JP2885460B2 - Two stator induction motor - Google Patents

Two stator induction motor

Info

Publication number
JP2885460B2
JP2885460B2 JP2074954A JP7495490A JP2885460B2 JP 2885460 B2 JP2885460 B2 JP 2885460B2 JP 2074954 A JP2074954 A JP 2074954A JP 7495490 A JP7495490 A JP 7495490A JP 2885460 B2 JP2885460 B2 JP 2885460B2
Authority
JP
Japan
Prior art keywords
stator
phase
stator winding
phase difference
switch
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2074954A
Other languages
Japanese (ja)
Other versions
JPH03277154A (en
Inventor
利彦 佐竹
幸男 大野木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
SATAKE SEISAKUSHO KK
Original Assignee
SATAKE SEISAKUSHO KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by SATAKE SEISAKUSHO KK filed Critical SATAKE SEISAKUSHO KK
Priority to JP2074954A priority Critical patent/JP2885460B2/en
Publication of JPH03277154A publication Critical patent/JPH03277154A/en
Application granted granted Critical
Publication of JP2885460B2 publication Critical patent/JP2885460B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION 【産業上の利用分野】[Industrial applications]

本発明は、単一の回転子と二個の固定子とを有し、二
個の固定子に対峙する回転子導体の周囲に生じる回転磁
界間に位相差を生じさせて、変速可能でしかもスムーズ
な起動と低速から高速にかけて高トルクを発生させるこ
とができる二固定子誘導電動機に関する。
The present invention has a single rotor and two stators, generates a phase difference between rotating magnetic fields generated around a rotor conductor facing the two stators, and is capable of shifting. The present invention relates to a two-stator induction motor capable of generating a high torque from a low speed to a high speed with smooth startup.

【従来の技術】[Prior art]

複数固定子構成の誘導電動機のトルク制御、速度制御
は、公知技術に固定子間の位相差を変化させる方法があ
り、例えば本出願人の発明である特願昭61−128314号も
その例である。この位相差を変化させる方法には、機械
的なものとして固定子を回動させて位相差を設けるも
の、電気的なものとして固定子巻線の結線を変えて何種
かの位相差を設けるもの、更にこれらにスターデルタ切
換を組み合わせたものなど多種多様である。 以上の方法は、誘導電動機のトルクと速度を自在に変
化させて負荷に対応する場合と、始動時の速度上昇をス
ムーズに行う場合等とその負荷または用途に応じて様々
の手法を用いることになる。
Torque control and speed control of an induction motor having a plurality of stators include a method of changing a phase difference between stators in a known technique, for example, Japanese Patent Application No. 61-128314, which is an invention of the present applicant. is there. The method of changing the phase difference is to provide a phase difference by rotating the stator as mechanical, or to provide some kind of phase difference by changing the connection of the stator winding as electrical. There are a wide variety such as those combining star delta switching with them. The above method uses various methods depending on the load or application, such as when the torque and speed of the induction motor are freely changed to respond to the load, when the speed is increased smoothly at the start, and when the load or application is used. Become.

【発明が解決しようとする課題】[Problems to be solved by the invention]

本発明は、位相差を設けて負荷に対応するものであ
り、前記従来技術により区別すると電気的手法といえ
る。 さて、前記従来技術における電気的移相手法は固定子
巻線の結線を切換えて行い位相差は電気角で0°,60°,
120°,180°が実施可能であるが、その切換に要する開
閉器は十数個に及ぶものであり高価となっていた。 更に一般の誘導電動機は始動性改善の目的でスターデ
ルタ切換装置を設けたものがある。これは単一の固定子
にもかかわらずその配線は複雑なものであると共に、ス
ターデルタ切換時における負荷電流の一時的な切換によ
るトルク変動を発生し、更には切換後の負荷電流の急激
な変化と発生トルクの急激な変動によるショックは避け
られないものであった。 本発明は上記のように各位相差に結線を切換えたもの
と同等のトルク特性を有し、しかも無段階に変速可能で
あり、負荷電流の急激な増加と負荷トルクの急激な変動
の少ない安価な二固定子誘導電動機を提供しようとする
ものである。
The present invention responds to a load by providing a phase difference, and can be said to be an electrical method when distinguished by the conventional technology. By the way, the electrical transfer method in the prior art is performed by switching the connection of the stator winding, and the phase difference is 0 °, 60 °, electrical angle.
Although 120 ° and 180 ° can be implemented, the number of switches required for the switching is over ten and expensive. Further, some general induction motors are provided with a star-delta switching device for the purpose of improving startability. This is because the wiring is complicated despite the single stator, and the torque fluctuation occurs due to the temporary switching of the load current at the time of the star-delta switching, and further, the sudden change of the load current after the switching. Shock due to changes and sudden fluctuations in the generated torque was inevitable. The present invention has the same torque characteristics as those in which the connection is switched to each phase difference as described above, and is capable of continuously changing the speed, and is inexpensive with a small increase in the load current and a small change in the load torque. It is intended to provide a two-stator induction motor.

【課題を解決するための手段】[Means for Solving the Problems]

上記課題を解決するために本発明は、同一回転軸上に
任意間隔をおいて2個の回転子コアを設け該2個の回転
子コアに連通した複数個の導体を設けて該導体の両端を
短絡環で連結したかご形回転子と、 前記各回転子コアにそれぞれ対向して第1固定子コア
と第2固定子コアを周設し、前記第1固定子コアに巻装
した第1固定子巻線と第2固定子コアに巻装した第2固
定子巻線が、前記第1固定子巻線の回転磁界の位相と前
記第2固定子巻線の位相との間に所定の第1位相差を生
じるように直列デルタ結線にして電源に接続した第1固
定子と第2固定子と、 前記第1固定子及び第2固定子の各固定子巻線の任意
の相の接続点と他の2相の接続点との間に設けたスイッ
チからなり、前記各固定子巻線への通電中に前記スイッ
チを閉成することにより前記第1固定子巻線と第2固定
子巻線を直列デルタ結線から並列スター結線に切り換え
て、前記第1固定子巻線の回転磁界の位相と前記第2固
定子巻線の位相との間に所定の第2位相差を生じる第1
位相切換装置と、 前記第1固定子および第2固定子の各固定子巻線の任
意の相の接続点と他相の電源との間に設けたスイッチか
らなり、前記各固定子巻線への通電中に前記スイッチを
閉成することにより前記第1固定子巻線と第2固定子巻
線を直列デルタ結線から並列デルタ結線に切り換えて、
前記第1固定子巻線の回転磁界の位相と前記第2固定子
巻線の位相との間に所定の第3位相差を生じる第2位相
切換装置と、 前記第1位相切換装置及び第2位相切換装置のスイッ
チの開閉を制御する制御装置とにより二固定子誘導電動
機を構成した。 また別の手段では、前記各回転子コアにそれぞれ対向
して第1固定子コアと第2固定子コアを周設し、前記第
1固定子コアに巻装した第1固定子巻線と第2固定子コ
アに巻装した第2固定子巻線が、前記第1固定子巻線の
回転磁界の位相と前記第2固定子巻線の位相との間に所
定の第1位相差を生じるように直列デルタ結線にして電
源に接続した第1固定子と第2固定子と、 前記第1固定子及び第2固定子の各固定子巻線の任意
の相の接続点と他相の電源との間に設けたスイッチから
なり、前記各固定子巻線への通電中に前記スイッチの通
電を制御することにより前記第1固定子巻線と第2固定
子巻線を直列デルタ結線から並列デルタ結線に漸次切り
換えると共に前記第1固定子巻線の回転磁界の位相と前
記第2固定子巻線の回転磁界の位相との間の位相差を前
記第1位相差から所定の第2位相差に漸次変化させる位
相切換装置と前記位相切換装置のスイッチの開閉を制御
する制御装置とにより二固定子誘導電動機を構成した。 ところでかご形回転子は、任意間隔における複数の導
体が抵抗材で相互に短絡されたものであることにより更
に本発明の二固定子誘導電動機は有効に作用する。ま
た、位相切換装置のスイッチは半導体素子とすること、
あるいは可変抵抗とすることが有効な手段となる。
In order to solve the above-mentioned problems, the present invention provides two rotor cores at an arbitrary interval on the same rotation axis, and a plurality of conductors connected to the two rotor cores, and both ends of the conductors are provided. And a first stator core and a second stator core circumferentially opposed to the respective rotor cores and wound around the first stator core. A stator winding and a second stator winding wound on a second stator core are arranged so that a predetermined rotation between the phase of the rotating magnetic field of the first stator winding and the phase of the second stator winding is performed. A first stator and a second stator connected to a power supply in series delta connection so as to produce a first phase difference, and connection of arbitrary phases of respective stator windings of the first stator and the second stator; A switch provided between a point and another two-phase connection point, wherein the switch is closed during energization of each stator winding. The first stator winding and the second stator winding are switched from a series delta connection to a parallel star connection, and the phase of the rotating magnetic field of the first stator winding and the phase of the second stator winding are changed. A first phase difference that produces a predetermined second phase difference between
A phase switching device; and a switch provided between a connection point of an arbitrary phase of each of the stator windings of the first stator and the second stator and a power supply of another phase. The first stator winding and the second stator winding are switched from a series delta connection to a parallel delta connection by closing the switch during energization of
A second phase switching device that produces a predetermined third phase difference between a phase of the rotating magnetic field of the first stator winding and a phase of the second stator winding; and a first phase switching device and a second phase switching device. A two-stator induction motor was constituted by a control device for controlling the opening and closing of the switches of the phase switching device. In another means, a first stator core and a second stator core are provided around each of the rotor cores, and a first stator winding wound around the first stator core and a second stator core are provided. The second stator winding wound around the two stator cores generates a predetermined first phase difference between the phase of the rotating magnetic field of the first stator winding and the phase of the second stator winding. Stator and second stator connected in series delta connection to a power supply as described above, and a connection point of an arbitrary phase of each stator winding of the first stator and the second stator and a power supply of another phase The first stator winding and the second stator winding are connected in parallel from a series delta connection by controlling the energization of the switch while energizing each of the stator windings. The phase of the rotating magnetic field of the first stator winding and the phase of the rotating magnetic field of the second stator winding are gradually switched to a delta connection. A two-stator induction motor is constituted by a phase switching device that gradually changes the phase difference between the first phase difference and the second phase difference from the first phase difference to a predetermined second phase difference, and a control device that controls opening and closing of a switch of the phase switching device. . By the way, in the cage rotor, a plurality of conductors at arbitrary intervals are short-circuited to each other by a resistance material, so that the two-stator induction motor of the present invention works effectively. Further, the switch of the phase switching device is a semiconductor element,
Alternatively, a variable resistor is an effective means.

【作用】[Action]

まず請求項(1)によると、本発明の固定子巻線は、
直列デルタ結線としてある。この時の固定子間位相差は
180°,120°,60°,0°のいずれかが考えられる。まず、
第1の作用として、仮に第1と第2の固定子の回転磁界
間に例えば120°の位相差が生じるよう、第1と第2の
固定子巻線を直列デルタ結線として電源に接続した回路
に第1と第2の固定子巻線の接続点と、他の2相の接続
点との間を短絡するスイッチを設けて閉成すると、並列
スター結線となり前記回転磁界の位相差を60°に切換え
ることができる。したがって、起動時は任意の位相差を
もった直列デルタ結線となり、短絡すると並列スター結
線でしかも異なる位相差へと切換えられる。つまり直列
デルタ結線からそのまま並列スターに切換えるとそれぞ
れの位相差は例えば180°から120°,120°から60°,60
°から0°へそれぞれ切換えられる。 また、第2の作用として、2つの固定子の回転磁界間
に例えば120°の位相差が生じるよう、第1と第2の固
定子巻線を直列デルタ結線として電源に接続した回路
に、第1と第2の固定子巻線の任意の相の接続点と、他
相の電源との間を短絡するスイッチを設けて閉成する
と、並列デルタ結線となり前記回転磁界の位相差を0°
に切換えることが可能である。したがって上記2つの作
用で回転磁界間の位相差は直列デルタの120°から並列
スターの60°へ、更に並列スターの60°から並列デルタ
の0°へ位相差を切換えることが可能となる。 以上をまとめると次のようになる。まず、電源を投入
すると固定子間の位相差は前記任意位相差の直列デルタ
結線で起動する。負荷は任意位相差のトルク特性曲線に
より起動される。次に第1の作用によって、任意回転数
に至って第1と第2の固定子巻線の接続点間を第1位相
切換装置のスイッチの閉成により短絡して並列スター結
線とすると位相差は60°少なくなり。トルク特性及び電
流特性が変化する。 更に第2の作用によって任意回転数に至って第1位相
切換装置のスイッチを開成して、第1及び第2の固定子
巻線の任意の接続点と他相の電源の間に設けた第2位相
切換装置のスイッチの閉成により短絡して並列デルタ結
線とすると、回転磁界間の位相差は並列スター結線より
更に60°少なくなり、トルク特性及び電流特性が更に変
化して定格運転の特性に至るものとなる。 また請求項(2)によると、前記3つのトルク特性の
中間特性を無段階に得るために、第1と第2の固定子巻
線の任意の相の接続点と、他相の電源との間を、トライ
アック、サイリスタまたは可変抵抗を介して連結したの
で起動時には、高トルク低電流で、起動後の運転に至る
までは無段階に任意のトルクと電流で運転することがで
き、変速も可能である。 この場合、トライアック、サイリスタの点弧角あるい
は可変抵抗の抵抗値を変化させることにより、直列デル
タ結線は徐々に並列デルタ結線に切換わり、それに伴っ
て回転磁界間の位相差もたとえば120°から0°まで徐
々に変化するものとなる。 なお前記回転磁界間の位相差の変化によるトルク特性
と電流特性の変化について、本出願人は特願昭61−1283
14号において詳述している。また前記作用の説明の中に
おける位相差は電気角によるものである。
First, according to claim (1), the stator winding of the present invention is:
As a series delta connection. The phase difference between the stators at this time is
One of 180 °, 120 °, 60 °, and 0 ° can be considered. First,
A first operation is a circuit in which the first and second stator windings are connected to a power supply as a series delta connection so that a phase difference of, for example, 120 ° is generated between the rotating magnetic fields of the first and second stators. When a switch for short-circuiting between the connection point of the first and second stator windings and the connection point of the other two phases is provided and closed, a parallel star connection is established and the phase difference of the rotating magnetic field is reduced by 60 °. Can be switched to Therefore, at the time of start-up, a serial delta connection having an arbitrary phase difference is established, and when a short circuit occurs, switching is made to a parallel star connection and to a different phase difference. In other words, when switching from serial delta connection to parallel star as it is, the respective phase differences are, for example, 180 ° to 120 °, 120 ° to 60 °, 60 °
From 0 ° to 0 ° respectively. As a second operation, a circuit in which the first and second stator windings are connected to a power supply as a series delta connection so that a phase difference of, for example, 120 ° is generated between the rotating magnetic fields of the two stators is provided. When a switch for short-circuiting between a connection point of an arbitrary phase between the first and second stator windings and a power supply of another phase is provided and closed, a parallel delta connection is established and the phase difference of the rotating magnetic field is reduced by 0 °.
It is possible to switch to Therefore, the phase difference between the rotating magnetic fields can be switched from 120 ° of the serial delta to 60 ° of the parallel star and from 60 ° of the parallel star to 0 ° of the parallel delta by the above two actions. The above is summarized as follows. First, when the power is turned on, the phase difference between the stators is activated by the serial delta connection of the arbitrary phase difference. The load is activated by the torque characteristic curve with an arbitrary phase difference. Next, when the first operation reaches an arbitrary rotation speed and the connection point between the first and second stator windings is short-circuited by closing the switch of the first phase switching device to form a parallel star connection, the phase difference becomes 60 ° less. The torque characteristics and the current characteristics change. Further, the switch of the first phase switching device is opened by reaching the arbitrary rotation speed by the second action, and the second phase switch provided between the arbitrary connection point of the first and second stator windings and the power supply of the other phase. If the switches of the phase switching device are short-circuited to make a parallel delta connection, the phase difference between the rotating magnetic fields will be further reduced by 60 ° compared to the parallel star connection, and the torque characteristics and current characteristics will further change to the characteristics of rated operation. Will be anything. According to claim (2), in order to obtain an intermediate characteristic of the three torque characteristics in a stepless manner, a connection point between an arbitrary phase of the first and second stator windings and a power source of another phase is provided. The connection between them is made via a triac, thyristor or variable resistor, so when starting up, high torque and low current can be used, and the motor can be operated at any torque and current without any steps up to the operation after startup, and shifting is possible. It is. In this case, by changing the firing angle of the triac or thyristor or the resistance value of the variable resistor, the serial delta connection is gradually switched to the parallel delta connection, and the phase difference between the rotating magnetic fields is also reduced from, for example, 120 ° to 0 °. ° gradually changes. Regarding the change in the torque characteristic and the current characteristic due to the change in the phase difference between the rotating magnetic fields, the present applicant has filed Japanese Patent Application No. 61-2283.
No. 14 details this. The phase difference in the description of the operation is based on the electrical angle.

【実施例】【Example】

本発明はかご型回転子をもつ2固定子誘導電動機とし
て詳細を説明するが、リニアモーターとしても応用でき
るものである。また、回転子コア間の構成も、空間、非
磁性体、磁性体等を使用する場合がある。 すでに本出願人は、特願昭61−128314号として本発明
の構成の一部である複数固定子からなる誘導電動機の構
成、作用の詳細な説明を行なっている。 第1図により本発明の構成の一部をなす電動機の1実
施例を説明する。符号1は本発明に係る二固定子誘導電
動機であり、該誘導電動機1は以下のような構成を有す
る。磁性材料からなる回転子コア2,3を任意の間隔を設
けて回転子軸4に装着する。回転子コア2,3間は非磁性
体コア5を介設するか、または空間とする。回転子コア
2,3に装設した複数個の導体6…のそれぞれを回転子コ
ア2,3に連通して連結し一体的な回転子7を形成し、そ
の直列に連結した複数個の導体6…の両端部は短絡環8,
8により短絡される。また、本実施例においては回転子
7に装設されたそれぞれの導体6…は回転子コア2,3間
の非磁性体コア5部において、任意のベクトルの差の電
流を流すための抵抗材9を介して連結してある。この抵
抗材の有無によりトルク特性は異なるが、抵抗材の要・
不要は負荷トルクにより選択される。 回転子コア2,3に対峙する外側部に第1と第2の固定
子巻線10,11を施した第1固定子12と第2固定子13を機
枠14に並設し、第1固定子12と第2固定子13は機枠14に
固定する。 また、第1固定子12と第2固定子13の第1と第2の固
定子巻線10,11の結線の形態は一実施例として電気的位
相差120°の直列デルタ結線としている。 次に本発明の実施例を電気的位相差が120°から60
°、60°から0°へ変化するものを一例として示し、そ
れぞれの位相差を起動、加速、運転として第2図以降を
参照して説明する。 第2図に示すものは第1の実施例の結線図である。 以下第1と第2の固定子巻線10,11を三相の場合につ
いて説明する。固定子巻線10の各相の巻線をU2−X2,V2
−Y2,W2−Z2とし固定子巻線11の各相の巻線をU1−X1
V1−Y1,W1−Z1とする。この固定子巻線10,11の各相は
機械的に同じ位置つまりU1−X1とU2−X2とは同じ位置に
配置されている。また各相の分担電圧を図に示す如く
E1,E2,E3,E1′,E2′,E3′とする。 次に結線について説明すると、まず固定子巻線11の端
子U1,V1,W1をそれぞれ3相交流電源A,B,Cに接続し、
固定子巻線10,11の端子X1とW2,Y1とU2,Z1とV2を接続
し、さらに固定子巻線10の端子X2を電源のC,Y2をA,Z2
Bに接続する。この状態において、第1と第2の固定子
巻線が直列デルタ結線されて、電源に接続されたことに
なる。さらに固定子巻線11の端子X1,Y1,Z1を短絡する
スイッチS120を設けて第1位相切換装置とし、端子X1
W2の間と電源のC,端子Y1とU2の間と電源のA、端子Z1
V2の間と電源のBとを接続するスイッチS221を設けて第
2位相切換装置としてある。このように接続した後、ス
イッチS120とスイッチS221とを解放した応対で電源を投
入すると固定子巻線10,11の分担電圧E1,E2,E3
E1′,E2′,E3′は第3図のようになる。この場合の固
定子巻線10,11のそれぞれの分担電圧の大きさは電源の
線間電圧の1/2となり、E1はE1′より120°の進み位相つ
まり120°の位相差を発生する。また、E2とE2′、E3とE
3′も同様に120°の位相差となる。従って回転子はこの
特性で起動することになる。すなわち固定子巻線に印加
される電圧は小さく、よって起動電流が小さい。しかも
位相差角θ=120°の状態であるため本発明に係る2固
定子誘導電動機の特性から高力率となり電流の割にはト
ルクの大きい起動となる。 回転子の回転速度が任意速度に上昇したときスイッチ
S120を投入すると固定子巻線10,11の分担電圧E1,E2,E
3,E1′,E2′,E3′は第4図のようになる。この場
合、固定子巻線の分担電圧の大きさは電源の線間電圧の となり、E1はE1′より60°の進み位相つまり60°の位相
差を発生する。またE2とE2′、E3とE3′も同様に60°の
位相差となる。従って回転子はこのトルク特性で加速さ
れることになる。 回転子の回転速度が更に上昇したときスイッチS120を
開放し、その後スイッチS221を投入すると、固定子巻線
の分担電圧E1,E2,E3,E1′,E2′,E3′は第5図のよ
うになる。この場合の固定子巻線10,11の分担電圧の大
きさは電源の線間電圧に等しくなり、E1はE1′と同相つ
まり位相差0°を発生する。またE2とE2′、E3とE3′も
同様に同相となる。従って回転子はこのトルクで運転状
態に入る。 以上の各トルク特性の一例を第6図に示す。図に示す
ように、起動、加速、運転と各段階によってトルク特性
を変化させてそれぞれの速度に応じた最適の特性で運転
状態に移行させる。すなわち、電源の線間電圧をEとす
ると、固定子巻線の分担電圧はE/2, Eと段階的に上昇させて起動電流を制御し更に位相差θ
をθ=120°,60°,0°と段階的に小さくして常に高力
率、高トルクが得られるような特性で運転状態に移行さ
せるものである。 スイッチS120とスイッチS221の操作は第6図におい
て、S=mでS1を投入し、S=nでS1を開放した後にS2
を投入する。ところで固定子巻線の定格電圧は電源の線
間電圧としてある。 次に第7図により第2の実施例を説明する。これは第
1の実施例のスイッチS221を半導体素子22に置換えたも
のである。これは固定子巻線11の端子U1,V1,W1をそれ
ぞれ3相電源A,B,Cに接続し、固定子巻線10,11のX1
W2,Y1とU2,Z1とV2を接続し更に固定子巻線10のX2を電
源のC,Y2を電源A,Z2をBに接続する。この状態で固定子
巻線10,11は直列デルタ結線して電源に接続したことに
なる。さらに逆極性に並列に接続したサイリスタ22を固
定子巻線10,11の端子X1とW2の間と電源C、Y1とU2の間
と電源A,Z1とV2の間と電源Bのそれぞれの間に接続す
る。このように接続して電源を投入し、サイリスタ22の
点弧角を180°に制御すると、サイリスタ22には電流が
流れないので固定子巻線10,11の分担電圧E1,E2,E3,E
1′,E2′,E3′は前述の第3図のようになる。従って
この場合の固定子巻線の分担電圧の大きさは電源の線間
電圧の1/2となる。またE1とE1′、E2とE2′、E3とE3
の位相差角は120°となる。このときのトルク特性は第
6図の起動トルク特性に相当しこのトルク特性で起動す
る。 回転子の速度上昇に伴ってサイリスタ22の点弧角を18
0°から徐々に小さくして行くと固定子巻線10,11の分担
電圧E1,E2,E3,E1′,E2′,E3′は実効的に前述の第
4図の状態に変化する。従って固定子巻線の分担電圧の
大きさは電源の線間電圧の となり、E1とE1′、E2とE2′、E3とE3′の位相差角θは
θ=60°の状態となり、前述の第6図に示す加速のトル
ク特性で加速されることになる。 回転子の回転速度の上昇につれてサイリスタの点弧角
をさらに小さくして最終的に点弧角を0°に制御する。
この点弧角が0°のとき固定子巻線10,11の分担電圧
E1,E2,E3,E1′,E2′,E3′は第5図になる。従って
固定子巻線の分担電圧の大きさは電源の線間電圧に等し
くなり、E1とE1′、E2とE2′、E3とE3の位相差角θはθ
=0°すなわち同相となる。この状態におけるトルク特
性は第6図に示す運転トルク特性であり従来の誘導電動
機と同じトルク特性となる。 次に第3の実施例を第8図に示す。これは第2図のス
イッチS221を可変抵抗23で構成するものである。これは
固定子巻線11の端子U1,V1,W1をそれぞれ3相電源A,B,
Cに接続し、さらに固定子巻線10,11の端子X1とW2,Y1
U2,Z1とV2を接続し更に固定子巻線10の端子X2を電源の
C,Y2を電源のA,Z2を電源のBに接続する。この状態にお
いて2組の固定子巻線10,11が直列デルタ結線されて電
源に接続されたことになる。更に可変抵抗23を固定子巻
線の端子X1とW2の間と電源C、Y1とU2の間と電源のA、
Z1とV2の間と電源のBとのそれぞれの間に接続する。こ
のように接続して電源を投入し可変抵抗23を無限大にし
て起動する。ところで前記可変抵抗23をこの場合、抵抗
値=0,R2,R1,∞の4段階で説明するがこれに限定しな
いことは言うまでもない。さて起動における固定子巻線
10,11の分担電圧E1,E2,E3,E1′,E2′,E3′は前述
の第3図の如くなる。従ってこの場合の固定子巻線の分
担電圧の大きさは電源の線間電圧の1/2となり、E1
E1′、E2とE2′、E3とE3′の位相差角θはθ=120°と
なり一例として第9図の起動トルク特性で起動する。 回転子の回転の上昇に伴って可変抵抗23の値を小さく
して行くと、この抵抗に流れる電流はすべりSによって
変化し、従ってこの抵抗の電圧降下がすべりSによって
変化することになる。つまり固定子巻線の分担電圧の大
きさは例えば第4図のように起動時の分担電圧より大き
くなり、E1とE1′、E2とE2′、E3とE3′の位相差角θは
起動時の位相差角θより小さくなる。従って第9図のよ
うに、起動時すなわちすべりS=1のときは可変抵抗値
無限大の起動トルク特性に近く、回転速度の上昇につれ
て、すなわちすべりSが小さくなってくると、従来の誘
導電動機の運転特性に近づいてくる。 上記の如くして回転子の回転速度が上昇するにつれて
最終的に可変抵抗23の値を零にする。この時の固定子巻
線の分担電圧E1,E2,E3,E1′,E2′,E3′は第5図の
ようになり電源の線間電圧に等しくなり、E1とE1′、E2
とE2′、E3とE3′の位相差角θはθ=0すなわち同相と
なる。この状態のおけるトルク特性は第9図に示す可変
抵抗値0の運転トルク特性であり従来の誘導電動機と同
じ運転特性となる。 以上の第2と第3の実施例においてはスイッチの開閉
と異なり負荷電流の遮断がないためにトルク及び電流の
特性に急激な変化がなくスムーズに起動し運転が可能と
なる。 また前述のスイッチ、サイリスタ、トライアックまた
は可変抵抗からなる移相装置を電動機側に設けると電動
機への配線は三相の場合3本でよく、スターデルタ始動
に見られるような複雑な配線を必要としない。 更に移相装置と、回転速度あるいは負荷電流等を検出
するセンサーとを制御装置を介して接続し、回転速度あ
るいは負荷電流の変化に応じて移相装置のスイッチの開
閉、サイリスタやトライアックの点弧角、可変抵抗の抵
抗値を制御することも考えられる。 なお、並列スター結線で始動し、直列デルタ結線へと
移行しても本発明を実施できる。そして、その他の位相
差を希望する場合は、一方の固定子に対して他方の固定
子を機械的に回動して固定すればよく、例えば4極の場
合、機械角で10°回動すれば電気角で20°位相差を生じ
る。
Although the present invention will be described in detail as a two-stator induction motor having a cage rotor, it can also be applied as a linear motor. The configuration between the rotor cores may use a space, a non-magnetic material, a magnetic material, or the like. The present applicant has already described in detail the structure and operation of an induction motor comprising a plurality of stators, which is a part of the structure of the present invention, as Japanese Patent Application No. 61-128314. Referring to FIG. 1, one embodiment of an electric motor which forms a part of the configuration of the present invention will be described. Reference numeral 1 denotes a two-stator induction motor according to the present invention, and the induction motor 1 has the following configuration. The rotor cores 2 and 3 made of a magnetic material are mounted on the rotor shaft 4 at arbitrary intervals. A non-magnetic core 5 is provided between the rotor cores 2 and 3, or a space is provided between the rotor cores 2 and 3. Rotor core
Each of the plurality of conductors 6 provided in each of the plurality of conductors 6 is connected to and connected to the rotor cores 2 and 3 to form an integral rotor 7. Both ends are short-circuit rings 8,
Shorted by 8. In this embodiment, each of the conductors 6 provided on the rotor 7 is a resistive material for flowing a current having an arbitrary vector difference in the nonmagnetic core 5 between the rotor cores 2 and 3. 9. The torque characteristics differ depending on the presence or absence of this resistance material.
Unnecessary is selected by the load torque. A first stator 12 and a second stator 13 having first and second stator windings 10 and 11 provided on an outer portion facing the rotor cores 2 and 3 are arranged side by side on a machine casing 14. The stator 12 and the second stator 13 are fixed to the machine casing 14. The connection between the first and second stator windings 10 and 11 of the first and second stators 12 and 13 is, for example, a series delta connection having an electrical phase difference of 120 °. Next, according to the embodiment of the present invention, the electrical phase difference is from 120 ° to 60 °.
The change from 0 °, 60 ° to 0 ° is shown as an example, and the respective phase differences will be described as starting, accelerating, and operating with reference to FIG. FIG. 2 is a connection diagram of the first embodiment. Hereinafter, a case where the first and second stator windings 10 and 11 are three-phase will be described. U 2 −X 2 , V 2
−Y 2 , W 2 −Z 2, and the winding of each phase of the stator winding 11 is U 1 −X 1 ,
Let V 1 −Y 1 and W 1 −Z 1 . Respective phases of the stator windings 10 and 11 are mechanically arranged at the same position, that is, U 1 -X 1 and U 2 -X 2 are arranged at the same position. As shown in the figure,
Let E 1 , E 2 , E 3 , E 1 ′, E 2 ′, E 3 ′. Next, the connection will be described. First, the terminals U 1 , V 1 , and W 1 of the stator winding 11 are connected to three-phase AC power supplies A, B, and C, respectively.
Connect the terminals X 1 and W 2 of the stator windings 10 and 11 to W 2 , Y 1 and U 2 , Z 1 and V 2 , and further connect the terminals X 2 of the stator winding 10 to C and Y 2 Connect Z 2 to B. In this state, the first and second stator windings are connected in series delta connection to the power supply. Further a switch S 1 20 to short-circuit the terminals X 1, Y 1, Z 1 of the stator winding 11 and the first phase switching device, a terminal X 1
Between W 2 and power supply C, between terminals Y 1 and U 2 and power supply A, terminal Z 1
And a switch S 2 21 for connecting the between V 2 and the power of B is the second phase switching device. After connecting Thus, the switch S 1 20 and the switch S 2 21 and the powering in the released answering the divided voltage of the stator winding 10,11 E 1, E 2, E 3,
E 1 ′, E 2 ′ and E 3 ′ are as shown in FIG. 1/2 of the magnitude the line voltage of the power supply of each of the divided voltage of the stator winding 10, 11 in this case, E 1 is generated a phase difference between the phase lead clogging 120 ° 120 ° from E 1 ' I do. Also, E 2 and E 2 ′, E 3 and E
3 ′ also has a phase difference of 120 °. Therefore, the rotor starts up with this characteristic. That is, the voltage applied to the stator winding is small, and thus the starting current is small. In addition, since the phase difference angle θ is 120 °, the power factor becomes high due to the characteristics of the two-stator induction motor according to the present invention, and the motor starts with a large torque for the current. Switch when the rotation speed of the rotor increases to an arbitrary speed
Shared voltage E 1 of S 1 20 to be turned with the stator windings 10,11, E 2, E
3 , E 1 ′, E 2 ′ and E 3 ′ are as shown in FIG. In this case, the magnitude of the shared voltage of the stator winding is equal to the line voltage of the power supply. And E 1 generates a phase difference of 60 ° from E 1 ′, that is, a phase difference of 60 °. E 2 and E 2 ′ and E 3 and E 3 ′ also have a phase difference of 60 °. Therefore, the rotor is accelerated by this torque characteristic. Rotational speed of the rotor opens the switch S 1 20 when further increases and then turning on the switch S 2 21, the shared voltage of the stator winding E 1, E 2, E 3 , E 1 ', E 2' , E 3 ′ are as shown in FIG. The magnitude of the divided voltage of the stator winding 10, 11 of the case is equal to the line voltage of the power supply, E 1 generates an in-phase, i.e. the phase difference 0 ° and E 1 '. E 2 and E 2 ′ and E 3 and E 3 ′ also have the same phase. Therefore, the rotor enters the operating state with this torque. FIG. 6 shows an example of each torque characteristic described above. As shown in the figure, the torque characteristics are changed in each stage of starting, accelerating, and driving, and the operation state is shifted to the operating state with the optimum characteristics according to the respective speeds. That is, assuming that the line voltage of the power supply is E, the shared voltage of the stator winding is E / 2, The starting current is controlled by increasing stepwise to E and the phase difference θ
Is gradually reduced to θ = 120 °, 60 °, and 0 °, and the operation state is shifted to an operation state with characteristics such that a high power factor and a high torque can always be obtained. Operation of the switch S 1 20 and the switch S 2 21 in FIG. 6 was charged with S 1 in S = m, S 2 after release of the S 1 with S = n
Input. Incidentally, the rated voltage of the stator winding is a line voltage of a power supply. Next, a second embodiment will be described with reference to FIG. This is obtained by replacing the switch S 2 21 of the first embodiment to the semiconductor device 22. This connects the terminals U 1 , V 1 , and W 1 of the stator winding 11 to three-phase power supplies A, B, and C, respectively, and connects X 1 of the stator windings 10 and 11 to
W 2 , Y 1 and U 2 , Z 1 and V 2 are connected, and X 2 of the stator winding 10 is connected to a power source C, Y 2 is connected to a power source A, and Z 2 is connected to B. In this state, the stator windings 10, 11 are connected in series delta connection to the power supply. Furthermore between the terminals X 1 and W 2 of the stator windings 10, 11 a thyristor 22 connected in parallel with opposite polarity and a power source C, between Y 1 and U 2 and the power supply A, and between Z 1 and V 2 Connected between each of power supplies B. When the power is turned on by connecting in this way and the firing angle of the thyristor 22 is controlled to 180 °, no current flows through the thyristor 22, so the shared voltages E 1 , E 2 , E of the stator windings 10, 11 3 , E
1 ', E 2', E 3 ' is as Figure 3 described above. Therefore, in this case, the magnitude of the shared voltage of the stator winding is 1/2 of the line voltage of the power supply. E 1 and E 1 ′, E 2 and E 2 ′, E 3 and E 3
Is 120 °. The torque characteristics at this time correspond to the starting torque characteristics shown in FIG. As the speed of the rotor increases, the firing angle of thyristor 22
As the angle is gradually reduced from 0 °, the shared voltages E 1 , E 2 , E 3 , E 1 ′, E 2 ′, and E 3 ′ of the stator windings 10 and 11 are effectively reduced as shown in FIG. Change to a state. Therefore, the magnitude of the shared voltage of the stator winding is The phase difference angle θ between E 1 and E 1 ′, E 2 and E 2 ′, and E 3 and E 3 ′ becomes θ = 60 °, and the phase difference angle is accelerated by the acceleration torque characteristic shown in FIG. Will be. As the rotation speed of the rotor increases, the firing angle of the thyristor is further reduced to finally control the firing angle to 0 °.
When this firing angle is 0 °, the shared voltage of the stator windings 10 and 11
E 1, E 2, E 3 , E 1 ', E 2', E 3 ' is in FIG. 5. Therefore, the magnitude of the shared voltage of the stator winding becomes equal to the line voltage of the power supply, and the phase difference angle θ between E 1 and E 1 ′, E 2 and E 2 ′, and E 3 and E 3 becomes θ.
= 0 °, ie, in phase. The torque characteristics in this state are the operating torque characteristics shown in FIG. 6 and are the same as those of the conventional induction motor. Next, a third embodiment is shown in FIG. This constitutes a switch S 2 21 of FIG. 2 with a variable resistor 23. This means that the terminals U 1 , V 1 , W 1 of the stator winding 11 are connected to the three-phase power sources A, B,
C, and terminals X 1 and W 2 , Y 1 of stator windings 10 and 11
U 2 , Z 1 and V 2 are connected, and terminal X 2 of the stator winding 10 is connected to the power supply.
Connect C and Y 2 to the power supply A and Z 2 to the power supply B. In this state, the two sets of stator windings 10 and 11 are connected in series delta connection to the power supply. Moreover variable terminal of the resistor 23 stator windings X 1 and between W 2 and the power source C, between Y 1 and U 2 and the power supply of the A,
Connected between each of the Z 1 and between V 2 and the power of B. The connection is made in this manner, the power is turned on, and the variable resistor 23 is set to infinity and started. Incidentally, in this case, the variable resistor 23 will be described in four stages of resistance value = 0, R 2 , R 1 , が, but it is needless to say that the present invention is not limited to this. Now stator winding at start-up
The shared voltages E 1 , E 2 , E 3 , E 1 ′, E 2 ′, and E 3 ′ of the 10 and 11 are as shown in FIG. Therefore 1/2 of magnitude the line voltage of the power supply of the divided voltage of the stator winding in this case, the E 1
The phase difference angle θ between E 1 ′, E 2 and E 2 ′, and E 3 and E 3 ′ becomes θ = 120 °, and the motor starts with the starting torque characteristic shown in FIG. 9 as an example. When the value of the variable resistor 23 is reduced as the rotation of the rotor increases, the current flowing through this resistor changes due to the slip S, and the voltage drop of this resistor changes accordingly. That magnitude of the divided voltage of the stator winding is larger than the divided voltage at the time of starting as in the fourth diagram example, position of E 1 and E 1 ', E 2 and E 2', E 3 and E 3 ' The phase difference angle θ is smaller than the phase difference angle θ at the time of starting. Therefore, as shown in FIG. 9, when starting, that is, when the slip S = 1, the starting torque characteristic is close to the infinite variable resistance value, and as the rotational speed increases, that is, when the slip S decreases, the conventional induction motor Approaching driving characteristics. As described above, the value of the variable resistor 23 is finally set to zero as the rotation speed of the rotor increases. Shared voltage E 1 at this time the stator winding, E 2, E 3, E 1 ', E 2', E 3 ' is equal to the line voltage of the power supply is as FIG. 5, and E 1 E 1 ′, E 2
And E 2 ′, and the phase difference angle θ between E 3 and E 3 ′ is θ = 0, that is, in phase. The torque characteristic in this state is the operating torque characteristic of the variable resistance value 0 shown in FIG. 9, which is the same as that of the conventional induction motor. In the above-described second and third embodiments, unlike the opening and closing of the switch, there is no interruption of the load current, so that there is no abrupt change in the characteristics of the torque and the current, and the start and the smooth operation can be performed. Also, if a phase shift device consisting of the above-mentioned switch, thyristor, triac or variable resistor is provided on the motor side, the wiring to the motor may be three in the case of three phases, and complicated wiring such as seen in star-delta starting is required. do not do. Further, a phase shift device and a sensor for detecting a rotation speed or a load current are connected via a control device to open / close a switch of the phase shift device according to a change in the rotation speed or the load current, and to fire a thyristor or a triac. It is also conceivable to control the angle and the resistance value of the variable resistor. It should be noted that the present invention can be implemented even when starting with parallel star connection and shifting to series delta connection. If another phase difference is desired, the other stator may be mechanically rotated and fixed with respect to one of the stators. For example, a phase difference of 20 ° occurs in electrical angle.

【効果】【effect】

以上のように二固定子誘導電動機のトルクの設定は、
単純な位相装置により無段階に設定可能となり、これら
のトルク特性は起動時において起動電流は小さく起動ト
ルクが大きく、低トルク特性及び二乗低減トルク特性の
始動性の改善、起動時間の低減を達成した可変電動機と
なり、インバーター等の高価な制御装置を必要としな
い。また、電動機への配線も、単純に形成される位相装
置を電動機に一体とし、三相電源を使用する場合、電動
機には三本の配線でよく誰にでも配線が可能である。 したがって、トルクの多様化を図り低速から定格回転
域まで高トルクを発生することのできる二固定子誘導電
動機の用途の拡大と高トルクの電動機を必要とするあら
ゆる分野に、更に大きく貢献できるようになった。
As described above, the torque setting of the two-stator induction motor is
With a simple phase device, it can be set in a stepless manner.These torque characteristics have a small starting current at startup and a large starting torque, and have achieved low torque characteristics, improved startability with squared torque reduction characteristics, and reduced startup time. It becomes a variable motor and does not require expensive control devices such as inverters. In addition, when a three-phase power source is used by integrating a phase device formed simply with the motor and wiring to the motor, three wires are sufficient for the motor and anyone can wire it. Therefore, we will diversify the torque, expand the applications of the two-stator induction motor that can generate high torque from low speed to the rated speed range, and contribute even more to any field that requires a high-torque motor. became.

【図面の簡単な説明】[Brief description of the drawings]

第1図は二固定子誘導電動機の側断面図、第2図は移相
装置の第1の実施例を示す結線図、第3図は位相差120
°の直列デルタ結線図、第4図は位相差60°の並列スタ
ー結線図、第5図は位相差0°の並列デルタ結線図、第
6図は開閉スイッチの開閉によるトルク特性曲線の一例
を示す図、第7図は第2の実施例であるサイリスタを使
用した移相装置の結線図、第8図は第3の実施例である
可変抵抗を使用した移相装置の結線図、第9図は可変抵
抗によるトルク特性曲線の一例を示す図である。 1…複数固定子誘導電動機、2,3…回転子コア、4…回
転子軸、5…非磁性体コア、6…回転子導体、7…回転
子、8…短絡環、9…抵抗材、10,11…固定子巻線、12
…第1固定子、13…第2固定子、14…機枠、20…開閉ス
イッチS1、21…開閉スイッチS2、22…極性サイリスタ、
23…可変抵抗。
FIG. 1 is a side sectional view of a two-stator induction motor, FIG. 2 is a connection diagram showing a first embodiment of a phase shifter, and FIG.
4 is a parallel star connection diagram with a phase difference of 60 °, FIG. 5 is a parallel delta connection diagram with a phase difference of 0 °, and FIG. 6 is an example of a torque characteristic curve by opening / closing an on / off switch. FIG. 7 is a connection diagram of a phase shift device using a thyristor according to the second embodiment, FIG. 8 is a connection diagram of a phase shift device using a variable resistor according to the third embodiment, and FIG. The figure shows an example of a torque characteristic curve due to a variable resistance. DESCRIPTION OF SYMBOLS 1 ... Plural stator induction motor, 2, 3 ... Rotor core, 4 ... Rotor shaft, 5 ... Non-magnetic core, 6 ... Rotor conductor, 7 ... Rotor, 8 ... Short-circuit ring, 9 ... Resistance material, 10,11… stator winding, 12
... first stator, 13 ... second stator, 14 ... machine frame, 20 ... opening and closing switches S 1, 21 ... opening and closing switch S 2, 22 ... polar thyristor,
23… Variable resistance.

フロントページの続き (58)調査した分野(Int.Cl.6,DB名) H02K 17/00 - 17/44 H02K 16/00 - 16/04 H02K 11/00 H02P 1/00 - 1/58 H02P 5/28 - 5/405 H02P 5/415 - 5/44 H02P 7/36 - 7/625 H02P 7/635 - 7/66 Continuation of the front page (58) Field surveyed (Int.Cl. 6 , DB name) H02K 17/00-17/44 H02K 16/00-16/04 H02K 11/00 H02P 1/00-1/58 H02P 5 / 28-5/405 H02P 5/415-5/44 H02P 7/36-7/625 H02P 7/635-7/66

Claims (5)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】同一回転軸上に任意間隔をおいて2個の回
転子コアを設け該2個の回転子コアに連通した複数個の
導体を設けて該導体の両端を短絡環で連結したかご形回
転子と、 前記各回転子コアにそれぞれ対向して第1固定子コアと
第2固定子コアを周設し、前記第1固定子コアに巻装し
た第1固定子巻線と第2固定子コアに巻装した第2固定
子巻線が、前記第1固定子巻線の回転磁界の位相と前記
第2固定子巻線の位相との間に所定の第1位相差を生じ
るように直列デルタ結線にして電源に接続した第1固定
子と第2固定子と、 前記第1固定子及び第2固定子の各固定子巻線の任意の
相の接続点と他の2相の接続点との間に設けたスイッチ
からなり、前記各固定子巻線への通電中に前記スイッチ
を閉成することにより前記第1固定子巻線と第2固定子
巻線を直列デルタ結線から並列スター結線に切り換え
て、前記第1固定子巻線の回転磁界の位相と前記第2固
定子巻線の位相との間に所定の第2位相差を生じる第1
位相切換装置と、 前記第1固定子及び第2固定子の各固定子巻線の任意の
相の接続点と他相の電源との間に設けたスイッチからな
り、前記各固定子巻線への通電中に前記スイッチを閉成
することにより前記第1固定子巻線と第2固定子巻線を
直列デルタ結線から並列デルタ結線に切り換えて、前記
第1固定子巻線の回転磁界の位相と前記第2固定子巻線
の位相との間に所定の第3位相差を生じる第2位相切換
装置と、 前記第1位相切換装置及び第2位相切換装置のスイッチ
の開閉を制御する制御装置と、 を有することを特徴とする二固定子誘導電動機。
1. Two rotor cores are provided at an arbitrary interval on the same rotating shaft, a plurality of conductors connected to the two rotor cores are provided, and both ends of the conductors are connected by a short-circuit ring. A squirrel-cage rotor, a first stator core and a second stator core circumferentially opposed to the respective rotor cores, and a first stator winding wound around the first stator core; The second stator winding wound around the two stator cores generates a predetermined first phase difference between the phase of the rotating magnetic field of the first stator winding and the phase of the second stator winding. Stator and second stator connected in series delta connection to a power source as described above, and connection points of arbitrary phases of the stator windings of the first and second stators and other two phases A switch provided between the first stator winding and the first stator winding by closing the switch while energizing the respective stator windings. The second stator winding is switched from a series delta connection to a parallel star connection, and a predetermined second phase difference is provided between the phase of the rotating magnetic field of the first stator winding and the phase of the second stator winding. The first that produces
A phase switching device; and a switch provided between a connection point of an arbitrary phase of each of the stator windings of the first stator and the second stator and a power supply of another phase. The first stator winding and the second stator winding are switched from a series delta connection to a parallel delta connection by closing the switch during the energization of the motor, and the phase of the rotating magnetic field of the first stator winding is changed. Phase switching device that produces a predetermined third phase difference between the first phase switching device and the second stator winding, and a control device that controls opening and closing of switches of the first phase switching device and the second phase switching device. A two-stator induction motor, comprising:
【請求項2】同一回転軸上に認可間隔をおいて2個の回
転子コアを設け該2個の回転子コアに連通した複数個の
導体を設けて該導体の両端を短絡環で連結したかご形回
転子と、 前記各回転子コアにそれぞれ対向して第1固定子コアと
第2固定子コアを周設し、前記第1固定子コアに巻装し
た第1固定子巻線と第2固定子コアに巻装した第2固定
子巻線が、前記第1固定子巻線の回転磁界の位相と前記
第2固定子巻線の位相との間に所定の第1位相差を生じ
るように直列デルタ結線にして電源に接続した第1固定
子と第2固定子と、 前記第1固定子及び第2固定子の各固定子巻線の任意の
相の接続点と他相の電源との間に設けたスイッチからな
り、前記各固定子巻線への通電中に前記スイッチの通電
を制御することにより前記第1固定子巻線と第2固定子
巻線を直列デルタ結線から並列デルタ結線に漸次切り換
えると共に前記第1固定子巻線の回転磁界の位相と前記
第2固定子巻線の回転磁界の位相との間の位相差を前記
第1位相差から所定の第2位相差に漸次変化させる位相
切換装置と、 前記位相切換装置のスイッチの開閉を制御する制御装置
と、 を有することを特徴とする二固定子誘導電動機。
2. Two rotor cores are provided on the same rotation axis at an approved interval, a plurality of conductors are provided in communication with the two rotor cores, and both ends of the conductors are connected by a short-circuit ring. A squirrel-cage rotor, a first stator core and a second stator core circumferentially opposed to the respective rotor cores, and a first stator winding wound around the first stator core; The second stator winding wound around the two stator cores generates a predetermined first phase difference between the phase of the rotating magnetic field of the first stator winding and the phase of the second stator winding. Stator and second stator connected in series delta connection to a power supply as described above, and a connection point of an arbitrary phase of each stator winding of the first stator and the second stator and a power supply of another phase And a switch provided between the first stator winding and the first stator winding. The second stator winding is gradually switched from a series delta connection to a parallel delta connection, and the phase difference between the phase of the rotating magnetic field of the first stator winding and the phase of the rotating magnetic field of the second stator winding is changed. A two-stator induction motor, comprising: a phase switching device that gradually changes the first phase difference to a predetermined second phase difference; and a control device that controls opening and closing of a switch of the phase switching device.
【請求項3】かご形回転子は、任意間隔における複数個
の導体が抵抗材で相互に短絡されたものであることを特
徴とする請求項(1)または(2)に記載の二固定子誘
導電動機。
3. The two stator according to claim 1, wherein the cage rotor has a plurality of conductors at arbitrary intervals shorted to each other by a resistance material. Induction motor.
【請求項4】位相切換装置のスイッチは半導体素子であ
ることを特徴とする請求項(2)または(3)記載の二
固定子誘導電動機。
4. A two-stator induction motor according to claim 2, wherein the switch of the phase switching device is a semiconductor element.
【請求項5】位相切換装置のスイッチは可変抵抗である
ことを特徴とする請求項(2)または(3)記載の二固
定子誘導電動機。
5. The two-stator induction motor according to claim 2, wherein the switch of the phase switching device is a variable resistor.
JP2074954A 1990-03-23 1990-03-23 Two stator induction motor Expired - Fee Related JP2885460B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2074954A JP2885460B2 (en) 1990-03-23 1990-03-23 Two stator induction motor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2074954A JP2885460B2 (en) 1990-03-23 1990-03-23 Two stator induction motor

Publications (2)

Publication Number Publication Date
JPH03277154A JPH03277154A (en) 1991-12-09
JP2885460B2 true JP2885460B2 (en) 1999-04-26

Family

ID=13562226

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2074954A Expired - Fee Related JP2885460B2 (en) 1990-03-23 1990-03-23 Two stator induction motor

Country Status (1)

Country Link
JP (1) JP2885460B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7075206B1 (en) 2005-02-07 2006-07-11 Visteon Global Technologies, Inc. Vehicle alternator stator winding having dual slot configuration
CN109672393B (en) * 2018-12-19 2021-08-17 湖北工业大学 Axial flux motor fault tolerance control circuit topology and control method
CN110086392B (en) * 2019-04-26 2020-11-27 宁德师范学院 Method for expanding constant-torque variable-frequency speed regulation range by adopting Y-shaped winding with tap connection

Also Published As

Publication number Publication date
JPH03277154A (en) 1991-12-09

Similar Documents

Publication Publication Date Title
US5254894A (en) Dual-stator induction synchronous motor
US5068559A (en) Induction motor switchable between series delta and parallel wye
AU652822B2 (en) Synchronous motor with two permanent magnet rotor portions
US5051639A (en) Y-delta conversion switches on dual stator induction motor
US5138244A (en) Reluctance-type electric motor
CA1281065C (en) Parallel resonant single phase motor
EP3245731A1 (en) Switched reluctance motor and method therefore.
JP2885460B2 (en) Two stator induction motor
JPH07336971A (en) Induction motor and operation controller
JP3105232B2 (en) 2 stator induction motor
JP2707924B2 (en) Two-stator three-phase cage induction motor
JP3105231B2 (en) 2 stator induction motor
JP2919492B2 (en) Multiple stator induction motor
JP2927856B2 (en) Two stator induction motor
JPH0412651A (en) Plural-stator induction motor
EP0243154B1 (en) Parallel resonant single phase motor
JPH03203559A (en) Two-stator induction motor
US3339131A (en) Multi-speed, self-excited ac motor system
JP3099832B2 (en) 2 stator induction motor
JPH04334954A (en) Two-stator induction motor
SU1661960A1 (en) Multi-motor ac drive
JP2919498B2 (en) Variable speed induction motor
JP2919499B2 (en) Variable speed induction motor
JPH01144375A (en) Multiple-stator induction motor
JPH0333197Y2 (en)

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees