of sucrose was based on the phenol-sulfuric acid method (Tozo Uriya et al., Biochemistry Experimental Methods I, p. 44, published by Gakkai Publishing Center (1969)). It was done quantitatively. Separately, instead of the above 1,4-dioxane,
A porous body of the present invention was similarly produced using P-xylene and benzene as organic solvents. Furthermore, for comparison, a comparative example product was produced in the same manner using chloroform as an organic solvent. The pore diameters of the products of the present invention and comparative examples were measured by electron microscopy, and the porosity was calculated from the apparent specific gravity and true specific gravity. These results are shown in Table 1.

【表】 実施例 2 L−ラクチドの重合体(分子量2.8×104)1.3g
に1,4−ジオキサンを加えて49gとし、これを
加熱溶解した。 次いで、このポリマー液を室温まで冷却した
後、これを顆粒状のしよ糖(粒子径約0.5mm)100
gを充填した100ml容ガラス製円柱容器(5cmφ
×7cm)に加え、しよ糖とポリマー液が均一とな
つたものを0℃で凍結させた。 凍結後、これを3時間、2mmHgで減圧乾燥し、
乾燥後、70℃の水に浸漬してしよ糖を抽出した。 この水による抽出操作を繰り返し、多孔質体か
らのしよ糖の溶出が認められなくなつた後、次い
でこれを取り出し、ろ紙上で風乾して本発明の多
孔質体を得た。 また別に、上記しよ糖に代えて、添加物として
塩化カリウム(関東化学(株)製試薬)、ポリビニル
アルコール(日本合成化学工業(株)製、商品名KH
−20)、ゼラチン(関東化学(株)製試薬)を用いて
同様に本発明の多孔質体を製造した。 更に、比較のために、この添加物を使用しない
で同様に操作を行い、比較例品を製造した。 尚、抽出操作時の添加物の溶出の確認は、塩化
カリウム原子吸光光度法により、またポリビニル
アルコールとゼラチンについては全有機炭素計に
よる測定により行つた。 本発明品及び比較例品の孔径を電子顕微鏡観察
により測定し、また気孔率を見掛比重と真比重か
ら算出した。 これらの結果を第2表に示した。
[Table] Example 2 L-lactide polymer (molecular weight 2.8×10 4 ) 1.3 g
1,4-dioxane was added to make 49 g, and this was dissolved by heating. Next, after cooling this polymer liquid to room temperature, it was mixed with 100% of granulated sucrose (particle size: approximately 0.5 mm).
A 100ml glass cylindrical container (5cmφ) filled with
x 7 cm), and the homogeneous sucrose and polymer solution was frozen at 0°C. After freezing, this was dried under reduced pressure at 2 mmHg for 3 hours.
After drying, it was immersed in water at 70°C to extract the sucrose. This extraction operation with water was repeated, and after the elution of sucrose from the porous body was no longer observed, it was then taken out and air-dried on filter paper to obtain the porous body of the present invention. Separately, in place of the above-mentioned sucrose, potassium chloride (reagent manufactured by Kanto Kagaku Co., Ltd.), polyvinyl alcohol (manufactured by Nippon Gosei Kagaku Kogyo Co., Ltd., trade name KH) can be used as additives.
-20) and gelatin (reagent manufactured by Kanto Kagaku Co., Ltd.), the porous body of the present invention was similarly produced. Furthermore, for comparison, a comparative example product was manufactured by performing the same operation without using this additive. The elution of additives during the extraction operation was confirmed by potassium chloride atomic absorption spectrophotometry, and polyvinyl alcohol and gelatin were measured by a total organic carbon meter. The pore diameters of the products of the present invention and comparative examples were measured by electron microscopy, and the porosity was calculated from the apparent specific gravity and true specific gravity. These results are shown in Table 2.

【表】 実施例 3 L−ラクチドの重合体(分子量7.2×104)2.0g
に1,4−ジオキサンを加えて100gとし、これ
を加熱溶解した。 次いで、このポリマー液を室温まで冷却した
後、第3表に示した割合でポリマー液と顆粒状の
しよ糖(粒子径約0.5mm)を混合し、均一となつ
たものを0℃で凍結させた。 凍結後、これを第3表に示した条件で1mmHg
にて減圧乾燥し、乾燥後、27℃の水に乾燥してし
よ糖を抽出した。 比色定量法により、多孔質体からのしよ糖の溶
出が認められなくなるまでこの水による抽出操作
を繰り返し、次いでこれを取り出し、70℃で2時
間減圧乾燥して本発明の多孔質体を得た。 気孔率を見掛比重と真比重から算出し、結果を
第3表に示した。
[Table] Example 3 L-lactide polymer (molecular weight 7.2×10 4 ) 2.0 g
1,4-dioxane was added to make 100 g, and this was dissolved by heating. Next, after cooling this polymer liquid to room temperature, the polymer liquid and granulated sucrose (particle size: approximately 0.5 mm) were mixed in the proportions shown in Table 3, and the mixture was homogenized and frozen at 0°C. I let it happen. After freezing, it was heated to 1mmHg under the conditions shown in Table 3.
After drying, the mixture was dried in water at 27°C to extract the sucrose. This extraction operation with water was repeated until no elution of sucrose from the porous material was observed by colorimetric assay, and then the material was taken out and dried under reduced pressure at 70°C for 2 hours to obtain the porous material of the present invention. Obtained. The porosity was calculated from the apparent specific gravity and true specific gravity, and the results are shown in Table 3.

【表】 実施例 4 実施例2で、添加物としてしよ糖を使用して得
た本発明品と、添加物を使用しなかつた比較例品
を使用し、多孔質体のラツト中での組織反応性を
見た。 本発明及び比較例の多孔質体を厚さ2mm、5×
5mm角のシート状に切断し、ラツト皮下に埋め込
んだところ、6週間目に比較例品の方には異物巨
細胞が現われたが、本発明品では全く細胞に異常
が見られなかつた。
[Table] Example 4 In Example 2, using the product of the present invention obtained using sucrose as an additive and the comparative product without using the additive, the porous material was tested in a rat. We looked at tissue reactivity. The porous bodies of the present invention and comparative examples were prepared with a thickness of 2 mm and a 5×
When cut into 5 mm square sheets and implanted subcutaneously in rats, foreign giant cells appeared in the comparative example product after 6 weeks, but no cell abnormalities were observed in the inventive product.

Claims (1)

【特許請求の範囲】[Claims] 1 乳酸の重合体または乳酸とグリコール酸との
共重合体を有機溶媒に溶解し、これに実質的に前
記有機溶媒に不活性で、且つ水溶性の充填物質を
添加後、次いでこれを固化し、前記有機溶媒を除
去した後、これに水を加えて充填物質を除去する
ことからなる多孔質体の製造方法。
1 Dissolving a polymer of lactic acid or a copolymer of lactic acid and glycolic acid in an organic solvent, adding thereto a filler substance that is substantially inert to the organic solvent and water-soluble, and then solidifying this. . A method for producing a porous body, which comprises removing the organic solvent and then adding water thereto to remove the filler material.
JP62262310A 1987-10-16 1987-10-16 Production of cellular substance Granted JPH01104635A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62262310A JPH01104635A (en) 1987-10-16 1987-10-16 Production of cellular substance

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62262310A JPH01104635A (en) 1987-10-16 1987-10-16 Production of cellular substance

Publications (2)

Publication Number Publication Date
JPH01104635A JPH01104635A (en) 1989-04-21
JPH0564982B2 true JPH0564982B2 (en) 1993-09-16

Family

ID=17374006

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62262310A Granted JPH01104635A (en) 1987-10-16 1987-10-16 Production of cellular substance

Country Status (1)

Country Link
JP (1) JPH01104635A (en)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5223546A (en) * 1991-04-24 1993-06-29 Mitsui Toatsu Chemicals, Inc. High polymer network
US5502092A (en) * 1994-02-18 1996-03-26 Minnesota Mining And Manufacturing Company Biocompatible porous matrix of bioabsorbable material
JP2001081229A (en) * 1999-09-16 2001-03-27 Toyo Cloth Co Ltd Biodegradable porous membrane and its preparation
JP2002020530A (en) * 2000-07-05 2002-01-23 Toyo Cloth Co Ltd Biodegradable porous membrane, structural material and method for producing the same
JP4344216B2 (en) * 2003-10-30 2009-10-14 ハナキゴム株式会社 Method for producing porous polymer compound having open cells
KR20110112446A (en) * 2004-03-22 2011-10-12 라피드-테크 피티이 엘티디 Method for obtaining graded pore structure in scaffolds for tissues and bone, and scaffolds with graded pore structure for tissue and bone
JP6533104B2 (en) * 2015-06-18 2019-06-19 株式会社ジーシー Method for producing a support for cell engineering

Also Published As

Publication number Publication date
JPH01104635A (en) 1989-04-21

Similar Documents

Publication Publication Date Title
Sarazin et al. Controlled preparation and properties of porous poly (L-lactide) obtained from a co-continuous blend of two biodegradable polymers
JP5684140B2 (en) Ascorbic acid phosphate sustained release system
AU2009251989B2 (en) Osteoinductive nanocomposites
Bonartsev et al. 3D-scaffolds from poly (3-hydroxybutyrate) poly (ethylene glycol) copolymer for tissue engineering
EP2403547B1 (en) Production of moldable bone substitute
WO1996034634A1 (en) Implantable bioresorbable membrane and method for the preparation thereof
US11154638B2 (en) Methods for forming scaffolds
JPH0663118A (en) Bone prosthetic material containing calcium carbonate particle dispersed in biologically absorbable polymer matrix
JPH05504941A (en) Biodegradation system for periodontal tissue regeneration
JPS63272355A (en) Implant piece suitable for remedy by rebuilding operation having tissue specific porosity and production thereof
WO2000018318A1 (en) Fibrillar matrices
Sivakumar et al. Preparation, characterization, and in vitro release of gentamicin from coralline hydroxyapatite‐alginate composite microspheres
JP5015570B2 (en) Biomaterial and method for producing biomaterial
JPH078547A (en) Sintered type bone filler containing living body absorbable high polymer
JP3451417B2 (en) Bioceramic-containing cell structure and method for producing the same
JPH0564982B2 (en)
Cerrai et al. Periodontal membranes from composites of hydroxyapatite and bioresorbable block copolymers
JP4694163B2 (en) Method for producing bioresorbable granular porous bone filling material
EP1086711B1 (en) Ceramic-polymer composites
JP2709516B2 (en) Medical composition
Luciano et al. The effect of triethylcitrate on the porosity and biocompatibility of poly (lactic acid) membranes
JP3721343B2 (en) Cell structure containing bioceramics
Adhikari et al. Magnesium and calcium-containing scaffolds for bone tissue regeneration
Budnicka et al. Manufacturing of substitutes for spongy bone with increased absorbability
Wang et al. Biodegradation behavior and cytotoxicity of the composite membrane composed of β-dicalcium pyrophosphate and glucose mediated (polyethylene glycol/chitosan)