JPH0564430B2 - - Google Patents

Info

Publication number
JPH0564430B2
JPH0564430B2 JP60081000A JP8100085A JPH0564430B2 JP H0564430 B2 JPH0564430 B2 JP H0564430B2 JP 60081000 A JP60081000 A JP 60081000A JP 8100085 A JP8100085 A JP 8100085A JP H0564430 B2 JPH0564430 B2 JP H0564430B2
Authority
JP
Japan
Prior art keywords
battery
polymer layer
separator
negative electrode
organic electrolyte
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP60081000A
Other languages
Japanese (ja)
Other versions
JPS63126177A (en
Inventor
Takakyo Umeda
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yuasa Corp
Original Assignee
Yuasa Corp
Yuasa Battery Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yuasa Corp, Yuasa Battery Corp filed Critical Yuasa Corp
Priority to JP60081000A priority Critical patent/JPS63126177A/en
Publication of JPS63126177A publication Critical patent/JPS63126177A/en
Publication of JPH0564430B2 publication Critical patent/JPH0564430B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Secondary Cells (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

産業上の利用分野 本発明は有機電解液電池とその製造法に関する
もので、さらに詳しく言えば大容量が得られる充
電可能な有機電解電池とその製造法に関するもの
である。 従来技術とその問題点 リチウムを負極活性物質とする一次電池は、正
極に二酸化マンガン、フツ化炭素を、電解液に有
機溶媒を用いるものが実用化されているが、二次
電池については、充電の際、負極活物質であるリ
チウムが負極表面上に樹枝状に生長し、セパレー
タを破壊して内部短絡を発生したり、有機溶媒と
反応して絶縁性の皮膜を形成して不動態化するな
どの原因により限られた充放電サイクルしか得ら
れず、実用化には至つていない。 上記欠点を解消するものとして、特開昭59−
31573号公報には、負極活物質としてのリチウム
をエチレンカーボネイトで表面処理することによ
り、リチウムイオン伝導性の保護膜を形成するこ
とが記載されている。また特開昭59−173977号公
報には、負極とセパレータとの界面にリチウムイ
オンを含むポリマー層を介在させることにより、
リチウムが樹枝状に生長することを抑制すること
が記載されている。 しかしながら両者とも電解液を含浸させるセパ
レータまたは電解液保持層が、負極表面上に樹枝
状に生長するリチウムにより容易に破壊されて内
部短絡を生じるため、大電流による充放電を可能
ならしめるまでには至つていない。さらにリチウ
ム−アルミニウム合金を負極として大容量化を図
ることも知られているが、実用化には至つていな
い。 発明の目的 本発明は上記欠点を解消するもので、大電流に
よる充放電が可能な大容量の有機電解液電池とそ
の製造法を提供することを目的とするものであ
る。 発明の構成 本発明は、セパレータや電解液保持層が樹枝状
に生長するリチウムによつて破壊されやすく、ま
たポリマー層がセパレータとしての機能を果たし
うることに着目してなされたものである。すなわ
ちシート状に成型した負極、正極の少なくとも一
方の面にポリマー層からなるセパレータを形成
し、該セパレータを介して密着させた素電池を導
電性膜を介して積層し、端部に集電体を配して挾
持させるとともに流動性の有機溶媒を主体とする
電解液に浸漬し、密閉してなる有機電解液電池で
ある。 実施例 以下実施例により説明する。第1図は本発明の
有機電解液電池の断面図で、1はシート状に成型
した二酸化マンガンを主体とする正極、2は本発
明のポリマー層からなるセパレータ、3はシート
状に成型したリチウムからなる負極、4は導電性
膜、5は正極および負極を端子7に電気的に接続
するための集電体、6はプロピレンカーボネイト
とジメトキシエタンとの混合溶媒に過塩素酸リチ
ウムを溶解させた電解液で、電槽9内に収容され
るとともに正極1と負極3とをセパレータ2を介
して密着させてなる素電池8が導電性膜4を介在
させて積層され、端部を集電体5で挾持されて該
電解液9に浸漬され、該電槽が密閉されてなる。 本発明に関るポリマー層からなるセパレータ2
は、正極1の負極3との対向面にアリールアセチ
レンポリマーを塗布し、乾燥、固化させたもので
あるため、有機電解液電池のセパレータとして広
く用いられている親水性のない、リチウムなどの
負極活物質に対して反応しないポリエチレン、ポ
リプロピレン不織布のように、該負極活物質が樹
枝状に生長するようなことがあつても容易に破壊
されることはない。 上記アリールアセチレンポリマーは次の一般式
で示される。 上記一般式において、XはHまたはハロゲン
基、シアノ基、Aはアルキル基、アリール基、ア
ルコキシ基、アリールオキシ基、ニトロ基、シア
ノ基、アミノ基またはハロゲン原子である。nは
0〜5の整数で、0または1であるのが好まし
い。mはポリマーの分子量が5000以上になる数
で、10000〜1000000であるのが好ましい。またX
のハロゲン基としてはF、Cl、Br、Iで、特に
Clが好ましい。Aのアルキル基としては、メチル
基、イソプロピル基、ブチル基、ヘキシル基、オ
クチル基、ノニル基、ドデシル基などの直鎖また
は側鎖を有する炭素数が1〜18のもので、特に炭
素数が1〜4のものが好ましい。またアリール基
としては、フエニル基、ナフチル基およびこれら
が少なくとも1個のアルキル基、
INDUSTRIAL APPLICATION FIELD The present invention relates to an organic electrolyte battery and a method for manufacturing the same, and more specifically to a rechargeable organic electrolyte battery that can obtain a large capacity and a method for manufacturing the same. Prior art and its problems Primary batteries that use lithium as the negative electrode active material have been put into practical use, with manganese dioxide and carbon fluoride used as the positive electrode, and organic solvents used as the electrolyte. During this process, lithium, which is the active material of the negative electrode, grows like a tree on the surface of the negative electrode, destroying the separator and causing an internal short circuit, or reacts with the organic solvent to form an insulating film and passivate it. Due to these reasons, only a limited number of charging and discharging cycles can be obtained, and it has not been put into practical use. As a solution to the above drawbacks, JP-A-59-
Publication No. 31573 describes that a lithium ion conductive protective film is formed by surface treating lithium as a negative electrode active material with ethylene carbonate. Furthermore, in JP-A-59-173977, by interposing a polymer layer containing lithium ions at the interface between the negative electrode and the separator,
It has been described that lithium inhibits dendritic growth. However, in both cases, the separator or electrolyte holding layer impregnated with electrolyte is easily destroyed by lithium that grows in a dendritic manner on the negative electrode surface, causing an internal short circuit. I haven't reached it yet. It is also known to increase capacity by using a lithium-aluminum alloy as a negative electrode, but this has not been put to practical use. OBJECTS OF THE INVENTION The present invention solves the above-mentioned drawbacks, and aims to provide a large-capacity organic electrolyte battery that can be charged and discharged with a large current, and a method for manufacturing the same. Structure of the Invention The present invention was made based on the fact that a separator and an electrolyte holding layer are easily destroyed by lithium that grows like a tree, and that a polymer layer can function as a separator. In other words, a separator made of a polymer layer is formed on at least one surface of a negative electrode and a positive electrode molded into a sheet, and the unit cells are laminated with a conductive film interposed in close contact with each other through the separator, and a current collector is placed at the end. This is an organic electrolyte battery that is made by placing and sandwiching the battery, immersing it in an electrolyte mainly composed of a fluid organic solvent, and sealing it. Examples The following examples will be explained below. FIG. 1 is a cross-sectional view of the organic electrolyte battery of the present invention, in which 1 is a positive electrode mainly made of manganese dioxide molded into a sheet, 2 is a separator made of a polymer layer of the present invention, and 3 is a lithium sheet molded. 4 is a conductive film; 5 is a current collector for electrically connecting the positive and negative electrodes to terminal 7; 6 is a mixture of propylene carbonate and dimethoxyethane in which lithium perchlorate is dissolved. A unit cell 8, which is housed in an electrolytic solution in a battery case 9 and has a positive electrode 1 and a negative electrode 3 in close contact with each other via a separator 2, is stacked with a conductive film 4 interposed therebetween, and the ends are connected to a current collector. 5 and immersed in the electrolytic solution 9, and the container is sealed. Separator 2 made of a polymer layer according to the present invention
is a non-hydrophilic negative electrode such as lithium, which is widely used as a separator in organic electrolyte batteries, because it is made by coating an arylacetylene polymer on the surface of the positive electrode 1 facing the negative electrode 3, drying and solidifying it. Unlike polyethylene and polypropylene nonwoven fabrics that do not react with the active material, even if the negative electrode active material grows like a tree, it will not be easily destroyed. The above arylacetylene polymer is represented by the following general formula. In the above general formula, X is H or a halogen group, a cyano group, and A is an alkyl group, an aryl group, an alkoxy group, an aryloxy group, a nitro group, a cyano group, an amino group, or a halogen atom. n is an integer from 0 to 5, preferably 0 or 1. m is a number such that the molecular weight of the polymer is 5,000 or more, and is preferably 10,000 to 1,000,000. Also X
The halogen group is F, Cl, Br, I, especially
Cl is preferred. The alkyl group of A is one having 1 to 18 carbon atoms and having a linear or side chain such as methyl group, isopropyl group, butyl group, hexyl group, octyl group, nonyl group, dodecyl group, etc. 1 to 4 are preferred. Further, as the aryl group, phenyl group, naphthyl group, and at least one alkyl group thereof,

【式】【formula】

【式】で置換された基で、Yは−CH2 −、−C2H4−、In the group substituted with [Formula], Y is -CH 2 -, -C 2 H 4 -,

【式】などの炭素数1〜3の アルキレン基である。またこのアルキル基は前述
のAと同様のものである。上記においてポリマー
の分子量を5000以上とするのは、ポリマー層の強
度を得るためである。またこのようなポリマー層
はリチウムなどのアルカリ金属イオンの透過性に
すぐれていて、有機電解液に対して劣化を受ける
こともなく、後述するように厚みについても電気
抵抗が問題になることもなく、セパレータとして
の機能を十分果たしうるものである。 次にこの有機電解液電池の製造法について説明
する。シート状に成型された正極1の負極3との
対向面に、溶剤に溶解させたアリールアセチレン
ポリマーを塗布した後、溶剤を蒸発、乾燥、固化
させるとフイルム状のセパレータ2が形成され
る。この時溶剤は完全に除去されていなくても実
用上問題にはならない。このセパレータ2上に負
極3を載置して素電池8を製作するとともに他方
の面に導電性膜4を介在させて積層し、端部を集
電体5で挾持させて電槽9内の電解液6に浸漬し
て端子7をガラスハーメチツクシールして密閉す
るものである。 こうして製造された有機電解液電池において
は、製造時にセパレータ2のずれが生ずることは
なく、工程を簡易にすることができる。またこの
ことによる短絡も発生することもない。またこう
して形成したセパレータ2は、塗布むらによつて
発生する正極1と負極3との短絡を防止する必要
性から、ある程度の厚みが必要であることは言う
までもないが、実験から乾燥、固化させた時点で
0.005mm以上あれば、微短絡による不良を防止す
ることが判明した。そしてまたこの程度の厚みは
電気抵抗も問題とはならず、セパレータとしての
機能を果たしうる。 次にこうして製造された本発明電池Aと不織布
をセパレータとした従来電池Bとを比較するため
に、同一形状の正極、負極を用いて素電池8を製
作したところ、同一容量の素電池においては容積
が10%減少した。またこの素電池8を積層して同
体積の有機電解液電池を製作したところ、積層で
きる素電池8の数が増加したため、容量が10%増
加した。さらに同一容量の本発明電池Aと従来電
池Bとについて、充放電サイクル特性および10サ
イクイル目における放電特性を比較し、結果を第
2図、第3図に示す。なお試験条件は、充電電流
が0.5Aで、充電終止電圧を4Vとし、放電電流が
0.5Aで、放電終止電圧を2Vとした。 第2図から従来電池Bでは充放電サイクルが15
サイクル目において放電容量が80%に低下してし
まうのに対し、本発明電池Aでは55サイクル目ま
で80%の放電容量が確保できた。また第3図から
従来電池Bでは放電開始後16時間で放電終止電圧
2Vに低下してしまうのに対し、本発明電池Aで
は21時間以上であつた。さらに放電開始時の電圧
もセパレータ2の電気抵抗が小さいため、0.1V
上昇した。 なお上記実施例において、ポリマー層を形成さ
せるのは正極1の表面に限定するものではない。
そしてその形状も対向面に限定するものではな
く、周縁部にはみ出させるように形成させたり、
形成させない側の極の外径を小さくすることによ
り端部における微短絡を防止することも本発明の
一部であることは言うまでもない。またポリマー
層についてもアリールアセチレンポリマーに限定
するものではなく、正極活物質についても二酸化
マンガン以外にニツケル、モリブデン、銅、鉄、
銀、バナジウムなどのハロゲン化物、酸化物、硫
化物が使用できることは言うまでもない。 発明の効果 実施例において詳述した如く、本発明の有機電
解液電池は、ポリマー層をセパレータとすること
により、大電流による充放電の反復に対しても樹
枝状に生長するリチウムによつて破壊されること
はなく、充放電サイクル数、放電時間も大幅に向
上させることができる。またその製造法はセパレ
ータとしてのポリマー層を電極に密着させて形成
しているので、形成する工程およびこれらを積層
する工程も簡易化することができる。
It is an alkylene group having 1 to 3 carbon atoms such as [Formula]. Further, this alkyl group is the same as A described above. The reason why the molecular weight of the polymer is set to 5000 or more in the above is to obtain strength of the polymer layer. In addition, such polymer layers have excellent permeability to alkali metal ions such as lithium, are not degraded by organic electrolytes, and, as will be explained later, do not have problems with electrical resistance in terms of thickness. , which can sufficiently function as a separator. Next, a method for manufacturing this organic electrolyte battery will be explained. After applying an arylacetylene polymer dissolved in a solvent to the surface of the positive electrode 1 formed in a sheet shape facing the negative electrode 3, the solvent is evaporated, dried, and solidified to form a film-like separator 2. Even if the solvent is not completely removed at this time, it does not pose a practical problem. A negative electrode 3 is placed on this separator 2 to produce a unit cell 8, and the conductive film 4 is interposed on the other side of the separator 2 to form a unit cell 8. The terminal 7 is immersed in an electrolytic solution 6 and hermetically sealed with a glass hermetic seal. In the organic electrolyte battery manufactured in this way, the separator 2 does not shift during manufacturing, and the process can be simplified. Furthermore, no short circuit occurs due to this. It goes without saying that the separator 2 thus formed needs to be thick to a certain extent in order to prevent short circuits between the positive electrode 1 and the negative electrode 3 caused by uneven coating. at the time
It was found that defects caused by micro short circuits can be prevented if the thickness is 0.005 mm or more. Further, with such a thickness, electrical resistance is not a problem and the film can function as a separator. Next, in order to compare the thus manufactured battery A of the present invention with a conventional battery B using a nonwoven fabric as a separator, a unit cell 8 was manufactured using positive and negative electrodes of the same shape. Volume decreased by 10%. Furthermore, when an organic electrolyte battery with the same volume was manufactured by stacking these unit cells 8, the capacity increased by 10% because the number of unit cells 8 that could be stacked increased. Furthermore, the charge/discharge cycle characteristics and the discharge characteristics at the 10th cycle were compared between the battery A of the present invention and the conventional battery B, both of which had the same capacity, and the results are shown in FIGS. 2 and 3. The test conditions were a charging current of 0.5A, a charging end voltage of 4V, and a discharging current of 0.5A.
The discharge end voltage was 2V at 0.5A. From Figure 2, conventional battery B has a charge/discharge cycle of 15
While the discharge capacity drops to 80% at the 5th cycle, the battery A of the present invention was able to maintain a discharge capacity of 80% up to the 55th cycle. Also, from Figure 3, in conventional battery B, the discharge end voltage reached 16 hours after the start of discharge.
In contrast, battery A of the present invention lasted for more than 21 hours. Furthermore, the voltage at the start of discharge is 0.1V because the electrical resistance of separator 2 is small.
Rose. In the above embodiments, the polymer layer is not limited to be formed on the surface of the positive electrode 1.
The shape is not limited to the opposing surface, but may be formed so as to protrude to the periphery,
It goes without saying that it is also a part of the present invention to prevent a slight short circuit at the end by reducing the outer diameter of the pole on the side where it is not formed. In addition, the polymer layer is not limited to arylacetylene polymers, and the positive electrode active materials include nickel, molybdenum, copper, iron, and manganese dioxide.
It goes without saying that halides, oxides, and sulfides of silver, vanadium, etc. can be used. Effects of the Invention As detailed in the examples, the organic electrolyte battery of the present invention uses a polymer layer as a separator, so that it can be destroyed by lithium that grows in a dendritic manner even when repeatedly charged and discharged with a large current. The number of charge/discharge cycles and discharge time can be greatly improved. Furthermore, since the manufacturing method involves forming the polymer layer as a separator in close contact with the electrode, the formation process and the process of laminating these layers can also be simplified.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の有機電解液電池の断面図、第
2図、第3図は本発明電池と従来電池との充放電
サイクル数、放電特性を比較した図である。 1……正極、2……セパレータ、3……負極、
4……導電性膜、5……集電体、6……電解液、
8……素電池、9……電槽。
FIG. 1 is a sectional view of an organic electrolyte battery of the present invention, and FIGS. 2 and 3 are diagrams comparing the number of charge/discharge cycles and discharge characteristics of the battery of the present invention and a conventional battery. 1...Positive electrode, 2...Separator, 3...Negative electrode,
4... Conductive film, 5... Current collector, 6... Electrolyte,
8...Battery, 9...Battery container.

Claims (1)

【特許請求の範囲】 1 シート状に成型した負極、正極を、少なくと
も一方の面に形成したアリールアセチレンポリマ
ーのポリマー層からなるセパレータを介して密着
させて素電池とし、該素電池が導電性膜を介して
積層され、端部を集電体で挟持させるとともに流
動性の有機溶媒を主体とする電解液に浸漬し、密
閉してなることを特徴とする有機電解液電池。 2 ポリマー層は正極または負極の少なくとも一
方の周縁部にはさみ出させるように形成したこと
を特徴とする特許請求の範囲第1項記載の有機電
解液電池。 3 ポリマー層を形成させない極の外径が形成さ
せた極の外径より小であることを特徴とする特許
請求の範囲第1項または第2項記載の有機電解液
二次電池。 4 シート状に成型された負極および正極の少な
くとも一方の、他方の極との対向面に、溶剤に溶
解させたアリールアセチレンポリマーを塗布した
後、乾燥、固化させて形成したセパレータとして
のポリマー層の上に、他方の極を載置して素電池
とし、該素電池を導電性膜を介して積層し、端部
を集電体で挟持させて電槽内の流動性の有機溶媒
を主体とする電解液に浸漬するとともに該電槽を
密閉することを特徴とする有機電解液電池の製造
法。
[Scope of Claims] 1. A unit cell is formed by closely adhering a negative electrode and a positive electrode molded into sheets through a separator made of an arylacetylene polymer layer formed on at least one surface, and the unit cell is made of a conductive film. 1. An organic electrolyte battery characterized in that the organic electrolyte battery is stacked with the ends thereof sandwiched between current collectors, immersed in an electrolyte mainly composed of a fluid organic solvent, and sealed. 2. The organic electrolyte battery according to claim 1, wherein the polymer layer is formed so as to protrude from the periphery of at least one of the positive electrode and the negative electrode. 3. The organic electrolyte secondary battery according to claim 1 or 2, wherein the outer diameter of the pole on which no polymer layer is formed is smaller than the outer diameter of the pole on which a polymer layer is formed. 4. A polymer layer as a separator formed by applying an arylacetylene polymer dissolved in a solvent to the surface of at least one of a negative electrode and a positive electrode molded into a sheet, facing the other electrode, and then drying and solidifying the polymer layer. The other electrode is placed on top to form a unit cell, and the unit cells are stacked with a conductive film interposed between them, and the ends are sandwiched between current collectors to form a unit cell that is mainly connected to the fluid organic solvent in the battery case. A method for producing an organic electrolyte battery, which comprises immersing the battery in an electrolyte and sealing the battery.
JP60081000A 1985-04-16 1985-04-16 Organic electrolytic solution battery and its manufacture Granted JPS63126177A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60081000A JPS63126177A (en) 1985-04-16 1985-04-16 Organic electrolytic solution battery and its manufacture

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60081000A JPS63126177A (en) 1985-04-16 1985-04-16 Organic electrolytic solution battery and its manufacture

Publications (2)

Publication Number Publication Date
JPS63126177A JPS63126177A (en) 1988-05-30
JPH0564430B2 true JPH0564430B2 (en) 1993-09-14

Family

ID=13734221

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60081000A Granted JPS63126177A (en) 1985-04-16 1985-04-16 Organic electrolytic solution battery and its manufacture

Country Status (1)

Country Link
JP (1) JPS63126177A (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0848435B1 (en) * 1995-08-28 2007-05-16 Asahi Kasei EMD Corporation Lithium battery and production method thereof

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58163188A (en) * 1982-03-23 1983-09-27 Matsushita Electric Ind Co Ltd Organic electrolyte secondary cell
JPS59173977A (en) * 1983-03-20 1984-10-02 Hitachi Maxell Ltd Lithium secondary battery

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58163188A (en) * 1982-03-23 1983-09-27 Matsushita Electric Ind Co Ltd Organic electrolyte secondary cell
JPS59173977A (en) * 1983-03-20 1984-10-02 Hitachi Maxell Ltd Lithium secondary battery

Also Published As

Publication number Publication date
JPS63126177A (en) 1988-05-30

Similar Documents

Publication Publication Date Title
US6800397B2 (en) Non-aqueous electrolyte secondary battery and process for the preparation thereof
EP0689260B1 (en) Rechargeable electrochemical cell
KR102045246B1 (en) Method for Preparing Secondary Battery Having Improved Performance of Degassing Process
KR100354947B1 (en) Nonaqueous electrolyte secondary battery
KR100367751B1 (en) Nonaqueous electrolyte secondary battery and method for manufacturing the same
US6299653B1 (en) Hybrid electrolyte, method for manufacturing the same, and method for manufacturing electrochemical element using the same
US10587011B2 (en) Nickel-iron battery with high power
GB2329513A (en) A method of preparing an electrode for lithium based secondary cell
US6343003B1 (en) Capacitor element and battery cell
JP2002015771A (en) Nonaqueous electrolyte and nonaqueous electrlyte secondary cell
JP3589021B2 (en) Lithium ion secondary battery
JP2003242964A (en) Non-aqueous electrolyte secondary battery
US3920477A (en) Compact battery
JP2006517719A (en) Secondary battery with polymer-coated anode
JPH1167273A (en) Lithium secondary battery
KR100490642B1 (en) A multi-layered polymer electrolyte and lithium secondary battery comprising the same
JPH0554910A (en) Manufacture of nonaqueous secondary battery
JPH06188030A (en) Nonaqueous electrolyte battery
KR100324626B1 (en) Composite electrodes and lithium secondary battery using gel-type polymer electrolytes, and its fabrication method
JPH0564430B2 (en)
JPS638588B2 (en)
JP2003317695A (en) Nonaqueous electrolyte lithium ion cell and separator there for
US20020136958A1 (en) High ionic conductivity gel polymer electrolyte for rechargeable polymer batteries
JPH02199769A (en) Battery with overcharge preventing function
KR20190082823A (en) Electrode assembly for battery cell and battery cell