JPH0564399A - Two-stator induction motor - Google Patents
Two-stator induction motorInfo
- Publication number
- JPH0564399A JPH0564399A JP27032091A JP27032091A JPH0564399A JP H0564399 A JPH0564399 A JP H0564399A JP 27032091 A JP27032091 A JP 27032091A JP 27032091 A JP27032091 A JP 27032091A JP H0564399 A JPH0564399 A JP H0564399A
- Authority
- JP
- Japan
- Prior art keywords
- stator
- phase
- voltage
- phase difference
- rotor
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Landscapes
- Control Of Ac Motors In General (AREA)
Abstract
Description
【0001】[0001]
【産業上の利用分野】本発明は、単一の回転子と二個の
固定子とを有し、二個の固定子に対峙する回転子導体の
周囲に生じる回転磁界間に位相差を生じさせて、変速可
能でしかもスムーズな起動と低速から高速にかけて高ト
ルクを発生させることができる二固定子誘導電動機に関
する。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention has a single rotor and two stators, and produces a phase difference between rotating magnetic fields generated around rotor conductors facing the two stators. Accordingly, the present invention relates to a two-stator induction motor that is capable of shifting, has a smooth start, and can generate high torque from low speed to high speed.
【0002】[0002]
【従来の技術】複数固定子構成の誘導電動機のトルク制
御、速度制御は公知技術により知られる固定子間の位相
差を変化させる方法があり、例えば本出願人の発明であ
る特願昭61−128314号もその例である。この位
相差を変化させる方法には、機械的なものとして固定子
を回動させて位相差を設けるもの、電気的なものとして
固定子巻線の結線を変えて何種かの位相差を設けるも
の、更にこれらにスターデルタ切換を組み合せたものな
ど多種多様である。BACKGROUND ART Torque control and speed control of an induction motor having a plurality of stators include a method known in the prior art for changing the phase difference between the stators. For example, Japanese Patent Application No. 61- No. 128314 is also an example. The method of changing the phase difference includes mechanically rotating the stator to provide the phase difference, and electrically changing the connection of the stator windings to provide some kind of phase difference. There are a wide variety of products, including a combination of these and star-delta switching.
【0003】以上の方法は誘導電動機のトルクと速度を
自在に変化させて負荷に対応する場合と、始動時の速度
上昇をスムーズに行う場合等とその負荷または用途に応
じて様々の手法を用いることになる。本発明は、位相差
を設けて負荷に対応するものであり、前記従来技術によ
り区別すると電気的手法といえる。The above method uses various methods depending on the load or application, such as when the torque and speed of the induction motor are freely changed to cope with the load, when the speed is increased smoothly at the time of starting, and the like. It will be. The present invention corresponds to a load by providing a phase difference, and it can be said that it is an electrical method when distinguished by the above-mentioned conventional technique.
【0004】更に従来技術を詳説する。前記電気的手法
において、固定子巻線の結線を切換えて行う位相差は電
気角で 0°,60°, 120° 180°が実施可能であるが、
その切換に要する開閉器は十数個に及ぶものであり高価
となっていた。Further, the prior art will be described in detail. In the electrical method, the phase difference that is achieved by switching the connection of the stator winding can be 0 °, 60 °, 120 ° 180 ° in terms of electrical angle.
The number of switches required for the switching was as many as ten and was expensive.
【0005】更に一般の誘導電動機は始動性改善の目的
でスターデルタ切換装置を設けたものがある。これは単
一の固定子にもかかわらずその配線は複雑なものである
と共に、スターデルタ切換時における負荷電流の一時的
な切断によるトルク変動を発生し、更には切換後の負荷
電流の急激な変化と発生トルクの急激な変動によるショ
ックは避けられないものであった。Further, there are some general induction motors provided with a star-delta switching device for the purpose of improving startability. This is due to the fact that the wiring is complicated despite a single stator, and torque fluctuations occur due to the temporary disconnection of the load current during star-delta switching, and the load current after switching changes suddenly. Shocks due to changes and sudden changes in generated torque were unavoidable.
【0006】[0006]
【発明が解決しようとする課題】本出願人は上記の従来
技術を鑑み、特願平1−261446によって、最少数
の切換スイッチで各位相差に結線を切換えたものと同等
のトルク特性を有し、しかも無段階に変速可能であり負
荷電流の急激な増加と負荷トルクの急激な変動の少ない
二固定子誘導電動機を提供することができた。しかしな
がら切換スイッチの切換えによる位相差の変更と共に二
個の固定子の巻線の結線がスター結線からデルタ結線
へ、あるいはデルタ結線からスター結線へ切換わるた
め、各巻線の分担電圧が変化し、この分担電圧の変化
と、位相差の変化とによりトルク特性の切換え時に少な
からずショックが発生するものであった。また位相差の
切換幅が60°と少ないこともトルクの多様化という面か
ら難があった。In view of the above-mentioned prior art, the present applicant has a torque characteristic equivalent to that in which the connection is switched to each phase difference with a minimum number of changeover switches according to Japanese Patent Application No. 1-261446. Moreover, it has been possible to provide a two-stator induction motor capable of stepless speed change, abrupt increase in load current, and abrupt change in load torque. However, as the phase difference is changed by switching the changeover switch, the wiring of the windings of the two stators switches from star connection to delta connection or from delta connection to star connection, so the shared voltage of each winding changes, and Due to the change in the shared voltage and the change in the phase difference, a shock is generated to some extent when the torque characteristics are switched. In addition, it was difficult to diversify the torque because the phase difference switching width was as small as 60 °.
【0007】本発明は上記のように位相差を切換えても
固定子の巻線の分担電圧が変化せず位相差の切換えによ
るショックが発生しない二固定子誘導電動機を提供しよ
うとするものである。The present invention is intended to provide a two-stator induction motor in which the shared voltage of the windings of the stator does not change even if the phase difference is switched as described above, and shock does not occur due to the phase difference switching. ..
【0008】また位相差の変化と共に起動時に全電圧を
固定子巻線に印加すればこのためのショックの発生は避
けられない。このため電源電圧を起動時に徐々に昇圧す
る手法がとられるが、スライダック等の機器の使用は装
置の大型化を伴い、小型化のために半導体素子を多用す
れば高価となる。したがって電圧調整を行う装置の小型
化と低廉化が望まれる。Further, if the entire voltage is applied to the stator winding at the time of start-up together with the change in the phase difference, the shock for this is inevitable. For this reason, a method of gradually increasing the power supply voltage at the time of start-up is used, but the use of equipment such as slidac is accompanied by an increase in the size of the apparatus, and it becomes expensive if a large number of semiconductor elements are used for downsizing. Therefore, it is desired to reduce the size and cost of the device for adjusting the voltage.
【0009】[0009]
【課題を解決するための手段】上記課題を解決するため
に本発明は、同一回転軸上に任意間隔をおいて二個の回
転子コアを設け、該二個の回転子コアに連通した複数個
の導体を設けて該導体の両端を短絡環で連結した回転子
と、前記各回転子コアにそれぞれ対向して周設した二個
の固定子と、前記二個の固定子のうち一方の固定子がこ
れに対峙する回転子の周囲に生じる回転磁界と、他の固
定子がこれに対峙する回転子の周囲に生じる回転磁界と
の間に位相差を生じさせる電圧移相装置とを有する二固
定子誘導電動機において、前記電圧移相装置は、二個の
固定子の巻線を直列のデルタ結線にして半導体素子から
なる電圧調整装置を介して電源に接続し、同相に接続さ
れた前記二個の固定子の巻線と巻線の間と、他相の電源
とを半導体素子からなる短絡スイッチを介し連絡して構
成した。SUMMARY OF THE INVENTION In order to solve the above problems, the present invention provides two rotor cores on the same rotary shaft at arbitrary intervals, and a plurality of rotor cores communicating with the two rotor cores are provided. A rotor in which two conductors are provided and both ends of the conductor are connected by a short-circuit ring, two stators provided around each rotor core, and one of the two stators. The stator has a rotating magnetic field generated around the rotor facing the rotor, and a voltage phase shifter that causes a phase difference between the rotating magnetic field generated around the rotor facing the other stator. In the two-stator induction motor, the voltage phase shifting device is configured such that windings of two stators are connected in series by delta connection and connected to a power source via a voltage adjusting device formed of a semiconductor element, and the voltage is connected to the same phase. Between the windings of the two stators and between the windings, and the power supply of the other phase, It was constructed in contact through the short-circuit switch that is.
【0010】更に、電圧調整装置はダイオードとサイリ
スタとの逆並列回路を電源の各相に介在させて構成し
た。Further, the voltage regulator is constructed by interposing an anti-parallel circuit of a diode and a thyristor in each phase of the power supply.
【0011】[0011]
【作 用】本発明の二固定子誘導電動機は二個の固定子
巻線を直列にしてデルタ結線としてある。この時の2個
の固定子間における回転磁界の位相差は 180°,120
°,60°,0 °のいずれかが可能である。ここで仮に2
つの固定子の回転磁界間に位相差が生じない位相差 0°
の直列デルタ結線とした場合について作用を説明する。[Operation] The two-stator induction motor of the present invention has two stator windings connected in series to form a delta connection. At this time, the phase difference of the rotating magnetic field between the two stators is 180 °, 120
Either °, 60 °, or 0 ° is possible. Here 2
Phase difference between rotating magnetic fields of two stators 0 °
The operation will be described for the case of the serial delta connection of.
【0012】位相差 0°の直列デルタ結線として電源に
接続した回路で、同相に接続された二個の固定子の巻線
と巻線の間と他相の電源との間に短絡スイッチを設けて
短絡すると、二個の固定子の巻線は並列のデルタ結線と
なり、同時に2つの固定子の回転磁界の位相差は 120°
に切換わることになる。In a circuit connected to a power supply as a series delta connection with a phase difference of 0 °, a short-circuit switch is provided between the windings of two stators connected in the same phase and between the windings and the power supply of another phase. When the two stators are short-circuited, the windings of the two stators become parallel delta connection, and the phase difference of the rotating magnetic fields of the two stators is 120 ° at the same time.
Will be switched to.
【0013】以上のことから起動時に同相に接続された
固定子の巻線と巻線の間と他相の電源とを短絡スイッチ
で短絡して、この場合位相差 120°のトルク特性で起動
し、その後短絡スイッチを開放して位相差 0°として汎
用の誘導電動機と同様のトルク特性で運転することが可
能となる。この時前述の短絡から開放への動作を単純な
開閉スイッチで行うと位相差 120°のトルク特性から位
相差 0°のトルク特性へと急激な変化するので設備への
ショックは避けられない。したがって本発明ではこの短
絡から開放への動作を半導体素子を利用して行うように
した。つまり半導体で短絡スイッを構成すると半導体の
スイッチング素子は点弧角の調節( 180°→ 0°)によ
って導通を 0から1 まで無段階に制御できるから、同相
に接続された固定子の巻線と巻線の間と他相の電源とを
半導体素子からなる短絡スイッチを介して接続すれば、
位相差 120°から 0°への位相差の移相つまり短絡から
開放への変化は緩かになり、位相差の変化でトルク特性
が変化しても設備へのショックは解消することが可能と
なった。From the above, at the time of start-up, the windings of the stator connected in the same phase and between the windings and the power supply of the other phase are short-circuited by the short-circuiting switch, and in this case, the torque characteristic of the phase difference 120 ° After that, the short-circuit switch is opened to set the phase difference to 0 °, and it is possible to operate with the same torque characteristics as a general-purpose induction motor. At this time, if the above-mentioned operation from short circuit to open is performed by a simple open / close switch, the torque characteristic with a phase difference of 120 ° changes rapidly to the torque characteristic with a phase difference of 0 °, so a shock to the equipment cannot be avoided. Therefore, in the present invention, the operation from short circuit to open is performed by using the semiconductor element. In other words, if a short-circuit switch is made up of a semiconductor, the switching element of the semiconductor can continuously control the conduction from 0 to 1 by adjusting the firing angle (180 ° → 0 °), so that it can be connected to the windings of the stator connected in the same phase. By connecting between the windings and the power supply of the other phase via the short-circuit switch consisting of semiconductor elements,
The phase shift of the phase difference from 120 ° to 0 °, that is, the change from the short circuit to the open, becomes gradual, and it is possible to eliminate the shock to the equipment even if the torque characteristics change due to the change in the phase difference. became.
【0014】更に本発明においては、二個の固定子の巻
線を直列のデルタ結線にして半導体素子からなる電圧調
整装置を介して電源に接続してある。これは、前述の位
相差の切換えの際、二個の固定子の巻線の結線は並列デ
ルタ結線(位相差 120°)と直列デルタ結線(位相差
0 °)とに切換わるが、各固定子の各巻線の分担電圧は
並列デルタ結線の時、線間電圧の全電圧がかかり、直列
デルタ結線の時は線間電圧の1/2の電圧がかかるよう
になる。したがってトルクは電圧の2乗に比例するか
ら、直列デルタ結線のトルクは並列デルタ結線の1/4
のトルクとなる。この分担電圧の差を解消するために本
発明では電源と固定子巻線との間に電圧調整装置を設け
てある。つまり、並列デルタ結線時の各巻線の分担電圧
が直列デルタ結線時の各巻線の分担電圧と同じ値となる
ように、並列デルタ結線時には電圧調整装置で電圧を降
下させる。Further, in the present invention, the windings of the two stators are connected in series by a delta connection and are connected to the power supply via a voltage regulator comprising semiconductor elements. This is because when switching the phase difference, the two stator windings are connected in parallel delta connection (phase difference 120 °) and series delta connection (phase difference).
0 °), but the shared voltage of each winding of each stator is the whole line voltage in the parallel delta connection, and half of the line voltage in the series delta connection. It will be like this. Therefore, since the torque is proportional to the square of the voltage, the torque of the series delta connection is 1/4 of that of the parallel delta connection.
It becomes the torque of. In order to eliminate this difference in the shared voltage, in the present invention, a voltage adjusting device is provided between the power supply and the stator winding. That is, the voltage adjustment device drops the voltage during parallel delta connection so that the shared voltage of each winding during parallel delta connection has the same value as the shared voltage of each winding during series delta connection.
【0015】短絡スイッチと、電圧調整装置を半導体の
スイッチング素子、たとえばサイリスタ、トライアック
等で構成するとその調節を無段階にできるので、位相差
の変化も巻線の電圧の変化も緩かとなり全体として位相
差 120°から位相差 0°へのトルク特性の変化も緩かで
急激な変化のない運転が可能となる。ところで短絡スイ
ッチと電圧調整装置は、並列デルタ結線時の巻線の分担
電圧が直列デルタ結線時の巻線の分担電圧と同じ値とな
るような電圧調整装置の半導体の点弧角(δ°)が既知
であれば、短絡スイッチの点弧角の調整(0°→ 180
°)と電圧調整装置の点弧角の調整(δ°→ 0°)とを
機械的にあるいは電気的に同時に目標点に到達するよう
に構成すると調整は簡単になる。If the short-circuit switch and the voltage adjusting device are composed of semiconductor switching elements such as thyristors and triacs, the adjustment can be performed steplessly, so that the change in the phase difference and the change in the voltage of the winding become gentle, and as a whole. The change in the torque characteristic from the phase difference of 120 ° to the phase difference of 0 ° is gentle and the operation can be performed without abrupt changes. By the way, the short-circuit switch and the voltage regulator use the semiconductor firing angle (δ °) of the voltage regulator so that the voltage shared by the windings in the parallel delta connection has the same value as the voltage shared by the windings in the series delta connection. If is known, adjust the firing angle of the short-circuit switch (0 ° → 180
The adjustment becomes easier if both the angle) and the adjustment of the firing angle of the voltage adjusting device (δ ° → 0 °) are mechanically or electrically reached at the same time.
【0016】これまで直列デルタ結線で位相差 0°を中
心に説明してきたが、並列デルタ結線で 0°とすること
も可能で、この場合、短絡スイッチの半導体の点弧角を
180°→ 0°に変化させることにより、直列デルタ結線
から巻線と巻線の間と他相の電源とを短絡して並列デル
タ結線に変化すると共に位相差も 120°から 0°に変化
することになる。当然のことながら電圧調整装置の半導
体スイッチの点弧角も0°→δ°に調整して直列デルタ
結線の分担電圧と並列デルタ結線の分担電圧が同じ値と
なるようにする。Although the phase difference of 0 ° has been mainly described in the series delta connection, it is possible to set the phase difference to 0 ° in the parallel delta connection. In this case, the firing angle of the semiconductor of the short-circuit switch is set.
By changing from 180 ° to 0 °, the series delta connection is short-circuited between the windings and between the windings and the power supply of the other phase to change to the parallel delta connection, and the phase difference also changes from 120 ° to 0 °. It will be. As a matter of course, the firing angle of the semiconductor switch of the voltage regulator is also adjusted from 0 ° to δ ° so that the shared voltage of the series delta connection and the shared voltage of the parallel delta connection have the same value.
【0017】また電圧調整装置の構成は固定子巻線と電
源との間の各相に、ダイオードとサイリスタとの逆並列
回路を設けることにより安価に且つ小型にすることがで
きる。通常このような半導体素子による電圧調整装置は
最も単純な構成としてはサイリスタの逆並列回路であっ
たが、電源部分に使用するサイリスタでもありその許容
量と各相に逆並列回路で2個ずつ使用するための個数と
により安価であるとは言いがたい装置となっていた。し
たがって本発明においては三相交流の場合6個のサイリ
スタに代えて3個のサイリスタと3個のダイオードとで
構成することにより電圧調整装置はダイオードが安価な
だけ価格の低下を計ることができる。The configuration of the voltage regulator can be made inexpensive and compact by providing an anti-parallel circuit of a diode and a thyristor in each phase between the stator winding and the power supply. Normally, the voltage regulator using such a semiconductor element is an antiparallel circuit of a thyristor as the simplest configuration, but it is also a thyristor used for the power supply part, and its allowable amount and two antiparallel circuits are used for each phase. It was hard to say that it was cheap because of the number of devices. Therefore, in the present invention, in the case of three-phase alternating current, by replacing the six thyristors with three thyristors and three diodes, the voltage regulator can reduce the price because the diodes are inexpensive.
【0018】[0018]
【実施例】本発明は主としてかご形回転子をもつ2固定
子誘導電動機として詳細を説明するが、これに限定され
ないことは言うまでもない。巻線型回転子をもつ二固定
子誘導電動機の場合もあり、リニアモータとしても応用
できるものである。また固定子巻線のスター結線、デル
タ結線の切換えを併用してトルク特性をより多様化する
場合もあり、回転子コア間の構成も、非磁性体、磁性体
等を使用する場合がある。The present invention will be described in detail mainly as a two-stator induction motor having a squirrel-cage rotor, but it goes without saying that the invention is not limited to this. In some cases, it is a two-stator induction motor having a wound rotor, and it can be applied as a linear motor. In some cases, the torque characteristics may be made more diversified by switching the star connection and delta connection of the stator windings, and the configuration between the rotor cores may use a non-magnetic material or a magnetic material.
【0019】すでに本出願は、特願昭61−12831
4号として本発明の構成の一部である複数固定子からな
る誘導電動機の構成、作用の詳細な説明を行っている。The present application has already been filed in Japanese Patent Application No. 61-12831.
As No. 4, a detailed description will be given of the structure and operation of an induction motor having a plurality of stators, which is a part of the structure of the present invention.
【0020】図1により本発明の構成の一部をなす電動
機の1実施例を説明する。符号1は本発明に係る二固定
子誘導電動機であり、該誘導電動機1は以下のような構
成を有する。磁性材料からなる回転子コア2,3を任意
の間隔を設けて回転子軸4に装着する。回転子コア2,
3間は非磁性体コア5を介設するか、または空間とす
る。回転子コア2,3に装設した複数個の導体6のそれ
ぞれを回転子コア2,3に連通して連結し一体的な回転
子7を形成し、その直列に連結した複数個の導体6の両
端部は短絡環8,8により短絡される。また本実施例に
おいては回転子7に装設されたそれぞれの導体6は回転
子コア2,3間の非磁性体コア5部において、任意のベ
クトルの差の電流を流すための抵抗材9を介し連結して
ある。An embodiment of an electric motor forming a part of the structure of the present invention will be described with reference to FIG. Reference numeral 1 is a two-stator induction motor according to the present invention, and the induction motor 1 has the following configuration. The rotor cores 2 and 3 made of a magnetic material are mounted on the rotor shaft 4 with an arbitrary interval. Rotor core 2,
A non-magnetic core 5 is provided between the three or spaces. Each of the plurality of conductors 6 mounted on the rotor cores 2 and 3 is connected to the rotor cores 2 and 3 so as to communicate therewith to form an integral rotor 7, and the plurality of conductors 6 connected in series. Both ends of are short-circuited by the short-circuit rings 8, 8. Further, in this embodiment, each conductor 6 mounted on the rotor 7 has a resistance material 9 for flowing a current having an arbitrary vector difference in the non-magnetic core 5 portion between the rotor cores 2 and 3. It is connected through.
【0021】回転子コア2,3に対持する外側部に巻線
10,11を施した第1固定子12と第2固定子13を
機枠14に並設し、第1固定子12と第2固定子13は
機枠14に固定する。また第1固定子12と第2固定子
13の巻線10,11の結線の形態は一実施例として電
気的位相差 0°の直列デルタ結線としている。The first stator 12 and the second stator 13 having the windings 10 and 11 formed on the outer side thereof, which are opposed to the rotor cores 2 and 3, are arranged side by side on the machine frame 14, and the first stator 12 and The second stator 13 is fixed to the machine frame 14. Further, as a form of connection of the windings 10 and 11 of the first stator 12 and the second stator 13, a series delta connection having an electrical phase difference of 0 ° is used as an example.
【0022】次に本発明の実施例を図2以降に示す。図
2に示すものは電圧移相装置15と固定子巻線10,1
1の結線図である。Next, an embodiment of the present invention will be shown in FIG. 2 shows the voltage phase shifter 15 and the stator windings 10 and 1.
It is a connection diagram of 1.
【0023】以下固定子巻線10,11を三相の場合に
ついて説明する。固定子巻線10の各相の巻線をU2−
X2,V2−Y2,W2−Z2とし固定子巻線11の各
相の巻線をU1−X1,V1−Y1,W1−Z1とす
る。この固定子巻線10,11の各相は機械的に同じ位
置つまりU1−X1とU2−X2とは同じ位置に配置さ
れている。The case where the stator windings 10 and 11 have three phases will be described below. The winding of each phase of the stator winding 10 is U2-
Let X2, V2-Y2, W2-Z2 be windings of each phase of the stator winding 11 be U1-X1, V1-Y1, W1-Z1. The respective phases of the stator windings 10 and 11 are mechanically arranged at the same position, that is, U1-X1 and U2-X2 are arranged at the same position.
【0024】次に結線について説明すると、まず固定子
巻線11の端子U1,V1,W1をそれぞれ3相交流電
源R,S,Tに半導体素子からなる電圧調整装置20を
介して接続し、固定子巻線10,11の端子X1とU
2,Y1とV2,Z1とW2を接続し、さらに固定子巻
線10の端子X2をV1,Y2をW1,Z2をU1に接
続する。この状態において2組の固定子巻線が直列デル
タ結線されて、前記電圧調整装置20を介して電源に接
続されたことになる。Next, the connection will be described. First, the terminals U1, V1 and W1 of the stator winding 11 are respectively connected to the three-phase AC power supplies R, S and T via the voltage regulator 20 composed of semiconductor elements and fixed. Terminals X1 and U of the child windings 10 and 11
2, Y1 and V2, Z1 and W2 are connected, and the terminal X2 of the stator winding 10 is connected to V1, Y2 to W1 and Z2 to U1. In this state, the two sets of stator windings are connected in series by delta connection and are connected to the power supply via the voltage regulator 20.
【0025】更に巻線U1−X1と巻線U2−X2の間
と、他相のT相(W1)とを半導体からなる短絡スイッ
チ21を介して接続し、以下同様にして巻線V1−Y1
と巻線V2−Y2の間と他相のR相(U1),巻線W1
−Z1と巻線W2−Z2の間と他相のS相(V1)とを
それぞれ短絡スイッチ21を介して接続してある。この
図2の結線を更にわかり易く図3に示す。ここで短絡ス
イッチ21の半導体の点弧角を 180°つまりOFFと
し、電圧調整装置20の半導体の点弧角を 0°つまりO
Nとすると、固定子巻線10,11の分担電圧E1,E
1′は図3のようになる。この場合の固定子巻線10,
11のそれぞれの分担電圧の大きさは線間電圧の 1/2と
なりE1とE1′との位相差はなく位相差 0°を発生す
る。他の巻線についても同様で位相差 0°を発生する。
この場合のトルク特性は汎用の誘導電動機と同じトルク
特性となっている。これは定格回転域の運転用トルク特
性としている。Further, between the winding U1-X1 and the winding U2-X2, the T phase (W1) of the other phase is connected via the short-circuit switch 21 made of a semiconductor, and the same applies to the winding V1-Y1.
And winding V2-Y2 and other phase R phase (U1), winding W1
The -Z1 and the winding W2-Z2 and the S phase (V1) of the other phase are connected via the short-circuit switch 21, respectively. The connection of FIG. 2 is shown in FIG. 3 for easier understanding. Here, the semiconductor firing angle of the short-circuit switch 21 is 180 °, that is, OFF, and the semiconductor firing angle of the voltage regulator 20 is 0 °, that is, O.
If N, then the shared voltages E1, E of the stator windings 10, 11
1'is as shown in FIG. Stator winding 10 in this case,
The magnitude of each of the shared voltages of 11 becomes 1/2 of the line voltage, and there is no phase difference between E1 and E1 ', and a phase difference of 0 ° is generated. A phase difference of 0 ° is generated in the same way for the other windings.
The torque characteristic in this case is the same as that of a general-purpose induction motor. This is the operating torque characteristic in the rated rotation range.
【0026】次に短絡スイッチ21の半導体の点弧角を
0°つまりONとすると巻線U1−X1と巻線U2−X
2の間と、他相の電源Tとの間が短絡され、同様に他の
2つの巻線の接続点と電源間もそれぞれ短絡されること
になり、この短絡した状態を図4に示す。この場合の固
定子巻線10,11のそれぞれの分担電圧の大きさは電
源の線間電圧であり、E1′とE1は 120°の位相差を
発生する。他の巻線についても同様の位相差を発生す
る。ところでこの場合の各巻線の分担電圧は線間電圧そ
のものであり、位相差 0°の時の2倍の分担電圧となっ
ている。トルクは電圧の2乗に比例して変化するから電
圧の影響をなくするため電圧調整装置20の半導体の点
弧角を 0°から任意の点弧角δ°として巻線の分担電圧
が位相差 0°と同じ線間電圧の 1/2となるようにする。
これは短絡スイッチ21の点弧角と同時に電圧調整装置
20の半導体の点弧角を調節する。この場合、位相差 0
°の分担電圧と同じ分担電圧に調整した位相差 120°の
トルク特性となり、起動用トルク特性としている。すな
わち固定子巻線に印加される電圧は位相差 0°と同じ電
圧でしかも位相差 120°の状態であるため本発明にかか
る二固定子誘導電動機の特性から高力率となりトルクの
大きい起動となる。Next, the ignition angle of the semiconductor of the short-circuit switch 21 is
If 0 °, that is, it is turned on, the winding U1-X1 and the winding U2-X
2 and the power supply T of the other phase are short-circuited, and similarly, the connection point of the other two windings and the power supply are also short-circuited, and this short-circuited state is shown in FIG. In this case, the magnitude of the shared voltage of each of the stator windings 10 and 11 is the line voltage of the power source, and E1 'and E1 generate a phase difference of 120 °. Similar phase differences are generated in other windings. By the way, the shared voltage of each winding in this case is the line voltage itself, which is twice the shared voltage when the phase difference is 0 °. Since the torque changes in proportion to the square of the voltage, in order to eliminate the influence of the voltage, the ignition angle of the semiconductor of the voltage regulator 20 is changed from 0 ° to an arbitrary ignition angle δ °, and the phase difference of the phase sharing voltage of the winding. It should be half of the line voltage as 0 °.
This adjusts the firing angle of the semiconductor of the voltage regulator 20 at the same time as the firing angle of the short-circuit switch 21. In this case, the phase difference is 0
A torque characteristic with a phase difference of 120 ° adjusted to the same shared voltage as the ° shared voltage is used as the starting torque characteristic. That is, since the voltage applied to the stator winding is the same as the phase difference 0 ° and the phase difference 120 °, the characteristics of the two-stator induction motor according to the present invention have a high power factor and a large torque start. Become.
【0027】以上の構成による起動から運転までの調整
を説明する。まず、短絡スイッチ21の点弧角を 0°
(ON)として、固定子巻線の分担電圧が線間電圧の 1
/2となるように電圧調整装置20の点弧角を 180°(O
FF)から徐々にδ°に変化させる。このようにすると
図4のように電動機は2個の固定子間で位相差 120°を
発生し、このトルク特性で起動する。この時電圧調整装
置20により供給される電圧は徐々に上昇するので、起
動はソフトスタートとなる。次に位相差 120°で起動
後、短絡スイッチ21の点弧角を 0°(ON)から徐々
に点弧角 180°(OFF)に変化させると同時に、電圧
調整装置20の点弧角をδ°から徐々に点弧角 0°に変
化させる。このようにすると図3のようになり、電動機
の2個の固定子間で位相差 0°を発生し、いわゆる汎用
モータと同様のトルク特性に切換わることになる。この
ように調整するので、スイッチの開閉と異なり負荷電流
の遮断がないためにトルク及び電流の特性に急激な変化
がなく全体的に連続した変化によってスムーズに起動し
運転に至らしめることが可能となった。しかも2個の固
定子間の位相差は 120°から 0°まで広範囲の切換えが
可能となったことと、巻線の分担電圧を常に一定にする
ようにしたことによりトルク特性の変化も理想的な比例
推移に近くしかも位相差 120°という低回転域で高トル
クを有するトルク特性から起動できるようになった。こ
れらのトルク特性の一例を図5に示す。The adjustment from startup to operation with the above configuration will be described. First, set the firing angle of the short-circuit switch 21 to 0 °.
(ON), the shared voltage of the stator winding is 1
The ignition angle of the voltage regulator 20 is 180 ° (O
FF) is gradually changed to δ °. By doing so, the electric motor generates a phase difference of 120 ° between the two stators as shown in FIG. 4, and starts with this torque characteristic. At this time, the voltage supplied by the voltage adjusting device 20 gradually increases, so that the start is a soft start. Next, after starting with a phase difference of 120 °, the ignition angle of the short-circuit switch 21 is gradually changed from 0 ° (ON) to 180 ° (OFF), and at the same time, the ignition angle of the voltage regulator 20 is changed to δ. The firing angle is gradually changed from 0 ° to 0 °. With this arrangement, the phase difference becomes 0 ° between the two stators of the electric motor as shown in FIG. 3, and the torque characteristic is switched to that of a so-called general-purpose motor. Since the adjustment is done in this way, unlike the opening and closing of the switch, there is no interruption of the load current, so there is no sudden change in the characteristics of torque and current, and it is possible to start up smoothly and operate with continuous changes overall. became. Moreover, the phase difference between the two stators can be switched over a wide range from 120 ° to 0 °, and the shared voltage of the windings is always kept constant, so that the torque characteristics can be changed ideally. It is possible to start from torque characteristics that have high torque in a low rotation range with a phase difference of 120 °, which is close to a proportional transition. An example of these torque characteristics is shown in FIG.
【0028】次に電圧調整装置20について図6、図7
を参照しながら説明する。図6に示す回路は基本的な三
相制御回路を示し従来技術である。これは電源の各相に
逆並列にした2個のサイリスタを挿入し計6個のサイリ
スタを使用したものである。Next, the voltage regulator 20 will be described with reference to FIGS. 6 and 7.
Will be described with reference to. The circuit shown in FIG. 6 shows a basic three-phase control circuit and is a prior art. This uses two thyristors in antiparallel to each phase of the power supply and uses a total of six thyristors.
【0029】ここで端子RからTへとサイリスタCR2
2とサイリスタCR27とを通じて電流iが流れる瞬時
を考えると、この電流を制御するのにサイリスタCR2
2とサイリスタCR27の2個のサイリスタで行うこと
になる。ここでこの制御はサイリスタCR22とサイリ
スタCR27のどちらか一方でも可能であるから残る1
個はダイオードで代用可能と考えられ、このように回路
を考えると図6のサイリスタCR23、サイリスタCR
25、サイリスタCR27はダイオードD31,32,
33に置き換えても支障がないことになる。つまり図7
のようにサイリスタCR22,CR23の逆並列回路を
ダイオードD31とサイリスタCR28との逆並列回路
に置き換えても三相交流の電力制御機能はサイリスタ6
個を使用する場合と同様である。このようにするとダイ
オードDはサイリスタCRと比較して安価であるから図
6の従来例に比して図7の回路は安価となる。Here, from the terminal R to T, the thyristor CR2
2 and thyristor CR27, considering the instant when current i flows, thyristor CR2
2 and two thyristors, CR27. Here, since this control is possible with either one of the thyristor CR22 and the thyristor CR27, the remaining 1
It is conceivable that diodes can be used instead of the thyristor. Considering the circuit in this way, the thyristor CR23 and the thyristor CR in FIG.
25, the thyristor CR27 is a diode D31, 32,
There is no problem even if it is replaced with 33. That is, FIG.
Even if the anti-parallel circuit of the thyristors CR22 and CR23 is replaced with the anti-parallel circuit of the diode D31 and the thyristor CR28 as described above, the three-phase AC power control function has the thyristor 6
It is similar to the case of using individual pieces. In this way, the diode D is less expensive than the thyristor CR, and therefore the circuit of FIG. 7 is less expensive than the conventional example of FIG.
【0030】ところで電圧移相装置15と回転速度ある
いは負荷電流または巻線の分担電圧を検出するセンサー
とを制御装置を介して接続し、センサーの信号によって
半導体素子の点弧角等を制御することも考えられる。By the way, the voltage phase shifter 15 and a sensor for detecting the rotation speed or the load current or the voltage shared by the windings are connected via a control device, and the firing angle of the semiconductor element is controlled by the signal of the sensor. Can also be considered.
【0031】なお、直列デルタで起動し、並列デルタへ
と移行しても本発明を実施できる。また、2個の固定子
間の位相差を起動時に位相差 180°とすることも可能で
ある。It should be noted that the present invention can be implemented even when starting in the series delta and shifting to the parallel delta. It is also possible to set the phase difference between the two stators to 180 ° when starting.
【0032】[0032]
【発明の効果】以上のよう二固定子誘導電動機のトルク
の設定は本発明の電圧移相装置により無段階に設定可能
となり、これらのトルク特性は起動時において起動電流
は小さく起動トルクが大きく、低トルク特性及び二乗低
減トルク特性の始動性の改善、起動時間の低減を達成し
た可変速電動機となり、インバータ等の高価な制御装置
を必要としない。したがってトルクの多様化を図り低速
から定格回転域まで高トルクを発生することのできる二
固定子誘導電動機の用途の拡大と起動時に高トルクを必
要とするあらゆる分野に更に貢献できるようになった。As described above, the torque of the two-stator induction motor can be set steplessly by the voltage phase shifter of the present invention, and these torque characteristics have a small starting current and a large starting torque at the time of starting. The variable speed electric motor achieves improved startability of low torque characteristics and square reduction torque characteristics and reduced starting time, and does not require an expensive control device such as an inverter. Therefore, it is possible to diversify the torque and expand the applications of the two-stator induction motor that can generate high torque from low speed to the rated rotation range, and further contribute to all fields that require high torque at the time of starting.
【図1】図1は本発明にかかる二固定子誘導電動機の側
断面図。FIG. 1 is a side sectional view of a two-stator induction motor according to the present invention.
【図2】図2は二固定子誘導電動機の電圧移相装置の結
線図を示し、本発明の一実施例を示す図である。FIG. 2 is a wiring diagram of a voltage phase shifter for a two-stator induction motor, showing an embodiment of the present invention.
【図3】図3は直列デルタ結線を示し、図2を書き変え
た結線図である。FIG. 3 is a connection diagram in which FIG. 2 is rewritten, showing a series delta connection.
【図4】図4は並列デルタ結線を示し、実施例の位相差
120°の結線図である。FIG. 4 shows a parallel delta connection and the phase difference of the embodiment.
It is a wiring diagram of 120 degrees.
【図5】図5は起動時の位相差 120°と運転時の位相差
0°のトルク特性曲線の一例を示す図である。[Fig. 5] Fig. 5 shows a phase difference of 120 ° at startup and a phase difference at operation.
It is a figure which shows an example of a torque characteristic curve of 0 degree.
【図6】図6はサイリスタ2個を逆並列回路にした基本
三相制御回路である。FIG. 6 is a basic three-phase control circuit in which two thyristors are antiparallel circuits.
【図7】図7はサイリスタとダイオードによる逆並列回
路で構成した三相制御回路図である。FIG. 7 is a three-phase control circuit diagram including an anti-parallel circuit including a thyristor and a diode.
1 二固定子誘導電動機 2 回転子コア 3 回転子コア 4 回転子軸 5 非磁性体コア 6 回転子導体 7 回転子 8 短絡環 9 抵抗材 10 固定子巻線 11 固定子巻線 12 第1固定子 13 第2固定子 14 機枠 15 電圧移相装置 20 電圧調整装置 21 短絡スイッチ 22 サイリスタCR 23 サイリスタCR 24 サイリスタCR 25 サイリスタCR 26 サイリスタCR 27 サイリスタCR 28 サイリスタCR 29 サイリスタCR 30 サイリスタCR 31 ダイオードD 32 ダイオードD 33 ダイオードD 1 2 Stator induction motor 2 Rotor core 3 Rotor core 4 Rotor shaft 5 Non-magnetic core 6 Rotor conductor 7 Rotor 8 Short circuit ring 9 Resistor material 10 Stator winding 11 Stator winding 12 First fixed Child 13 Second stator 14 Machine frame 15 Voltage phase shifter 20 Voltage regulator 21 Short circuit switch 22 Thyristor CR 23 Thyristor CR 24 Thyristor CR 25 Thyristor CR 26 Thyristor CR 27 Thyristor CR 28 Thyristor CR 29 Thyristor CR 30 Thyristor CR 31 D 32 diode D 33 diode D
Claims (2)
回転子コアを設け、該二個の回転子コアに連通した複数
個の導体を設けて該導体の両端を短絡環で連結した回転
子と、前記各回転子コアにそれぞれ対向して周設した二
個の固定子と、前記二個の固定子のうち一方の固定子が
これに対峙する回転子の周囲に生じる回転磁界と、他の
固定子がこれに対峙する回転子の周囲に生じる回転磁界
との間に位相差を生じさせる電圧移相装置とを有する二
固定子誘導電動機において、前記電圧移相装置は、二個
の固定子の巻線を直列のデルタ結線にして半導体素子か
らなる電圧調整装置を介して電源に接続し、同相に接続
された前記二個の固定子の巻線と巻線の間と、他相の電
源とを半導体素子からなる短絡スイッチを介し連絡して
構成したことを特徴とする二固定子誘導電動機。1. Two rotor cores are provided on the same rotary shaft at arbitrary intervals, a plurality of conductors are provided in communication with the two rotor cores, and both ends of the conductors are connected by a short-circuit ring. Rotor, two stators provided around each rotor core, respectively, and one of the two stators has a rotating magnetic field generated around the rotor facing the rotor. And a voltage phase shift device that causes a phase difference between the other stator and a rotating magnetic field generated around the rotor facing the other stator, in the two stator induction motor, the voltage phase shift device is Between the windings of the two stators, which are connected in phase with each other, are connected to a power supply via a voltage regulator made of semiconductor elements in a delta connection of the stators in series. Characterized by connecting to the power supply of the other phase via a short-circuit switch consisting of semiconductor elements And two stator induction motors.
って、電圧調整装置は、ダイオードとサイリスタとの逆
並列回路を電源の各相に介在させ構成したことを特徴と
する二固定子誘導電動機。2. The two-stator induction motor according to claim 1, wherein the voltage regulator comprises an anti-parallel circuit of a diode and a thyristor interposed in each phase of the power supply. Induction motor.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP27032091A JPH0564399A (en) | 1991-07-02 | 1991-09-20 | Two-stator induction motor |
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP3-208696 | 1991-07-02 | ||
JP20869691 | 1991-07-02 | ||
JP27032091A JPH0564399A (en) | 1991-07-02 | 1991-09-20 | Two-stator induction motor |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH0564399A true JPH0564399A (en) | 1993-03-12 |
Family
ID=26516994
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP27032091A Pending JPH0564399A (en) | 1991-07-02 | 1991-09-20 | Two-stator induction motor |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH0564399A (en) |
-
1991
- 1991-09-20 JP JP27032091A patent/JPH0564399A/en active Pending
Similar Documents
Publication | Publication Date | Title |
---|---|---|
KR830001998B1 (en) | Variable Speed Electromechanical Device with Controlled Magnetic Flux Density | |
JPH03124248A (en) | Phase switching device for mutiple-stator induction motor | |
US5254894A (en) | Dual-stator induction synchronous motor | |
KR950009295B1 (en) | Induction motor | |
CA1281065C (en) | Parallel resonant single phase motor | |
US4489265A (en) | Electric machine with continuous pole phase modulation | |
EP1497912B1 (en) | Method and arrangement in connection with slip-ring machine | |
JPH0564399A (en) | Two-stator induction motor | |
JPH1118382A (en) | Pole-number changing electric rotating machine system | |
JP2885460B2 (en) | Two stator induction motor | |
JP3105231B2 (en) | 2 stator induction motor | |
JP3105232B2 (en) | 2 stator induction motor | |
JP2707924B2 (en) | Two-stator three-phase cage induction motor | |
JP2927856B2 (en) | Two stator induction motor | |
JP2919492B2 (en) | Multiple stator induction motor | |
JPH0412651A (en) | Plural-stator induction motor | |
US2403447A (en) | Alternating current motor | |
JPH03203559A (en) | Two-stator induction motor | |
JP3099832B2 (en) | 2 stator induction motor | |
JPS61161991A (en) | Overexciting method for hysteresis motor | |
JPH03135348A (en) | Multi-stator induction motor | |
JPH0279755A (en) | Phase-converting motor | |
JPH01144375A (en) | Multiple-stator induction motor | |
US1365441A (en) | Series-multiple control | |
JPH0475453A (en) | Induction motor |