JP3105232B2 - 2 stator induction motor - Google Patents

2 stator induction motor

Info

Publication number
JP3105232B2
JP3105232B2 JP02249460A JP24946090A JP3105232B2 JP 3105232 B2 JP3105232 B2 JP 3105232B2 JP 02249460 A JP02249460 A JP 02249460A JP 24946090 A JP24946090 A JP 24946090A JP 3105232 B2 JP3105232 B2 JP 3105232B2
Authority
JP
Japan
Prior art keywords
connection
switch
phase difference
rotor
stator
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP02249460A
Other languages
Japanese (ja)
Other versions
JPH04178144A (en
Inventor
利彦 佐竹
幸男 大野木
Original Assignee
株式会社佐竹製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社佐竹製作所 filed Critical 株式会社佐竹製作所
Publication of JPH04178144A publication Critical patent/JPH04178144A/en
Application granted granted Critical
Publication of JP3105232B2 publication Critical patent/JP3105232B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、単一の回転子と2個の固定子とを有し、2
個の固定子に対峙する回転子導体の周囲に生じる回転磁
界間に位相差を生じさせ、スムーズな起動と低速から高
速にかけて高トルクを発生させることができる2固定子
誘導電動機に関する。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Application Field] The present invention comprises a single rotor and two stators,
The present invention relates to a two-stator induction motor capable of generating a phase difference between rotating magnetic fields generated around a rotor conductor facing a plurality of stators and generating a high torque from a low speed to a high speed.

〔従来の技術〕[Conventional technology]

2固定子構成の誘導電動機のトルク制御、速度制御は
従来技術により知られる固定子間の位相差を変化させる
方法がある。この位相差を変化させる方法は機械的なも
のとして固定子を回動させて位相差を設けるもの、電気
的なものとして固定子巻線の結線を変えて何種かの位相
差を設けるもの、更にこれらにスターデルタ切換を組み
合わせたものなど多種多様である。
For torque control and speed control of an induction motor having a two-stator configuration, there is a method of changing a phase difference between stators known from the related art. The method of changing this phase difference is to provide a phase difference by rotating the stator as mechanical, to provide some kind of phase difference by changing the connection of the stator winding as electrical, Further, there are various kinds such as those in which star delta switching is combined.

以上の方法は誘導電動機のトルクと速度を自在に変化
させて負荷に対応する場合と、始動時の速度上昇をスム
ーズに行う場合等とその負荷または用途に応じて様々の
手法を用いることになる。
The above methods use various methods depending on the load or application, such as when the torque and speed of the induction motor are freely changed to cope with the load, when the speed at startup is smoothly increased, etc. .

〔発明が解決しようとする課題〕[Problems to be solved by the invention]

本発明は、何種かの段階的な位相の変化を設けて負荷
に対応するものであり電気手法といえる。
The present invention responds to a load by providing several kinds of stepwise phase changes, and can be said to be an electric method.

前記従来技術における電気的手法は固定子巻線の結線
を切換えて行い位相差は電気角0゜,60゜,120゜,180゜
が実施可能であるがその反面、その切換に要する開閉器
は十数個に及ぶものであり高価となっていた。
The electrical method in the prior art is performed by switching the connection of the stator windings, and the phase difference can be implemented at electrical angles of 0 °, 60 °, 120 °, and 180 °. It was over ten and expensive.

更に一般の誘導電動機は始動性改善の目的で、スター
デルタ切換装置を設けたものがあるが、これは単一の固
定子にもかかわらずスターデルタ切換装置と電動機の配
線は複雑なものであった。つまり、スターデルタ切換装
置は装置が大形であることと切換を人力か他の動力源に
頼るため、直接電動機に設けることができず、構造上ス
ターデルタ切換装置と電動機との間の配線は大容量のケ
ーブルを多数本必要とした。
Further, some induction motors are provided with a star-delta switching device for the purpose of improving the startability, but the wiring between the star-delta switching device and the motor is complicated despite a single stator. Was. In other words, the star-delta switching device cannot be provided directly on the motor because the device is large and the switching depends on human power or another power source, and the wiring between the star-delta switching device and the motor is structurally Many large-capacity cables were required.

また位相差を切換える開閉器あるいはスターデルタ切
換装置は、その切換を接点の開閉で行うものがほとんど
で、この開閉による負荷電流の一時的切断で発生トルク
に変動を生じ、開閉器の作動による負荷電流の一時的切
断は誘導電動機が駆動する装置にショックを与えてい
た。
In most cases, switches or star-delta switching devices that switch the phase difference are switched by opening and closing the contacts. Temporary disconnection of the load current due to this switching causes fluctuations in the generated torque, and the load caused by the operation of the switch The temporary interruption of the current shocked the device driven by the induction motor.

本発明は上記位相差におけるトルク特性を有しつつも
切換に要する開閉器を最少限で構成すると共に切換えに
よるショックのない安価な2固定子誘導電動機を提供し
ようとするものである。
SUMMARY OF THE INVENTION An object of the present invention is to provide an inexpensive two-stator induction motor that has the minimum required number of switches required for switching while having the torque characteristics at the phase difference, and is free from shocks due to switching.

〔課題を解決するための手段〕[Means for solving the problem]

本発明によると、同一回転軸上に空間又は非磁性体コ
ア部を介在して軸着した2個の回転子コアを有し、該2
個の回転子コアに連通する導体を複数個設けて一体的に
形成された回転子と、前記2個の回転子コアのそれぞれ
に対峙して並設した2個の固定子と、前記2個の固定子
のうちの特定の固定子がこれに対峙する回転子の周囲に
生じる回転磁界と他の固定子がこれに対峙する回転子の
周囲に生じる回転磁界との間に位相差を生じさせる電圧
移相装置とを有する2固定子誘導電動機において、 前記電圧移相装置は、開閉スイッチを閉じることで前
記2個の固定子間の前記回転磁界の位相差を0゜とし且
つ前記2個の固定子の巻線を直列デルタ結線とする第1
の結線開閉スイッチと、開閉スイッチを閉じることで前
記回転磁界の位相差を120゜とし且つ前記2個の固定子
の巻線を直列デルタ結線とする、前記第一の結線開閉ス
イッチと並列に接続した第2の結線開閉スイッチと、並
列にした前記第1と第2の結線開閉スイッチに直列に接
続した半導体素子及び、前記第1と第2の結線開閉スイ
ッチと半導体素子を任意信号により制御する制御部とか
らなることにより前記課題を解決するための手段とし
た。
According to the present invention, there are provided two rotor cores which are axially mounted on the same rotation shaft with a space or a non-magnetic core interposed therebetween, and
A rotor integrally formed by providing a plurality of conductors communicating with the two rotor cores; two stators arranged in parallel to each of the two rotor cores; A particular one of the stators produces a phase difference between a rotating magnetic field generated around a rotor facing the rotating stator and another stator generating a rotating magnetic field around the rotor facing the rotating stator. In a two-stator induction motor having a voltage phase shifter, the voltage phase shifter sets a phase difference of the rotating magnetic field between the two stators to 0 ° by closing an open / close switch, and sets the two phase shifters together. First stator winding with series delta connection
And a parallel connection with the first connection on / off switch, wherein the phase difference of the rotating magnetic field is set to 120 ° by closing the on / off switch, and the windings of the two stators are connected in series delta connection. The second connection on / off switch, the semiconductor element connected in series to the parallel first and second connection on / off switches, and the first and second connection on / off switches and the semiconductor element are controlled by an arbitrary signal. A means for solving the above-mentioned problem is provided by including a control unit.

更に本発明によると、前記電圧移相装置は、開閉スイ
ッチを閉じることで前記2個の固定子の前記回転磁界の
位相差を0゜とし且つ前記2個の固定子の巻線を直列デ
ルタ結線とする第1の結線開閉スイッチと、開閉スイッ
チを閉じることで前記回転磁界の位相差を120゜とし且
つ前記2個の固定子の巻線を直列デルタ結線とする、前
記第1の結線開閉スイッチと並列に接続した第2の結線
開閉スイッチと、並列にした前記第1と第2の結線開閉
スイッチに直列に接続した半導体素子と、開閉スイッチ
を閉じることで前記回転磁界の位相差を120゜とし且つ
前記2個の固定子の巻線を直列デルタ結線とする、前記
第1と第2の結線開閉スイッチと半導体素子との直列回
路に対し並列に接続した第3の結線開閉スイッチ及び、
前記第1と第2と第3の結線開閉スイッチと半導体素子
を任意信号により制御する制御部とからなることにより
前記課題を解決するための手段とした。
Further, according to the present invention, the voltage phase shifter sets the phase difference of the rotating magnetic fields of the two stators to 0 ° by closing an open / close switch, and connects the windings of the two stators in series delta connection. A first connection opening / closing switch, wherein the phase difference of the rotating magnetic field is set to 120 ° by closing the opening / closing switch, and the windings of the two stators are connected in series delta connection. And a semiconductor element connected in series with the first and second connection on / off switches connected in parallel with each other, and closing the on / off switch to reduce the phase difference of the rotating magnetic field by 120 °. And a third connection on / off switch connected in parallel to a series circuit of the first and second connection on / off switches and the semiconductor element, wherein the windings of the two stators are in series delta connection;
Means for solving the above-mentioned problem are constituted by the first, second and third connection on / off switches and a control unit for controlling the semiconductor element by an arbitrary signal.

そして、前記2個の回転子コア間の前記空間又は非磁
性体コア部において前記複数個の導体のうち隣接する任
意の導体間を相互に抵抗短絡する連結材を設けたこと、
また電圧移相装置を2固定子誘導電動機と一体にしたこ
とにより前記課題を解決するための手段とした。
And providing a connecting member for mutually resistance-short-circuiting any adjacent one of the plurality of conductors in the space or the non-magnetic core portion between the two rotor cores;
Further, the voltage phase shifter is integrated with the two-stator induction motor to provide a means for solving the above-mentioned problem.

〔作 用〕(Operation)

第1の発明の作用について説明する。第1の結線開閉
スイッチと第2の結線開閉スイッチとのそれぞれは、固
定子間に位相差0゜と120゜を設けるよう構成してあ
る。したがって、第1の結線開閉スイッチだけを閉じて
電源を投入すると位相差は0゜、逆に第2の結線開閉ス
イッチだけを閉じて電源を投入すると位相差は120゜と
なる。そして、第1の結線開閉スイッチと第2の結線開
閉スイッチを同時に閉じて電源を投入すると位相差は60
゜となる。
The operation of the first invention will be described. Each of the first connection on / off switch and the second connection on / off switch is configured to provide a phase difference of 0 ° and 120 ° between the stators. Therefore, when only the first connection switch is closed and the power is turned on, the phase difference is 0 °. Conversely, when only the second connection switch is closed and the power is turned on, the phase difference is 120 °. When the first connection switch and the second connection switch are simultaneously closed and the power is turned on, the phase difference becomes 60.
It becomes ゜.

つまり、第1と第2の結線開閉スイッチで0゜,60゜,
120゜の3つの位相差を設けることが可能となる。
That is, 0 °, 60 °,
It is possible to provide three phase differences of 120 °.

以上をまとめると次のように作用する。まず第2の結
線開閉スイッチを投入して電源を投入すると固定子間の
位相差は120゜で起動する。負荷は位相差120゜のトルク
特性曲線により起動される。
The above works in the following manner. First, when the second connection switch is turned on and the power is turned on, the phase difference between the stators is started at 120 °. The load is activated by a torque characteristic curve with a phase difference of 120 °.

次に任意時間経過後または任意回転数に至って第2の
結線開閉スイッチはそのままで、第1の結線開閉スイッ
チを投入し位相差を60゜に変化させる。負荷は位相差60
゜のトルク特性で更に加速され電動機の回転は上昇す
る。最後に第1の結線開閉スイッチ投入から任意時間経
過後または任意回転数に至り第2の結線開閉スイッチを
解放すると位相差は0゜となり、一般の誘導電動機のト
ルク特性で負荷は駆動される。
Next, after an elapse of an arbitrary time or at an arbitrary rotation speed, the first connection on / off switch is turned on while the second connection on / off switch is kept as it is to change the phase difference to 60 °. Load is phase difference 60
The motor is further accelerated by the torque characteristic of ゜ and the rotation of the motor is increased. Finally, when an arbitrary time elapses after turning on the first connection on / off switch or reaches an arbitrary rotation speed and the second connection on / off switch is released, the phase difference becomes 0 °, and the load is driven by the torque characteristics of a general induction motor.

このように第1と第2の2個の結線開閉スイッチの開
閉だけで位相差を三段階に変更可能であり接点数が従来
技術よりはるかに少ない。
As described above, the phase difference can be changed in three stages only by opening and closing the first and second two connection opening / closing switches, and the number of contacts is far smaller than that of the related art.

更に、本発明は前記第1と第2の結線開閉スイッチと
直列に半導体素子を設けてある。この半導体素子は点弧
角により不通と導通の間を無段階に制御可能な素子であ
る。つまり、前記第1と第2の結線開閉スイッチによる
位相差の変更とともに半導体素子の点弧角の制御により
各位相差におけるトルク特性に更に変化を持たせること
が可能となるものである。特に、起動時の衝撃緩和に効
果は大きく、たとえば位相差120゜で起動の時、出力ト
ルクを零からこの位相差のトルク特性まで徐々に変化さ
せることが容易に実現できる。
Further, in the present invention, a semiconductor element is provided in series with the first and second connection on / off switches. This semiconductor element is an element capable of steplessly controlling between interruption and conduction by the firing angle. That is, by controlling the firing angle of the semiconductor element together with the change of the phase difference by the first and second connection on / off switches, it is possible to further change the torque characteristic at each phase difference. In particular, the effect of relieving the impact at the time of starting is great. For example, at the time of starting with a phase difference of 120 °, the output torque can be easily changed gradually from zero to the torque characteristic of this phase difference.

また、上記説明のとおり第1と第2の結線開閉スイッ
チのどちらかが常に投入状態であるから第1及び第2の
結線開閉スイッチの接点容量は小さくでき、負荷電流を
遮断することなく発生トルクが零になることもない。更
に、第1及び第2の結線開閉スイッチの両方を投入して
使用する段階があるので、万一開閉スイッチの事故、た
とえば接点の溶着等で一方又は両方が投入状態になって
も電気的な事故発生に結びつくことはない。
Further, as described above, since either the first or second connection on / off switch is always in the ON state, the contact capacity of the first and second connection on / off switches can be reduced, and the generated torque can be obtained without interrupting the load current. Does not become zero. Further, since there is a stage in which both the first and second connection opening / closing switches are turned on and used, even if one or both of the switches are turned on due to an accident of the opening / closing switch, for example, welding of contacts, etc. It does not lead to an accident.

次に第2の発明の作用として、前記第1と第2の結線
開閉スイッチと半導体素子の直列回路に対し並列に、回
転磁界の位相差を120゜に切換可能な第3の結線開閉ス
イッチを設けたものの作用を説明する。
Next, as a function of the second invention, a third connection on / off switch capable of switching the phase difference of the rotating magnetic field to 120 ° is provided in parallel with the series circuit of the first and second connection on / off switches and the semiconductor element. The operation of the provided one will be described.

一般的な起動から運転までを順を追って説明する。半
導体素子を不通状態(点弧角180゜)にして、半導体素
子に直列にしてある第2の結線開閉スイッチ(位相差12
0゜)だけを投入して半導体素子の点弧角を不通から導
通(点弧角0゜)へ徐々に変化させると、固定子巻線に
かかる電圧は徐々に昇圧し、位相差120゜のトルク特性
で徐々に起動する。
A general process from start to operation will be described step by step. With the semiconductor element in a non-conductive state (ignition angle 180 °), a second connection open / close switch (phase difference 12
0 °) alone to gradually change the firing angle of the semiconductor element from non-conduction to conduction (firing angle 0 °), the voltage applied to the stator winding gradually increases, and a phase difference of 120 ° Starts gradually with torque characteristics.

次に点弧角を導通状態まで変化させた時、第3の結線
開閉スイッチ(位相差120゜)を投入後、半導体素子の
点弧角を不通とし第2の結線開閉スイッチを開放する。
続いて、半導体素子に直列にしてある第1の結線開閉ス
イッチ(位相差0゜)を投入し、半導体素子の点弧角を
不通から導通へ徐々に変化させると、第3の結線開閉ス
イッチによる位相差120゜の直列デルタ結線と第1の結
線開閉スイッチによる位相差0゜の直列デルタ結線とが
固定子巻線に同時に表れ固定子巻線は位相差60゜の並列
スター結線となる。このことは前述の作用に述べた通り
であり、つまり第1の結線開閉スイッチ(位相差0゜)
と第2の結線開閉スイッチ(位相差120゜)とを同時に
投入したものと同等である。
Next, when the firing angle is changed to the conductive state, after turning on the third connection on / off switch (120 ° phase difference), the firing angle of the semiconductor element is interrupted and the second connection on / off switch is opened.
Subsequently, the first connection on / off switch (phase difference 0 °) connected in series with the semiconductor element is turned on, and the firing angle of the semiconductor element is gradually changed from non-conduction to conduction. A series delta connection having a phase difference of 120 ° and a series delta connection having a phase difference of 0 ° by the first connection on / off switch simultaneously appear on the stator winding, and the stator winding becomes a parallel star connection having a phase difference of 60 °. This is as described in the above operation, that is, the first connection on / off switch (0 ° phase difference)
And the second connection opening / closing switch (120 ° phase difference) are simultaneously turned on.

前記半導体素子の点弧角を導通にした後、半導体素子
の点弧角は導通のまま第3の結線開閉スイッチを開放す
ると、第1の結線開閉スイッチによる位相差0゜が残
り、2固定子誘導電動機は運転用トルクに至る。
After the firing angle of the semiconductor element is made conductive, the third connection on / off switch is opened while the firing angle of the semiconductor element is kept on. Induction motors lead to operating torque.

このように、第1の発明の作用は最少の結線開閉スイ
ッチ数で、位相差の変化を多段にして起動時と各位相差
におけるトルク特性に変化を持たせたものであり、負荷
電流の遮断がなく安価に起動性の改善とトルクの変化を
得ることが可能となった。
As described above, the operation of the first invention is to change the torque characteristics at the start and at each phase difference by changing the phase difference in multiple stages with the minimum number of connection opening / closing switches. It has become possible to obtain an improved startability and a change in torque at low cost.

第2の発明の作用は、第1の発明の作用に加えトルク
の変化を段階的でなく、位相差120゜から位相差60゜ま
で徐々に変化させ、特に起動時から運転に至る中間のト
ルク特性への位相差の変化による発生トルクの変動をな
くし、始動性の改善とショックのない位相差の切換を可
能としたものである。
The operation of the second invention is that, in addition to the operation of the first invention, the change in torque is not stepwise, but is gradually changed from a phase difference of 120 ° to a phase difference of 60 °. A change in the generated torque due to a change in the phase difference to the characteristic is eliminated, and the startability can be improved and the phase difference can be switched without shock.

次に、2固定子誘導電動機の前記2個の回転子コア間
の前記空間又は非磁性体コア部において、前記複数個の
回転子導体のうち隣接する任意の導体間を相互に抵抗短
絡する連結材を設けた場合の作用を説明する。
Next, in the space or the non-magnetic core portion between the two rotor cores of the two-stator induction motor, a connection for mutually resistance-short-circuiting any adjacent one of the plurality of rotor conductors. The operation when a material is provided will be described.

まず、連結材が無いまま前記第1または第2の発明の
作用による位相差を設けると、位相差が大きくなればな
るほど回転子に誘起する電圧は減少し発生トルクは小さ
くなる。更に、他の方法で位相差を180゜にすると回転
子に誘起する電圧は遂には零となる。このときのトルク
特性の変化は一次電圧制御と同様のトルク特性の変化を
示す。この場合において本発明は、一次電圧制御に必要
とする高価な装置に変わって簡単な開閉スイッチで構成
できる多大な効果を有するものである。
First, when a phase difference is provided by the operation of the first or second aspect of the present invention without a connecting member, as the phase difference increases, the voltage induced in the rotor decreases and the generated torque decreases. Further, when the phase difference is made 180 ° by another method, the voltage induced in the rotor finally becomes zero. The change in the torque characteristics at this time indicates the same change in the torque characteristics as in the primary voltage control. In this case, the present invention has a great effect that a simple open / close switch can be used instead of an expensive device required for primary voltage control.

一方、連結材を設けた場合、前記第1または第2の発
明の作用による位相差を設けると、位相差が大きくなる
に従って連結材に電流が流れるようになり、他の方法で
位相差を180゜にすると電流は連結材を介して回転子導
体に流れるようになる。つまり、位相差180゜のトルク
特性を有し、この位相差の変化によるトルク特性の変化
は比例推移と同様のトルク特性を示す。
On the other hand, in the case where the connecting member is provided, if a phase difference is provided by the operation of the first or second invention, a current flows through the connecting member as the phase difference increases, and the phase difference is reduced by 180 by another method. When ゜ is set, the current flows to the rotor conductor via the connecting member. That is, it has a torque characteristic of a phase difference of 180 °, and the change in the torque characteristic due to the change in the phase difference shows the same torque characteristic as the proportional change.

ただし、連結材を、隣接する回転子導体間すべてに設
けて相互に抵抗短絡した場合においてその作用を説明し
たが、複数個の回転子導体のうち隣接する任意の導体間
を相互に抵抗短絡するよう連結材を設けると、位相差が
大きくなればなるほど前記同様に連結材に電流は流れる
が連結材を任意の導体間に設けていることから流れる電
流は制限されて1次電圧制御と比例推移の相互作用によ
る特異のトルク特性を有するものとなる。
However, the operation has been described in the case where the connecting members are provided between all the adjacent rotor conductors and short-circuited with each other. However, the resistance is short-circuited between arbitrary arbitrary adjacent ones of the plurality of rotor conductors. When the connecting member is provided, as the phase difference increases, the current flows through the connecting member in the same manner as described above, but since the connecting member is provided between arbitrary conductors, the current flowing is limited, and the transition is proportional to the primary voltage control. Have a unique torque characteristic due to the interaction of

ところで前記電圧移相装置を、前記結線開閉スイッチ
と、半導体素子及び該スイッチの開閉を任意信号により
制御する制御部とを設けて構成すると、位相差を変化さ
せることやそれによる出力トルク特性を変化させること
などの負荷変動への対応が可能となり、たとえば回転
数、負荷電流、あるいは単純にタイマーなどの信号を利
用した誘導電動機の自動制御が可能となる。一般の誘導
電動機の場合、回転速度やトルクを変化させることに高
価で大型の装置を必要とすることが常識になっている。
By the way, if the voltage phase shifter is provided with the connection on / off switch, and a semiconductor element and a control unit for controlling the opening and closing of the switch by an arbitrary signal, the phase difference can be changed, and the output torque characteristic can be changed. This makes it possible to cope with a load fluctuation such as causing the motor to automatically control the induction motor using a signal such as a rotation speed, a load current, or simply a timer. It is common knowledge that a general induction motor requires an expensive and large device to change the rotation speed and torque.

本発明の誘導電動機を電源に接続し第1と第2の結線
切換スイッチからなる電圧移相装置を接続する際に必要
とする配線数は、三相仕様の場合、電源線三本、移相装
置に六本の計九本を必要とする。移相装置を電源側に設
けた場合、電動機側から六本の配線と電源側から三本の
配線とを必要とし現場対応が難しい。ここで移相装置を
電動機と一体とすることで、電源側からの三本の配線で
事足りることになる。一般の電動機においても大型とな
ると、Y−△始動のため六本の配線作業は複雑となる
が、本発明は2個のスイッチによる電圧移相装置により
誘導電動機のトルク特性を変化させ、前記電圧移相装置
を誘導電動機と一体にしたことにより配線数は電源の三
本だけでよい。したがって現場対応は電動機が大型にな
っても小形同様に電源の三本の配線と回転方向だけ確認
すればよく配線材費用の低減と作業の簡素化が可能とな
る。
When connecting the induction motor of the present invention to a power supply and connecting a voltage phase shifter comprising first and second connection changeover switches, the number of wires required for a three-phase specification is three power supply wires, The equipment requires six, nine in total. When the phase shifter is provided on the power supply side, six wires are required from the motor side and three wires are required from the power supply side, and it is difficult to deal with the field. Here, by integrating the phase shifter with the electric motor, three wires from the power supply side are sufficient. If a general motor also becomes large, the work of wiring six wires for starting the Y- △ becomes complicated, but the present invention changes the torque characteristics of the induction motor by using a voltage phase shift device with two switches, and Since the phase shift device is integrated with the induction motor, the number of wires is only three for the power supply. Therefore, even if the motor becomes large, it is sufficient to check only the three wirings and the rotation direction of the power supply, even if the motor becomes large, so that the cost of wiring materials can be reduced and the work can be simplified.

〔実施例〕 本発明は主としてかご型回転子をもつ2固定子誘導電
動機の電圧移相装置として詳細を説明するが、これに限
定されないことは言うまでもない。また巻線型回転子を
もつ2固定子誘導電動機の場合もある。
Embodiment The present invention will be described in detail mainly as a voltage phase shifter of a two-stator induction motor having a cage rotor, but it is needless to say that the present invention is not limited to this. In some cases, a two-stator induction motor having a wound rotor is used.

すでに本出願人は、特願昭61−128314号として本発明
の構成の一部である複数固定子からなる誘導電動機の構
成、作用の詳細な説明を行なっている。
The present applicant has already described in detail the structure and operation of an induction motor comprising a plurality of stators, which is a part of the structure of the present invention, as Japanese Patent Application No. 61-128314.

第1図により本発明の構成の一部をなす電動機の1実
施例を説明する。符号1は本発明に係る2固定子誘導電
動機であり、該誘導電動機1は以下のような構成を有す
る。磁性材料からなる回転子コア2,3を任意の間隔を設
けて回転子軸4に装着する。回転子コア2,3間は非磁性
体コア5を介設するか、または空間とする。回転子コア
2,3に連通して複数個の導体6を装設し一体的な回転子
7を形成し、その直列に連結した複数個の導体6…の両
端部は短絡環8,8により短絡される。また、本実施例に
おいては回転子7に装設された導体6…は回転子コア2,
3間の非磁性体コア5部において、複数個の導体6間の
それぞれを回転磁界の位相差により電流が流れる連結材
9を介して連結してある。
Referring to FIG. 1, one embodiment of an electric motor which forms a part of the configuration of the present invention will be described. Reference numeral 1 denotes a two-stator induction motor according to the present invention, and the induction motor 1 has the following configuration. The rotor cores 2 and 3 made of a magnetic material are mounted on the rotor shaft 4 at arbitrary intervals. A non-magnetic core 5 is provided between the rotor cores 2 and 3, or a space is provided between the rotor cores 2 and 3. Rotor core
A plurality of conductors 6 are provided in communication with 2, 3 to form an integral rotor 7, and both ends of the plurality of conductors 6 connected in series are short-circuited by short-circuit rings 8,8. . In this embodiment, the conductors 6 provided on the rotor 7 are the rotor cores 2,.
In the portion of the non-magnetic core 5 between the three, each of the plurality of conductors 6 is connected via a connecting member 9 through which a current flows due to the phase difference of the rotating magnetic field.

回転子コア2,3に対峙する外側部に巻線10,11を施した
第1固定子12と第2固定子13を機枠14に並設し、第1固
定子12と第2固定子13は機枠14に固定する。
A first stator 12 and a second stator 13 provided with windings 10 and 11 on outer portions facing the rotor cores 2 and 3 are arranged side by side on a machine frame 14, and the first stator 12 and the second stator 13 is fixed to the machine frame 14.

次に本発明の第1の発明による実施例を第2図以降に
示す。
Next, an embodiment according to the first invention of the present invention is shown in FIGS.

第2図は第1の発明の結線図を示し、次のようになっ
ている。
FIG. 2 shows a connection diagram of the first invention, which is as follows.

固定子巻線11の各コイルの一方の端子U1,V1,W1を3相
電源R,S,Tに接続すると共に、他方の端子X1,Y1,Z1を半
導体素子Tを介して結線開閉スイッチS1の一方の端子に
接続してある。また固定子巻線10の各コイルの一方の端
子U2,V2,W2を結線開閉スイッチS1の他方の端子に接続す
る共に、他方の端子X2,Y2,Z2を前記端子V1,W1,U1に接続
してある。すなわち結線開閉スイッチS1の投入によって
固定子巻線11の作る回転磁界と固定子巻線10の作る回転
磁界の位相差角が電気角で0゜の直列デルタに結線され
るように接続してある。
One terminal U 1 , V 1 , W 1 of each coil of the stator winding 11 is connected to a three-phase power source R, S, T, and the other terminal X 1 , Y 1 , Z 1 is connected to a semiconductor element T. It is connected to one terminal of the connection opening and closing switches S 1 through. In addition, one terminal U 2 , V 2 , W 2 of each coil of the stator winding 10 is connected to the other terminal of the wiring switch S 1 , and the other terminal X 2 , Y 2 , Z 2 is connected to the terminal Connected to V 1 , W 1 , U 1 . That is, connected to the phase difference angle of the rotating magnetic field to produce a rotating magnetic field generated with the stator winding 11 after the input of the connection opening and closing the switch S 1 of the stator winding 10 is connected to the 0 ° series delta by an electrical angle is there.

また結線開閉スイッチS2の一方の端子は結線開閉スイ
ッチS1の一方の端子と並列に接続し、他方の端子は固定
子巻線10の一方の端子V2,W2,U2に接続してある。すなわ
ち結線開閉スイッチS2の投入によって、固定子巻線11の
作る回転磁界と固定子巻線10の作る回転磁界の位相差角
が電気角で120゜の直列デルタに結線されるように接続
してある。
The one terminal of the connection opening and closing the switch S 2 is connected in parallel to one terminal of the connection opening and closing the switch S 1, the other terminal connected to one terminal V 2, W 2, U 2 of the stator windings 10 It is. That the introduction of connection closing switch S 2, and connected so that the phase difference angle of the rotating magnetic field to produce a rotating magnetic field formed with the stator windings 11 of the stator winding 10 is connected to a 120 ° series delta by an electrical angle It is.

また、前記結線開閉スイッチS1と結線開閉スイッチS2
および半導体素子Tを任意信号により開閉制御する制御
部15を設けて、開閉スイッチと半導体素子と制御部とで
電圧移相装置18を構成している。
Further, the connection opening switch S 1 and the connection opening and closing switch S 2
Further, a control unit 15 for controlling the opening and closing of the semiconductor element T by an arbitrary signal is provided, and the open / close switch, the semiconductor element and the control unit constitute a voltage phase shifter 18.

以上の構成における作用を説明する。説明は起動から
運転に向う順序でおこなう。
The operation in the above configuration will be described. The description will be made in the order from start to operation.

まず結線開閉スイッチS2を投入し、結線開閉スイッチ
S1を開放した状態で3相電源R,S,Tを生かすと、固定子
巻線11と固定子巻線10とは半導体素子Tを介して電源に
直列△に結線された状態で励磁されることになる。これ
を第3図に示す。ここで半導体素子Tにトライアックま
たは逆極性に並列に接続したサイリスタを使用してその
点弧角を0゜とすれば、各コイルの分担電圧E1,E2,E3,E
1′,E2′,E3′は電源の線間電圧の1/2となり、E1
E1′,E2とE2′およびE3とE3′の位相差角θはθ=120゜
となる。従って固定子巻線11,10の作る2つの回転磁界
の位相差角θはθ=120゜となる。
The connection closing switch S 2 is turned on first, connection off switch
If take a three-phase power R with opened S 1, S, and T, and the stator winding 10 and stator windings 11 are energized in a state of being connected in series △ to a power supply via a semiconductor element T Will be. This is shown in FIG. If the firing angle is set to 0 ° using a triac or a thyristor connected in parallel with the opposite polarity to the semiconductor element T, the sharing voltage E 1 , E 2 , E 3 , E
1 ′, E 2 ′, E 3 ′ are half of the line voltage of the power supply, and E 1
The phase difference angle θ between E 1 ′, E 2 and E 2 ′ and E 3 and E 3 ′ is θ = 120 °. Therefore, the phase difference angle θ between the two rotating magnetic fields generated by the stator windings 11 and 10 is θ = 120 °.

このときのトルク特性は第4図に示すθ=120゜の特
性となる。また半導体素子Tの点弧角を180゜にすれ
ば、各コイルには電流が流れなくなるので、各コイルの
分担電圧は零となり回転子に働くトルクは零となる。
The torque characteristic at this time is a characteristic of θ = 120 ° shown in FIG. Further, if the firing angle of the semiconductor element T is set to 180 °, no current flows in each coil, so that the shared voltage of each coil becomes zero and the torque acting on the rotor becomes zero.

従って起動するときは、半導体素子の点弧角を180゜
から始めて点弧角を次第に小さくして行くと、各コイル
の分担電圧が次第に大きくなり、回転子に働くトルクが
次第に大きくなって、そのトルクが負荷トルクより大き
くなると回転子が回転し始め、点弧角を0゜にすると第
4図に示すθ=120゜のトルク特性と負荷トルクとの交
点のすべりl1まで回転速度が上昇する。このように点弧
角の制御によってトルクが第4図のAの領域においてな
めらかに制御されるので、なめらかな起動をすることが
できる。
Therefore, when starting up, if the firing angle of the semiconductor element is started from 180 ° and the firing angle is gradually reduced, the shared voltage of each coil gradually increases, and the torque acting on the rotor gradually increases. When the torque becomes larger than the load torque, the rotor starts to rotate, and when the firing angle is set to 0 °, the rotation speed increases to a slip l 1 at the intersection of the load characteristic and the torque characteristic of θ = 120 ° shown in FIG. . As described above, since the torque is smoothly controlled in the region A of FIG. 4 by controlling the firing angle, a smooth start can be performed.

次に回転速度を第4図のすべりl1に相当する速度より
更に上昇させるには結線開閉スイッチS1を投入する。
Then the rotational speed further increases than the speed corresponding to the slippage l 1 of FIG. 4 is charged connection closing switch S 1.

この状態においては結線開閉スイッチS1とS2が投入さ
れているので、固定子巻線11,10の各コイルの結線状態
は第5図[a]のようになる。またこれを変形すると第
5図[b]のようになる。従って半導体素子Tの点弧角
を0゜にすると、各コイルの分担電圧E1,E2,E3,E1′,
E2′,E3′は電源の線間電圧の となり、E1とE1′,E2とE2′およびE3とE3′の位相差角
θはθ=60゜となる。従って固定子巻線11,10の作る2
つの回転磁界の位相差角θはθ=60゜となる。このとき
のトルク特性は第6図に示すB領域のθ=60゜の上限の
特性となる。また半導体素子Tの点弧角を180゜にする
と、その時のトルク特性は第6図に示すB領域のθ=60
゜の下限の特性となる。
Since connection closing switches S 1 and S 2 is turned on in this state, connection state of each coil of the stator windings 11 and 10 is as shown in FIG. 5 [a]. When this is deformed, it becomes as shown in FIG. 5B. Accordingly, when the firing angle of the semiconductor element T is set to 0 °, the shared voltages E 1 , E 2 , E 3 , E 1 ′,
E 2 ′ and E 3 ′ are the line voltage of the power supply. And the phase difference angle θ between E 1 and E 1 ′, E 2 and E 2 ′, and E 3 and E 3 ′ is θ = 60 °. Therefore 2 of stator windings 11 and 10
The phase difference angle θ between the two rotating magnetic fields is θ = 60 °. The torque characteristic at this time is the characteristic of the upper limit of θ = 60 ° in the region B shown in FIG. When the firing angle of the semiconductor element T is set to 180 °, the torque characteristic at that time becomes θ = 60 in the B region shown in FIG.
This is the lower limit characteristic of ゜.

以上要するに第5図の結線状態で半導体素子Tの点弧
角を制御すると、第6図のBの領域においてなめらかな
トルク制御をおこなうことになる。従って回転子の回転
速度は第6図のすべりl1に相当する速度からすべりm1
相当する速度までなめらかに加速されて行く。
In short, if the firing angle of the semiconductor element T is controlled in the connection state of FIG. 5, smooth torque control will be performed in the region B of FIG. Thus the rotational speed of the rotor is gradually being smoothly accelerated to a speed corresponding to the slippage m 1 from the speed corresponding to sliding l 1 of FIG. 6.

ここですべりm1は後で述べるθ=0゜のときのトルク
特性と負荷トルクとの交点のすべりである。ここで第5
図の結線状態で半導体素子Tの点弧角を0゜にすると回
転速度がすべりm1に相当する速度より上昇するので点弧
角は0゜の手前に留める。
Wherein sliding m 1 is a slip at the intersection of the torque characteristic and the load torque when theta = 0 ° as described later. Where the fifth
The firing angle of the semiconductor element T is the firing angle so rises above the speed corresponding to m 1 slip rotational speed to 0 ° in connection state of FIG kept to 0 ° forward.

次に最終の運転状態に切換える。すなわち結線開閉ス
イッチS2を開放する。この状態においては結線開閉スイ
ッチS1が投入されて結線開閉スイッチS2が開放されてい
るので、固定子巻線11,10の各コイルの結線状態は第8
図のようになる。
Next, the state is switched to the final operation state. That opens the connection closing switch S 2. Since connection closing switch S 1 in this state is turned to the connection opening and closing switch S 2 is open, wire connection of the coils of the stator windings 11 and 10 is 8
It looks like the figure.

この結線状態で半導体素子Tの点弧角を0゜にする
と、各コイルの分担電圧E1,E2,E3,E1′,E2′,E3′は電
源の線間電圧の1/2となり、E1とE1′とE2とE2′およびE
3とE3′の位相差角θはθ=0゜となる。従って固定子
巻線11,10の作る回転磁界の位相差角θはθ=0゜とな
る。
When the firing angle of the semiconductor element T is set to 0 ° in this connection state, the shared voltages E 1 , E 2 , E 3 , E 1 ′, E 2 ′, and E 3 ′ of each coil become 1% of the line voltage of the power supply. / 2, E 1 and E 1 'and E 2 and E 2' and E
The phase difference angle θ between 3 and E 3 ′ is θ = 0 °. Therefore, the phase difference angle θ of the rotating magnetic field generated by the stator windings 11 and 10 is θ = 0 °.

このときのトルク特性は第7図のθ=0゜の特性とな
る。このθ=0゜の特性は従来の誘導電動機のトルク特
性と同じである。従って第8図の結線状態で半導体素子
Tの点弧角を制御すれば、トルクが第7図のCの領域で
制御されることになり、点弧角を0゜にすれば、第7図
に示すθ=0゜のトルク特性と負荷トルクとの交点のす
べりm1に相当する最終の運転状態の速度に上昇させるこ
とができる。
The torque characteristic at this time is the characteristic of θ = 0 ° in FIG. The characteristic of θ = 0 ° is the same as the torque characteristic of the conventional induction motor. Therefore, if the firing angle of the semiconductor element T is controlled in the connection state of FIG. 8, the torque is controlled in the region C of FIG. 7, and if the firing angle is set to 0 °, the torque of FIG. it can be increased to the speed of the final operational state corresponding to sliding m 1 at the intersection of the theta = 0 ° torque characteristic and the load torque shown in.

ここで第7図に示すCの領域のトルクは従来の誘導電
動機の一次電圧制御方式によるものと同じである。
Here, the torque in the region C shown in FIG. 7 is the same as that according to the conventional primary voltage control method of the induction motor.

以上の制御を要約すると第1表のとおりである。 The above control is summarized in Table 1.

次に回転子を停止させるときの制動について説明す
る。
Next, braking when stopping the rotor will be described.

第2図に示す各相の半導体素子Tを逆極性に並列に接
続したサイリスタで構成した場合は、第3図の結線状態
すなわち結線開閉スイッチS2を投入して結線開閉スイッ
チS1を開放した状態かまたは第8図の結線状態すなわち
結線開閉スイッチS1を投入して結線開閉スイッチS2を開
放した状態で、逆極性に並列に接続したサイリスタの一
方のサイリスタの点弧角を180゜に保持して他方のサイ
リスタの点弧角を0゜にすれば、各コイルに流れる電流
が半波整流された電流となって直流分を含むので、回転
子にブレーキがかかる。
If configured in the thyristor with the parallel connection of the semiconductor element T of each phase shown in FIG. 2 in the opposite polarity, the third view of connection state that is charged with connection closing switch S 2 opens the connection closing switches S 1 state or eighth view of connection state that is charged with connection closing switch S 1 in the open state of the connection opening and closing switch S 2, the firing angle of the one of the thyristors of the thyristor connected in parallel with opposite polarity 180 ° If the firing angle of the other thyristor is set to 0 ° while holding the current, the current flowing through each coil becomes a half-wave rectified current and includes a DC component, so that the rotor is braked.

従って逆極性に並列に接続したサイリスタの一方のサ
イリスタの点弧角を180゜に保持して、他方のサイリス
タの点弧角を制御すれば、各コイルに流れる直流分電流
が制御されるので、回転子のブレーキを制御することが
できる。
Therefore, if the firing angle of one thyristor of the thyristors connected in parallel with the opposite polarity is maintained at 180 ° and the firing angle of the other thyristor is controlled, the DC component current flowing through each coil is controlled. The rotor brake can be controlled.

なお、第3図の結線状態でブレーキをかけると、θ=
120゜のために高速領域で強いブレーキがかかり、第8
図の結線状態ではθ=0゜のために低速領域で強いブレ
ーキがかかる。また、結線開閉スイッチS1を共に投入し
た第5図の結線状態においてもそれなりのブレーキ作用
がある。
When the brake is applied in the connection state shown in FIG. 3, θ =
Strong braking in high speed area for 120 ゜, 8th
In the connection state shown in the figure, since θ = 0 °, a strong brake is applied in a low speed region. Further, there is a moderate braking action even in connection state of FIG. 5 which together put connection closing switch S 1.

従って負荷に応じて適当なブレーキがかけられるよう
に切換えることが可能である。
Therefore, it is possible to switch so that an appropriate brake can be applied according to the load.

次に本発明の第2の発明による実施例を第9図以降に
示す。
Next, an embodiment according to the second invention of the present invention is shown in FIG. 9 and subsequent figures.

第9図は第2発明の結線図である。固定子巻線11の各
コイルの一方の端子U1,V1,W1を3相電源R,S,Tに接続す
ると共に、他方の端子X1,Y1,Z1を半導体素子Tを介して
結線開閉スイッチS1の一方の端子に接続してある。また
固定子巻線10の各コイルの一方の端子U1,V2,W2を結線開
閉スイッチS1の他方の端子に接続すると共に、他方の端
子X2,Y2,Z2を前記端子V1,W1,U1に接続してある。すなわ
ち結線開閉スイッチS1の投入によって固定子巻線11の作
る回転磁界と固定子巻線10の作る回転磁界の位相差角が
電気角で0゜の直列デルタに結線されるように接続して
ある。
FIG. 9 is a connection diagram of the second invention. One terminal U 1 , V 1 , W 1 of each coil of the stator winding 11 is connected to a three-phase power source R, S, T, and the other terminal X 1 , Y 1 , Z 1 is connected to a semiconductor element T. It is connected to one terminal of the connection opening and closing switches S 1 through. Also, one terminal U 1 , V 2 , W 2 of each coil of the stator winding 10 is connected to the other terminal of the connection switch S 1 , and the other terminal X 2 , Y 2 , Z 2 is connected to the terminal Connected to V 1 , W 1 , U 1 . That is, connected to the phase difference angle of the rotating magnetic field to produce a rotating magnetic field generated with the stator winding 11 after the input of the connection opening and closing the switch S 1 of the stator winding 10 is connected to the 0 ° series delta by an electrical angle is there.

また、結線開閉スイッチS2の一方は結線開閉スイッチ
S1の一方の端子と並列に接続し、他方は固定子巻線10の
一方の端子V2,W2,U2に接続してある。すなわち結線開閉
スイッチS2の投入によって固定子巻線11の作る回転磁界
と固定子巻線10の作る回転磁界の位相差角が電気角で12
0゜の直列デルタに結線されるように接続してある。さ
らに結線開閉スイッチS3の一方は固定子巻線11の各コイ
ルの端子X1,Y1,Z1に接続すると共に、他方は固定子巻線
10の各コイルの端子V2,W2,U2に接続してある。すなわち
結線開閉スイッチS3の投入によって固定子巻線11の作る
回転磁界と固定子巻線10の作る回転磁界の位相差角が電
気角で120゜の直列デルタに結線されるように接続して
ある。
One of the connection on / off switches S 2 is a connection on / off switch
Connected in parallel to one terminal of the S 1, the other is connected to one terminal V 2, W 2, U 2 of the stator windings 10. That 12 phase difference angle of the rotating magnetic field to produce a rotating magnetic field generated with the stator winding 11 after the input of the connection opening and closing switch S 2 of the stator windings 10 are in electrical angle
They are connected so as to be connected to a series delta of 0 °. Furthermore with one connection opening and closing the switch S 3 is connected to a terminal X 1, Y 1, Z 1 of each coil of the stator winding 11, the other stator winding
10 are connected to terminals V 2 , W 2 , and U 2 of each coil. That is, connected to the phase difference angle of the rotating magnetic field to produce a rotating magnetic field generated with the stator winding 11 after the input of the connection opening and closing switches S 3 of the stator winding 10 is connected to a 120 ° series delta by an electrical angle is there.

また、前記結線開閉スイッチS1と結線開閉スイッチS2
と結線開閉スイッチS3および半導体素子Tを任意信号に
より開閉制御する制御部16を設けて、開閉スイッチと半
導体素子と制御部とで電圧移相装置18を構成している。
Further, the connection opening switch S 1 and the connection opening and closing switch S 2
And a connection closing switches S 3 and the semiconductor element T is provided a control unit 16 to open and close control by any signal, and constitutes a voltage phase shifting device 18 in the opening and closing switch and the semiconductor element and a control unit.

以上の構成における作用を説明する。説明は起動から
運転に向う順序でおこなう。まず、結線開閉スイッチS2
を投入し、結線開閉スイッチS1,S3を開放した状態で3
相電源R,S,Tを生かすと、固定子巻線11と固定子巻線10
とは半導体素子Tを介して電源に直列デルタに結線され
た状態で励磁されることになる。これを第10図に示す。
The operation in the above configuration will be described. The description will be made in the order from start to operation. First, the wiring switch S 2
Is turned on, and 3 with the connection open / close switches S 1 and S 3 open.
Taking advantage of the phase power supplies R, S, T, the stator winding 11 and the stator winding 10
Is excited in a state of being connected to the power supply via the semiconductor element T in series delta. This is shown in FIG.

ここで半導体素子Tにトライアックまたは逆極性に並
列に接続したサイリスタを使用してその点弧角を0゜と
すれば、各コイルの分担電圧E1,E2,E3,E1′,E2′,E3
は電源の線間電圧の1/2となり、E1とE1′,E2とE2′およ
びE3とE3′の位相差角θはθ=120゜となる。従って固
定子巻線11,10の作る2つの回転磁界の位相差角θはθ
=120゜となる。
If the firing angle is set to 0 ° using a triac or a thyristor connected in parallel with the opposite polarity to the semiconductor element T, the sharing voltages E 1 , E 2 , E 3 , E 1 ′, E 2 ′, E 3
Becomes 1/2 of the line voltage of the power supply, and the phase difference angle θ between E 1 and E 1 ′, E 2 and E 2 ′, and E 3 and E 3 ′ becomes θ = 120 °. Therefore, the phase difference angle θ between the two rotating magnetic fields generated by the stator windings 11 and 10 is θ
= 120 °.

このときのトルク特性は第11図のθ=120゜の特性と
なる。また半導体素子Tの点弧角を180゜にすれば、各
コイルには電流が流れないので、各コイルの分担電圧は
零となり、回転子に働くトルクは零となる。
The torque characteristic at this time is the characteristic of θ = 120 ° in FIG. Further, if the firing angle of the semiconductor element T is set to 180 °, no current flows in each coil, so that the shared voltage of each coil becomes zero and the torque acting on the rotor becomes zero.

従って起動するときは、半導体素子Tの点弧角を180
゜から始めて点弧角を次第に小さくして行くと、各コイ
ルの分担電圧が次第に大きくなり、回転子に働くトルク
が次第に大きくなって、そのトルクが負荷トルクより大
きくなると回転子が回転し始め、点弧角を0゜にする
と、第11図に示すθ=120゜のトルク特性と負荷トルク
との交点のすべりl2まで回転速度が上昇する。このよう
に点弧角の制御によってトルクが第11図のAの領域にお
いてなめらかに制御されるのでなめらかな起動をするこ
とができる。
Therefore, when starting, the firing angle of the semiconductor element T is set to 180 degrees.
Starting from ゜ and gradually reducing the firing angle, the shared voltage of each coil gradually increases, the torque acting on the rotor gradually increases, and when the torque exceeds the load torque, the rotor starts rotating, If the firing angle is 0 °, the rotational speed is increased to slip l 2 of intersection between the load torque theta = 120 ° the torque characteristic shown in FIG. 11. In this way, the torque is smoothly controlled in the region A of FIG. 11 by controlling the firing angle, so that a smooth start can be performed.

次に回転速度を第11図のすべりl2に相当する速度より
更に上昇させるには次の操作をおこなう。すなわち、先
ず結線開閉スイッチS3を投入して半導体素子Tの点弧角
を0゜から180゜にもどす。この状態においては結線開
閉スイッチS2とS3とが投入されS1が開放されているの
で、固定子巻線11,10の各コイルの結線状態は第12図の
ようになる。従って半導体素子Tが結線開閉スイッチS3
の投入によって短絡されるので、半導体素子Tの点弧角
を0゜から180゜にもどしても各コイルに流れる電流に
は変化がなく、トルク特性は第11図のθ=120゜の特性
のままで変化はない。
Then perform the following operations the rotational speed further increases than the speed corresponding to the slippage l 2 of Figure 11. That is, first back and put connection closing switch S 3 the firing angle of the semiconductor element T from 0 ° to 180 °. Since S 1 and connection closing switch S 2 and S 3 is turned is opened in this state, connection state of each coil of the stator windings 11 and 10 is as shown in Figure 12. Therefore, the semiconductor element T is connected to the connection switch S 3
When the firing angle of the semiconductor element T is returned from 0 ° to 180 °, there is no change in the current flowing through each coil, and the torque characteristic is the same as that of θ = 120 ° in FIG. There is no change.

次に結線開閉スイッチS2を開放して結線開閉スイッチ
S1を投入する。この状態においては結線開閉スイッチS3
とS1が投入されて結線開閉スイッチS2が開放されている
ので、固定子巻線11,10の各コイルの結線状態は第13図
のようになるが、半導体素子Tの点弧角が180゜の時は
トルク特性は第11図のθ=120゜の特性のままで変化は
ない。
Then by opening the connection closing switch S 2 connection off switch
Turning on the S 1. In this state, the connection switch ON / OFF switch S 3
Since S 1 is being turned is connected close switch S 2 is open and, connection state of the coils of the stator windings 11 and 10 are made as FIG. 13, the firing angle of the semiconductor element T is At 180 °, the torque characteristic remains the same as θ = 120 ° in FIG. 11 and does not change.

次にこの結線で半導体素子Tの点弧角を0゜にする
と、コイルの端子X1とU2,Y1とV2,Z1とW2間が短絡された
状態になるので、各コイルの分担電圧E1,E2,E3,E1′,
E2′,E3′は第14図のようになる。
Next, when the firing angle of the semiconductor element T is set to 0 ° in this connection, the terminals X 1 and U 2 , Y 1 and V 2 , and Z 1 and W 2 of the coil are short-circuited. shared voltage E 1, E 2, E 3 of, E 1 ',
E 2 ′ and E 3 ′ are as shown in FIG.

すなわち、各コイルの分担電圧E1,E2,E3,E1′,E2′,E
3′は電源の線間電圧の となり、E1とE1′,E2とE2′およびE3とE3′の位相差角
θはθ=60゜となる。従って固定子巻線10,11の作る2
つの回転磁界の位相差角θはθ=60゜となる。このとき
のトルク特性は第11図のθ=60゜の特性となる。
That is, the shared voltages E 1 , E 2 , E 3 , E 1 ′, E 2 ′, E
3 ′ is the line voltage of the power supply And the phase difference angle θ between E 1 and E 1 ′, E 2 and E 2 ′, and E 3 and E 3 ′ is θ = 60 °. Therefore 2 of stator windings 10 and 11
The phase difference angle θ between the two rotating magnetic fields is θ = 60 °. The torque characteristic at this time is the characteristic of θ = 60 ° in FIG.

このθ=60゜のときのトルクは後で説明するθ=0゜
のときのトルクより大きいので第13図の結線状態での半
導体素子Tの点弧角の制御はθ=0゜のときのトルクに
近いトルクの出る点弧角δに留める。この点弧角は0゜
に近い値である。
Since the torque at θ = 60 ° is larger than the torque at θ = 0 ° described later, the control of the firing angle of the semiconductor element T in the connection state of FIG. Keep the firing angle δ at which torque close to the torque is generated. This firing angle is a value close to 0 °.

以上要するに第13図の結線状態においては、半導体素
子の点弧角を180゜から始めて次第に小さくして行って
0゜の少し手前で留めて第11図のBの領域においてなめ
らかなトルク制御をおこなうことになる。従って回転子
の回転速度は第11図のすべりl2に相当する速度からすべ
りm2に相当する速度までなめらかに加速されて行く。
In short, in the connection state of FIG. 13, the firing angle of the semiconductor element is started from 180 ° and is gradually reduced, and the angle is set slightly before 0 °, and smooth torque control is performed in the region B of FIG. Will be. Thus the rotational speed of the rotor is gradually being smoothly accelerated to a speed corresponding to the slippage m 2 from a speed corresponding to the slippage l 2 of Figure 11.

次は最後の運転状態に切換える。すなわち結線開閉ス
イッチS3を開放する。この状態においては結線開閉スイ
ッチS1が投入されて結線開閉スイッチS2とS3が開放され
ているので、固定子巻線11,10の各コイルの結線状態は
第15図のようになる。
Next, it switches to the last operation state. That opens the connection closing switch S 3. Since connection closing switch S 1 is being turned is connected close switch S 2 and S 3 are opened in this state, connection state of each coil of the stator windings 11 and 10 is as shown in Figure 15.

この結線状態で半導体素子Tの点弧角を0゜にする
と、各コイルの分担電圧E1,E2,E3,E1′,E2′,E3′は電
源の線間電圧の1/2となり、E1とE1′,E2とE2′およびE3
とE3′の位相差角θはθ=0゜となる。従って固定子巻
線11,10の作る回転磁界の位相差角θはθ=0゜とな
る。
When the firing angle of the semiconductor element T is set to 0 ° in this connection state, the shared voltages E 1 , E 2 , E 3 , E 1 ′, E 2 ′, and E 3 ′ of each coil become 1% of the line voltage of the power supply. / 2, E 1 and E 1 ′, E 2 and E 2 ′ and E 3
And the phase difference angle θ between E 3 ′ is θ = 0 °. Therefore, the phase difference angle θ of the rotating magnetic field generated by the stator windings 11 and 10 is θ = 0 °.

このときのトルク特性は第11図のθ=0゜の特性とな
り、このθ=0゜の特性は従来の誘導電動機のトルク特
性と同じである。
The torque characteristic at this time is the characteristic of θ = 0 ° in FIG. 11, and the characteristic of θ = 0 ° is the same as the torque characteristic of the conventional induction motor.

従って第15図の結線状態で半導体素子Tの点弧角を前
述のδに相当する点弧角から0゜に向って制御すれば、
トルクが第11図のCの領域で制御されることになって、
回転子の回転速度はすべりm2からすべりn2に相当する速
度、すなわち運転状態の最終速度に上昇させることがで
きる。第11図のCの領域のトルクは従来の誘導電動機の
一次電圧制御方式によるものと同じである。
Therefore, if the firing angle of the semiconductor element T is controlled from the firing angle corresponding to δ to 0 ° in the connection state of FIG.
The torque is to be controlled in the area of C in FIG.
The rotation speed of the rotor can be increased from slip m 2 to a speed corresponding to slip n 2 , that is, the final speed in the operating state. The torque in the area indicated by C in FIG. 11 is the same as that obtained by the primary voltage control system of the conventional induction motor.

以上の制御を要約すると第2表のとおりである。 The above control is summarized in Table 2.

以上の説明のうち第13図の結線状態で第11図に示すB
領域の制御をおこなう場合に任意の一つの相の半導体素
子Tの点弧角を制御しないで180゜の点弧角に保持する
ようにしてもよい。これは各相の半導体素子Tの相互干
渉を防ぐのに役だつものでトルク特性には変化はない。
In the above description, the connection state shown in FIG.
When the region is controlled, the firing angle of the semiconductor element T in any one phase may be maintained at 180 ° without being controlled. This is useful for preventing mutual interference between the semiconductor elements T of each phase, and there is no change in torque characteristics.

なお、各相の半導体素子Tを逆極性に並列に接続した
サイリスタで構成した場合は、第10図の結線状態すなわ
ちS2を投入してS1とS3を開放した状態かまたは第15図の
結線状態すなわちS1を投入してS2とS3を開放した状態
で、逆極性に並列に接続したサイリスタの一方のサイリ
スタの点弧角を180゜に保持して他方のサイリスタの点
弧角を0゜にすれば、各コイルに流れる電流が半波整流
された電流となって直流分を含むので回転子にブレーキ
がかかる。
Incidentally, when configured with thyristors connected in parallel to each phase of the semiconductor element T in the reverse polarity, the state or Figure 15 was opened S 1 and S 3 by introducing a connection state, that is S 2 of FIG. 10 connection state or in the open state of the S 2 and S 3 by introducing the S 1, ignition of the firing angle of the one of the thyristors by 180 ° holding the other thyristor of the thyristor connected in parallel with opposite polarity If the angle is set to 0 °, the current flowing through each coil becomes a half-wave rectified current and includes a DC component, so that the rotor is braked.

従って、逆極性に並列に接続したサイリスタの一方の
サイリスタの点弧角を180゜に保持して、他方のサイリ
スタの点弧角を制御すれば、各コイルに流れる直流分電
流が制御されるので、回転子のブレーキを制御すること
ができる。
Therefore, if the firing angle of one of the thyristors connected in parallel with the opposite polarity is maintained at 180 ° and the firing angle of the other thyristor is controlled, the DC current flowing through each coil is controlled. , Can control the rotor brake.

なお、第10図の結線状態でブレーキをかけると高速領
域で強いブレーキがかかり、第15図の結線状態では低速
領域で強いブレーキがかる。従って負荷に応じて適切な
ブレーキがかけられるように切換えることが可能であ
る。
When the brake is applied in the connection state shown in FIG. 10, a strong brake is applied in a high-speed area, and in the connection state shown in FIG. 15, a strong brake is applied in a low-speed area. Therefore, it is possible to switch so that an appropriate brake can be applied according to the load.

以上の第1および第2の実施例においては、回転子の
複数個の導体6間のそれぞれを、回転磁界の位相差によ
り電流が流れる連結材9を介して連結してあることを前
提に説明したが、ここで、同様に実施可能な前記連結材
9がない場合(A)と、回転子の複数個の導体のうち隣
接する任意の導体6間に連結材を設けた場合(B)のト
ルク特性曲線を考察してみる。
In the first and second embodiments described above, it is assumed that each of the plurality of conductors 6 of the rotor is connected via the connecting member 9 through which current flows due to the phase difference of the rotating magnetic field. However, here, the case where there is no connecting material 9 which can be similarly performed (A) and the case where a connecting material is provided between adjacent arbitrary conductors 6 among a plurality of conductors of the rotor (B) Consider the torque characteristic curve.

第16図に連結材がない場合のトルク特性曲線(A)と
回転子の複数個の導体のうち隣接する任意の導体6間に
連結材を設けた場合のトルク特性曲線(B)を示す。こ
のトルク特性曲線(A)は一次電圧制御をした時と同様
のトルク特性の変化を示し、一方のトルク特性曲線
(B)は一次電圧制御と二次側回転子の抵抗値を変化さ
せた比例推移との総和により得られるトルク特性と同様
の変化を示している。
FIG. 16 shows a torque characteristic curve (A) when there is no coupling material and a torque characteristic curve (B) when a coupling material is provided between arbitrary adjacent conductors 6 among a plurality of conductors of the rotor. The torque characteristic curve (A) shows the same change in the torque characteristic as when the primary voltage control is performed, and the torque characteristic curve (B) shows the proportionality obtained by changing the primary voltage control and the resistance value of the secondary rotor. It shows a change similar to the torque characteristic obtained by summing up the transition.

トルク特性曲線(A)における一次電圧制御同様のト
ルク特性曲線を得るためには、一次電圧を制御する高価
な電源電圧制御装置を必要とするのが一般的であった
が、本発明により簡単な2個の開閉スイッチで実現可能
となった。またトルク特性曲線(B)における一次電圧
制御と二次側回転子の抵抗値を変化させた比例推移との
総和により得られると同様のトルク特性を実現するため
には、一次電圧と二次側回転子の二次抵抗との両方を制
御するよう高価で複雑な装置を必要とするのが一般的で
あったが、本発明により回転子の複数個の導体のうち隣
接する任意の導体間に連結材を設けることと2個の開閉
スイッチで位相差を設けることの総和により巻線型誘導
電動機の二次側抵抗値を変化させた比例推移と一次電圧
制御を同時に行った、起動トルクが大きく起動電流が小
さいトルク特性を得ることが可能となった。
In order to obtain a torque characteristic curve similar to the primary voltage control in the torque characteristic curve (A), an expensive power supply voltage control device for controlling the primary voltage was generally required. It became feasible with two open / close switches. Further, in order to realize the same torque characteristics as obtained by the sum of the primary voltage control and the proportional transition in which the resistance value of the secondary rotor is changed in the torque characteristic curve (B), the primary voltage and the secondary side Although it was common to require expensive and complex devices to control both the rotor's secondary resistance and the present invention, the present invention provides a method for controlling the rotor's secondary resistance between any adjacent one of a plurality of conductors of the rotor. The proportional transition of the secondary resistance value of the wound induction motor and the primary voltage control were performed simultaneously by the total of providing the connecting material and providing the phase difference with the two open / close switches. It has become possible to obtain a torque characteristic with a small current.

第17図に、トルク特性曲線(B)を得るために回転子
に設けた連結材の一例を回転子の正断面図により示して
いる。この連結材の数量と取付位置は、希望するトルク
特性と、回転子のバランス等により変更するものであ
る。
FIG. 17 shows an example of a connecting member provided on the rotor for obtaining the torque characteristic curve (B) by a front sectional view of the rotor. The number and the mounting position of the connecting members are changed depending on the desired torque characteristics, the balance of the rotor, and the like.

ところで結線開閉スイッチS1,S2,S3と半導体素子とか
らなる位相切換装置を電動機側に設けると、電源側から
電動機への配線は三本でよく、一般の大型電動機に見ら
れるようなY−△始動のための複雑な配線を要すること
なく、低速から高速に至るまで高トルクで運転可能な電
動機とすることが可能である。
By the way, if a phase switching device composed of the connection opening / closing switches S 1 , S 2 , S 3 and a semiconductor element is provided on the motor side, only three wires are required from the power supply side to the motor, as seen in a general large motor. It is possible to provide an electric motor that can be operated at a high torque from a low speed to a high speed without requiring complicated wiring for Y- △ starting.

次に電圧移相装置の制御について、第18図、第19図に
おいて説明する。まず第18図の構成は、誘導電動機1は
開閉装置を備えた三相電源22に接続してある。また誘導
電動機には一体的に電圧移相装置20が設けてあり、該電
圧移相装置にはタイマーからなるシーケンス回路を組み
込んだ制御部21を接続してある。続いて第19図の構成を
説明する。誘導電動機1は開閉装置を備えた三相電源22
に接続してある。また誘導電動機には一体的に電圧移相
装置20が設けてあり、該電圧移相装置にはハードロジッ
ク回路等で構成された制御部23を接続してあると共に制
御部23には電動機の速度検出を行う速度検出器2の信号
を接続してある。
Next, control of the voltage phase shifter will be described with reference to FIGS. First, in the configuration of FIG. 18, the induction motor 1 is connected to a three-phase power supply 22 having a switching device. Further, the induction motor is integrally provided with a voltage phase shifter 20, and the voltage phase shifter is connected to a control unit 21 incorporating a sequence circuit including a timer. Subsequently, the configuration of FIG. 19 will be described. The induction motor 1 is a three-phase power supply 22 having a switchgear.
Connected to The induction motor is integrally provided with a voltage phase shifter 20. The voltage phase shifter is connected to a control unit 23 composed of a hard logic circuit or the like, and the control unit 23 has a speed of the motor. The signal of the speed detector 2 for detecting is connected.

以上の作用を説明する。それぞれの制御部21,23は、
タイマーによる時限又は検出器24の信号により電圧移相
装置20の前述した結線開閉スイッチと半導体素子とを制
御するものである。たとえば制御部21の場合、一般のY
−△始動は標準約10秒で切換を行うことから、位相差12
0゜で始動し、位相差0゜の定常運転までの切換えを、
たとえば、位相差120゜始動して次の位相差60゜に切換
える時間を始動後4〜5秒、そして位相差60゜から0゜
に切換える時間を位相差60゜に切換えてから4〜5秒後
にセットして、移相装置20により順次120゜から0゜ま
で3段階の位相差に切換えるものとなる。言うまでもな
いが負荷によって前述した時限は変更されるべきであ
る。
The above operation will be described. Each control unit 21, 23
The above-described connection switch and the semiconductor element of the voltage phase shifter 20 are controlled by a timer by a timer or a signal of the detector 24. For example, in the case of the control unit 21, a general Y
− △ Since starting is switched in about 10 seconds as standard, the phase difference is 12
Start at 0 ° and switch to steady operation with a phase difference of 0 °
For example, the time for starting the phase difference 120 ° and switching to the next phase difference 60 ° is 4 to 5 seconds after the start, and the time for switching from the phase difference 60 ° to 0 ° is 4 to 5 seconds after switching to the phase difference 60 °. Set later, the phase shifter 20 sequentially switches the phase difference from 120 ° to 0 ° in three stages. Needless to say, the above-mentioned time limit should be changed depending on the load.

また制御部23の場合、制御部は単純なロジック回路か
又は必要に応じてマイクロプロセッサを載せることもあ
るが、これは現在の技術水準によるものとするが、検出
器24の信号を受けて、その信号と必要に応じて変換する
回路と、変換された信号とあらかじめ定めた基準値とを
比較する回路と、あらかじめ定めた基準値を記憶させる
回路と、先の比較により信号を出力する信号出力回路等
を備えるものとなる。この信号出力回路の信号で電圧移
相装置20を順次切換えて位相差を変更してゆく。また検
出器をここでは速度検出器24としているが、回転数を検
出するもの等電動機の状態を検出する手段を用いる。
In the case of the control unit 23, the control unit may include a simple logic circuit or a microprocessor as necessary, which is based on the current state of the art, but receives a signal from the detector 24, A circuit that converts the signal as necessary, a circuit that compares the converted signal with a predetermined reference value, a circuit that stores a predetermined reference value, and a signal output that outputs a signal by the previous comparison It will have a circuit and the like. The phase difference is changed by sequentially switching the voltage phase shifter 20 with the signal of this signal output circuit. Although the speed detector 24 is used here as the detector, means for detecting the state of the electric motor, such as a device for detecting the number of revolutions, is used.

なお、本発明に係る2固定子誘導電動機のトルク特性
は、電動機の特性にもよるが位相差180゜から120゜まで
の変化が緩慢であることから、従来知られている電気的
切換による180゜,120゜,60゜,0゜の四段階の位相制御と
比較して大差なく使用できる。
The torque characteristics of the two-stator induction motor according to the present invention vary slowly from a phase difference of 180 ° to 120 ° although it depends on the characteristics of the motor. It can be used without much difference compared with four-stage phase control of {120, 60}, 0 ゜.

〔効 果〕(Effect)

以上のように2固定子誘導電動機は、その電圧移相装
置を結線開閉スイッチと半導体素子及び結線開閉スイッ
チと半導体素子を任意信号により制御する制御部とによ
り構成して、120゜と60゜及び0゜の三段階の位相差角
を設けて切換えるようにしたので、各位相差角に応じた
トルク特性によりなめらかに起動し運転に至ることが可
能となった。更に詳しくは、電圧移相装置を最少数の結
線開閉スイッチと半導体素子により構成し、トルク特性
の変化によるショックを低減させた。
As described above, the two-stator induction motor has its voltage phase shifter constituted by a connection opening / closing switch, a semiconductor element, and a connection opening / closing switch, and a control section for controlling the semiconductor element by an arbitrary signal. Since switching is performed by providing three stages of phase difference angles of 0 °, it is possible to smoothly start up and drive the vehicle by the torque characteristics according to each phase difference angle. More specifically, the voltage phase shifter is composed of a minimum number of connection on / off switches and semiconductor elements to reduce shock due to changes in torque characteristics.

また、従来技術の様々な高価な装置、たとえば電圧制
御装置、インバーター、二次抵抗器等の高価な制御装置
を必要とせず、負荷トルクに応じて位相差角を切換える
ことが可能となっただけでなく、回転子導体の連結材の
構成によって様々な負荷に対応できるトルク特性を持た
せることが可能となった。
In addition, various expensive devices of the prior art, such as a voltage control device, an inverter, and a secondary resistor, do not require an expensive control device, and only the phase difference angle can be switched according to the load torque. Instead, it is possible to provide a torque characteristic that can cope with various loads by the configuration of the connecting member of the rotor conductor.

また、電動機への配線も単純に形成される電圧移相装
置を電動機に一体とするため、三相電源の場合、電動機
には三本の配線でよく回転方向さえ見誤らなければ、誰
にでも配線が可能である。
Also, since the wiring to the motor is simply formed with a voltage phase shifter integrated into the motor, in the case of a three-phase power supply, three wires are required for the motor and anyone can recognize the direction of rotation unless the rotation direction is mistaken. Wiring is possible.

したがってトルクの多様化を図り低速から定格回転域
までなめらかに起動し回転を上昇することのできる2固
定子誘導電動機の用途の拡大と高トルクの電動機を必要
とするあらゆる分野に、更に大きく貢献できるようにな
った。
Therefore, it is possible to further diversify the torque, expand the applications of the 2-stator induction motor capable of smoothly starting and increasing the rotation from a low speed to a rated rotation range, and further contribute to any field requiring a high-torque motor. It became so.

【図面の簡単な説明】[Brief description of the drawings]

第1図は2固定子誘導電動機の側断面図、第2図は電圧
移相装置の結線図、第3図は位相差角θ=120゜におけ
る結線図、第4図は位相差角θ=120゜のトルク特性の
一例を示す図、第5図は位相差角θ=60゜における結線
図[a]とこれを変形した結線図[b]、第6図は位相
差角θ=60゜のトルク特性の一例を示す図、第7図は位
相差角θ=0゜のトルク特性の一例を示す図、第8図は
位相差角θ=0゜における結線図、第9図は電圧移相装
置の結線図、第10図は位相差角θ=120゜となる結線
図、第11図は各位相差角のトルク特性の一例を示す図、
第12図は位相差角θ=120゜における結線図、第13図は
位相差角θ=60゜となる結線図、第14図は位相差角θ=
60゜における結線図、第15図は位相差角θ=0゜におけ
る結線図、第16図は連結材がない場合のトルク特性曲線
(A)と回転子の複数個の導体の任意の導体間に連結材
を設けた場合のトルク特性曲線(B)の一例を示す図、
第17図は回転子の複数個の導体の任意間に連結材を設け
た場合の回転子の正断面図、第18図はタイマーシーケン
スによる制御ブロック図、第19図はロジック回路による
制御ブロック図である。 1……複数固定子誘導電動機、2,3……回転子コア、4
……回転子軸、5……非磁性体コア、6……回転子導
体、7……回転子、8……短絡環、9……連結材、10,1
1……固定子巻線、12……第1固定子、13……第2固定
子、14……機枠、15……制御部、16……制御部、18……
電圧移相装置、20……移相装置、21……制御部、22……
供給電源側、23……制御部、24……速度検出器。
1 is a side sectional view of a two-stator induction motor, FIG. 2 is a connection diagram of a voltage phase shifter, FIG. 3 is a connection diagram at a phase difference angle θ = 120 °, and FIG. 4 is a phase difference angle θ = FIG. 5 is a diagram showing an example of a torque characteristic of 120 °, FIG. 5 is a connection diagram [a] at a phase difference angle θ = 60 ° and a modified connection diagram [b], and FIG. 6 is a phase difference angle θ = 60 °. FIG. 7 is a diagram showing an example of a torque characteristic at a phase difference angle θ = 0 °, FIG. 8 is a connection diagram at a phase difference angle θ = 0 °, and FIG. FIG. 10 is a connection diagram showing a phase difference angle θ = 120 °, and FIG. 11 is a diagram showing an example of a torque characteristic of each phase difference angle.
12 is a connection diagram at a phase difference angle θ = 120 °, FIG. 13 is a connection diagram at a phase difference angle θ = 60 °, and FIG. 14 is a connection diagram at a phase difference angle θ = 60 °.
FIG. 15 is a connection diagram at a phase difference angle θ = 0 °, and FIG. 16 is a torque characteristic curve (A) in the case where there is no connecting member and an arbitrary connection between a plurality of conductors of a rotor. The figure which shows an example of the torque characteristic curve (B) at the time of providing a connection material in FIG.
FIG. 17 is a front sectional view of the rotor when a connecting member is provided between arbitrary ones of a plurality of conductors of the rotor, FIG. 18 is a control block diagram by a timer sequence, and FIG. 19 is a control block diagram by a logic circuit. It is. 1 ... multiple stator induction motor, 2, 3 ... rotor core, 4
... rotor shaft, 5 ... non-magnetic core, 6 ... rotor conductor, 7 ... rotor, 8 ... short-circuit ring, 9 ... connecting material, 10,1
1 ... stator winding, 12 ... first stator, 13 ... second stator, 14 ... machine frame, 15 ... control unit, 16 ... control unit, 18 ...
Voltage phase shifter, 20 ... Phase shifter, 21 ... Control unit, 22 ...
Power supply side, 23 ... Control unit, 24 ... Speed detector.

Claims (4)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】同一回転軸上に空間又は非磁性体コア部を
介在して軸着した2個の回転子コアを有し、該2個の回
転子コアに連通する導体を複数個設けて一体的に形成さ
れた回転子と、前記2個の回転子コアのそれぞれに対峙
して並設した2個の固定子と、前記2個の固定子のうち
の特定の固定子がこれに対峙する回転子の周囲に生じる
回転磁界と他の固定子がこれに対峙する回転子の周囲に
生じる回転磁界との間に位相差を生じさせる電圧移相装
置とを有する2固定子誘導電動機において、 前記電圧移相装置は、開閉スイッチを閉じることで前記
2個の固定子間の前記回転磁界の位相差を0゜とし且つ
前記2個の固定子の巻線を直列デルタ結線とする第1の
結線開閉スイッチと、開閉スイッチを閉じることで前記
回転磁界の位相差を120゜とし且つ前記2個の固定子の
巻線を直列デルタ結線とする、前記第一の結線開閉スイ
ッチと並列に接続した第2の結線開閉スイッチと、並列
にした前記第1と第2の結線開閉スイッチに直列に接続
した半導体素子及び、前記第1と第2の結線開閉スイッ
チと半導体素子を任意信号により制御する制御部とから
なることを特徴とする2固定子誘導電動機。
1. A semiconductor device comprising: two rotor cores which are axially mounted on the same rotation shaft with a space or a non-magnetic core interposed therebetween; and a plurality of conductors communicating with the two rotor cores are provided. An integrally formed rotor, two stators arranged side by side opposite to each of the two rotor cores, and a specific stator among the two stators face each other. A two-stator induction motor having a voltage phase shifter that causes a phase difference between a rotating magnetic field generated around the rotating rotor and a rotating magnetic field generated around the rotor opposed to the other stator. The first phase shifter sets a phase difference of the rotating magnetic field between the two stators to 0 ° by closing an on / off switch, and sets a winding of the two stators to a series delta connection. The phase difference of the rotating magnetic field is set to 120 ° by closing the connection open / close switch and the open / close switch. And a second connection on / off switch connected in parallel with the first connection on / off switch, wherein the windings of the two stators are connected in series delta connection, and the first and second connection on / off switches in parallel. 2. A two-stator induction motor, comprising: a semiconductor element connected in series with the first and second connection switches; and a controller for controlling the first and second connection on / off switches and the semiconductor element by an arbitrary signal.
【請求項2】同一回転軸に空間又は非磁性体コア部を介
在して軸着した2個の回転子コアを有し、該2個の回転
子コアに連通する導体を複数個設けて一体的に形成され
た回転子と、前記2個の回転子コアのそれぞれに対峙し
て並設した2個の固定子と、前記2個の固定子のうちの
特定の固定子がこれに対峙する回転子の周囲に生じる回
転磁界と他の固定子がこれに対峙する回転子の周囲に生
じる回転磁界との間に位相差を生じさせる電圧移相装置
とを有する2固定子誘導電動機において、 前記電圧移相装置は、開閉スイッチを閉じることで前記
2個の固定子の前記回転磁界の位相差を0゜とし且つ前
記2個の固定子の巻線を直列デルタ結線とする第1の結
線開閉スイッチと、開閉スイッチを閉じることで前記回
転磁界の位相差を120゜とし且つ前記2個の固定子の巻
線を直列デルタ結線とする、前記第1の結線開閉スイッ
チと並列に接続した第2の結線開閉スイッチと、並列に
した前記第1と第2の結線開閉スイッチに直列に接続し
た半導体素子と、開閉スイッチを閉じることで前記回転
磁界の位相差を120゜とし且つ前記2個の固定子の巻線
を直列デルタ結線とする、前記第1と第2の結線開閉ス
イッチと半導体素子との直列回路に対し並列に接続した
第3の結線開閉スイッチ及び、前記第1と第2と第3の
結線開閉スイッチと半導体素子を任意信号により制御す
る制御部とからなることを特徴とする2固定子誘導電動
機。
2. A motor having two rotor cores mounted on the same rotation shaft with a space or a non-magnetic core interposed therebetween, and a plurality of conductors communicating with the two rotor cores are provided integrally. , A stator formed in parallel with each of the two rotor cores, and a specific one of the two stators faces the rotor. A two-stator induction motor having a voltage phase shifter for producing a phase difference between a rotating magnetic field generated around the rotor and a rotating magnetic field generated around the rotor opposed to the other stator; The voltage phase shifter is configured to close the on / off switch to set the phase difference between the rotating magnetic fields of the two stators to 0 ° and to make the windings of the two stators a serial delta connection. Closing the switch and the on / off switch to make the phase difference of the rotating magnetic field 120 ° and A second connection on / off switch connected in parallel with the first connection on / off switch, and the first and second connection on / off switches in parallel, wherein the windings of the two stators are connected in series delta connection. A semiconductor element connected in series, and the first and second connection opening and closing, wherein the phase difference of the rotating magnetic field is set to 120 ° by closing an on / off switch, and the windings of the two stators are connected in series delta connection. A third connection on / off switch connected in parallel to a series circuit of the switch and the semiconductor element; and a control unit for controlling the first, second, and third connection on / off switches and the semiconductor element by an arbitrary signal. A two-stator induction motor characterized in that:
【請求項3】請求項(1)または(2)に記載の2固定
子誘導電動機であって、前記2個の回転子コア間の前記
空間又は非磁性体コア部において前記複数個の導体のう
ち隣接する任意の導体間を相互に抵抗短絡する連結材を
設けたことを特徴とする2固定子誘導電動機。
3. The two-stator induction motor according to claim 1, wherein the plurality of conductors are provided in the space between the two rotor cores or in the non-magnetic core portion. A two-stator induction motor, wherein a connecting member for short-circuiting resistance between adjacent arbitrary conductors is provided.
【請求項4】請求項(1)から(3)のいずれかに記載
の2固定子誘導電動機であって、前記電圧移相装置を2
固定子誘導電動機と一体にしたことを特徴とする2固定
子誘導電動機。
4. The two-stator induction motor according to claim 1, wherein the voltage phase shifter is a two-phase stator.
A two-stator induction motor integrated with a stator induction motor.
JP02249460A 1990-08-24 1990-09-18 2 stator induction motor Expired - Fee Related JP3105232B2 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2-223184 1990-08-24
JP22318490 1990-08-24

Publications (2)

Publication Number Publication Date
JPH04178144A JPH04178144A (en) 1992-06-25
JP3105232B2 true JP3105232B2 (en) 2000-10-30

Family

ID=16794123

Family Applications (1)

Application Number Title Priority Date Filing Date
JP02249460A Expired - Fee Related JP3105232B2 (en) 1990-08-24 1990-09-18 2 stator induction motor

Country Status (1)

Country Link
JP (1) JP3105232B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6009834B2 (en) * 2012-06-22 2016-10-19 株式会社東芝 Driving device and motor winding switching method
US9840997B2 (en) * 2013-03-14 2017-12-12 Pratt & Whitney Canada Corp. Engine starting system using stored energy

Also Published As

Publication number Publication date
JPH04178144A (en) 1992-06-25

Similar Documents

Publication Publication Date Title
KR950009296B1 (en) Induction motor
US5254894A (en) Dual-stator induction synchronous motor
KR950009295B1 (en) Induction motor
US5138244A (en) Reluctance-type electric motor
US5285124A (en) Brushless induction synchronous motor with two stators
JP3105232B2 (en) 2 stator induction motor
US4513237A (en) Energy efficient multi-phase dual voltage electric motor
JP3105231B2 (en) 2 stator induction motor
JP2707924B2 (en) Two-stator three-phase cage induction motor
JP2885460B2 (en) Two stator induction motor
US3201673A (en) Induction motor starting circuits
JP2919492B2 (en) Multiple stator induction motor
JP2927856B2 (en) Two stator induction motor
JPH0412651A (en) Plural-stator induction motor
JP2919498B2 (en) Variable speed induction motor
JPH03207255A (en) Linear induction motor
JPH03203559A (en) Two-stator induction motor
JP2919499B2 (en) Variable speed induction motor
JPH01144375A (en) Multiple-stator induction motor
JPS61161991A (en) Overexciting method for hysteresis motor
JPH03135348A (en) Multi-stator induction motor
JPH04334954A (en) Two-stator induction motor
JP3080625B2 (en) Phase difference changing device for multiple stator induction motor
JPH0223094A (en) Induction motor with a plurality of stator
JPH0564399A (en) Two-stator induction motor

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080901

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090901

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090901

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090901

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100901

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100901

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100901

Year of fee payment: 10

LAPS Cancellation because of no payment of annual fees