JPH0563607B2 - - Google Patents

Info

Publication number
JPH0563607B2
JPH0563607B2 JP14919086A JP14919086A JPH0563607B2 JP H0563607 B2 JPH0563607 B2 JP H0563607B2 JP 14919086 A JP14919086 A JP 14919086A JP 14919086 A JP14919086 A JP 14919086A JP H0563607 B2 JPH0563607 B2 JP H0563607B2
Authority
JP
Japan
Prior art keywords
exhaust
cylinders
torque
internal combustion
combustion engine
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP14919086A
Other languages
Japanese (ja)
Other versions
JPS635113A (en
Inventor
Masafumi Sagawa
Akihiko Hoshiba
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yamaha Marine Co Ltd
Original Assignee
Sanshin Kogyo KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanshin Kogyo KK filed Critical Sanshin Kogyo KK
Priority to JP14919086A priority Critical patent/JPS635113A/en
Publication of JPS635113A publication Critical patent/JPS635113A/en
Publication of JPH0563607B2 publication Critical patent/JPH0563607B2/ja
Granted legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B75/00Other engines
    • F02B75/02Engines characterised by their cycles, e.g. six-stroke
    • F02B2075/022Engines characterised by their cycles, e.g. six-stroke having less than six strokes per cycle
    • F02B2075/025Engines characterised by their cycles, e.g. six-stroke having less than six strokes per cycle two

Landscapes

  • Characterised By The Charging Evacuation (AREA)

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は内燃機関の排気システムに係り、特に
複数の気筒を備えた内燃機関、特に例えば船外機
に使用する内燃機関の排気システムに関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to an exhaust system for an internal combustion engine, and more particularly to an exhaust system for an internal combustion engine having a plurality of cylinders, particularly for use in an outboard motor, for example.

[従来の技術] 一般に2サイクルエンジンで排気タイミングを
早くすると、その内燃機関の最大出力は向上する
が、低中速域のトルクは落ち、一方排気タイミン
グを遅くすると最大出力は下がるが、低中速域の
トルクは上昇することが知られている。ここで、
2サイクルエンジンにおいて複数の気筒を有する
ものでは、所定の出力およびトルクを得るために
全ての気筒の排気タイミングを一定に設定する
が、この排気タイミングの変更による最大出力お
よびトルクに対する影響は気筒の数が多くなれば
なる程大きく、従つて最大出力を確保するととも
に低中速域におけるトルクを低下させずに維持す
るための排気タイミングの設定は非常に困難であ
つた。
[Prior art] In general, when the exhaust timing of a two-stroke engine is advanced, the maximum output of the internal combustion engine increases, but the torque in the low and medium speed range decreases.On the other hand, when the exhaust timing is delayed, the maximum output decreases, but the maximum output of the internal combustion engine decreases. It is known that torque in the speed range increases. here,
In a two-stroke engine that has multiple cylinders, the exhaust timing of all cylinders is set constant in order to obtain a predetermined output and torque, but the effect of changing the exhaust timing on the maximum output and torque depends on the number of cylinders. The larger the number, the greater the increase, and therefore it has been extremely difficult to set the exhaust timing to ensure maximum output and maintain torque in the low to medium speed range without decreasing it.

このため、従来においては、最大出力を重視す
るか、低中速域におけるトルクを重視するかによ
つてその排気タイミングを決定し、両者を満足す
るものはなかつた。
For this reason, in the past, the exhaust timing was determined depending on whether emphasis was placed on maximum output or torque in the low and medium speed range, and there was no system that satisfied both.

[発明が解決しようとする問題点] 本発明は以上のような従来技術の問題点に鑑み
なされたもので、その目的とするところは、複数
の気筒を有するエンジンにおいて、最大出力を確
保するとともに、低中速域のトルクが低下するの
を防止した内燃機関の排気システムを提供するに
ある。
[Problems to be Solved by the Invention] The present invention has been made in view of the problems of the prior art as described above, and its purpose is to secure maximum output in an engine having a plurality of cylinders, and to An object of the present invention is to provide an exhaust system for an internal combustion engine that prevents a decrease in torque in the low and medium speed range.

[問題点を解決するための手段] 本発明はこの目的を達成するために、複数の気
筒を備えた内燃機関の排気シスレムにおいて、少
なくとも一つの気筒の排気口の上死点に最も近い
端部とピストンが上死点に位置する時の上端面と
の距離を他の気筒の当該距離と異なるように構成
したことを特徴とするものである。
[Means for Solving the Problems] In order to achieve this object, the present invention provides an exhaust system for an internal combustion engine having a plurality of cylinders, in which the end of the exhaust port of at least one cylinder is closest to the top dead center. The piston is characterized in that the distance between the cylinder and the upper end surface when the piston is located at the top dead center is different from the distance in other cylinders.

[作用] 本発明のこのような構成により、1つの気筒に
おいては最大出力を重視した排気タイミングと
し、他の気筒では低中速域におけるトルクを重視
した排気タイミングとし、結果として出力される
エンジンの最大出力は維持させることができると
ともに低中速域のトルクもその低下を防止するこ
とができる。
[Function] With this configuration of the present invention, the exhaust timing for one cylinder is set with emphasis on maximum output, and the exhaust timing on other cylinders is set with emphasis on torque in the low and medium speed range, and as a result, the output of the engine is adjusted. The maximum output can be maintained, and the torque in the low and medium speed range can also be prevented from decreasing.

[実施例] 以下、本発明を図面に示す実施例に基いて説明
する。
[Example] The present invention will be described below based on an example shown in the drawings.

第1図には3気筒の2サイクル内燃機関が示さ
れている。ここで、エンジンブロツクの3つのシ
リンダ12にはそれぞれピストン10が往復動自
在に挿入され、各ピストン10はコンロツド14
を介してクランクシヤフト16に連結されてい
る。クランクシヤフト16は3つの気筒に亙つて
上下に延在し、このクランクシヤフト16を内包
するそれぞれのクランク室18は吸気通路20を
介して気化器22に連通されている。24はそれ
ぞれの吸気通路20に設けられたリードバルブで
ある。
FIG. 1 shows a three-cylinder, two-stroke internal combustion engine. Here, a piston 10 is inserted into each of the three cylinders 12 of the engine block so as to be able to reciprocate, and each piston 10 is inserted into the connecting rod 14.
It is connected to the crankshaft 16 via. The crankshaft 16 extends vertically over three cylinders, and each crank chamber 18 containing the crankshaft 16 is communicated with a carburetor 22 via an intake passage 20. 24 is a reed valve provided in each intake passage 20.

各クランク室18はシリンダ12内に形成され
た掃気通路26を介して該シリンダ12の内面に
開口され、この掃気通路26の開口は前記ピスト
ン10の往復動によつて開閉されるようになつて
いる。
Each crank chamber 18 is opened to the inner surface of the cylinder 12 through a scavenging passage 26 formed in the cylinder 12, and the opening of this scavenging passage 26 is opened and closed by the reciprocating movement of the piston 10. There is.

また各シリンダ12の内面には排気口28,3
0,32がそれぞれ設けられ、これら排気口を介
して燃焼済みのガスは図示しない排気通路に排出
されるようになつている。ここで各排気口の位置
は各気筒の間で排気タイミングが異なるようにそ
の位置が若干ずれて配置されている。すなわち、
第1の排気口28の右端すなわちピストン10の
上死点に最も近い端部と該ピストン10の上死点
における上端面との距離aと、第2の排気口30
における同様の距離bと、第3の排気口32にお
ける同様な距離cとは互いに若干ずれて配置され
ている。特にこの実施例では、bとcは同じ位置
に設けられているが、aはbおよびcに対して1
mm程度ピストン10の上死点に近く配置されてお
り、この距離の差は、クランクシヤフトの回転角
で第1の気筒が94度の排気タイミングであるのに
対し、第2および第3の気筒では96度の排気タイ
ミングであるという差につながる。
In addition, exhaust ports 28 and 3 are provided on the inner surface of each cylinder 12.
0 and 32 are provided, respectively, and the burned gas is discharged to an exhaust passage (not shown) through these exhaust ports. Here, the positions of the exhaust ports are slightly shifted so that the exhaust timing differs between cylinders. That is,
The distance a between the right end of the first exhaust port 28, that is, the end closest to the top dead center of the piston 10 and the upper end surface at the top dead center of the piston 10, and the second exhaust port 30
The similar distance b at the third exhaust port 32 and the similar distance c at the third exhaust port 32 are arranged to be slightly shifted from each other. In particular, in this example, b and c are provided at the same position, but a is 1 with respect to b and c.
mm, and the difference in distance is that the first cylinder has an exhaust timing of 94 degrees in terms of crankshaft rotation angle, while the second and third cylinders have an exhaust timing of 94 degrees. This leads to the difference that the exhaust timing is 96 degrees.

すなわち、この実施例においては、第2と第3
の気筒における排気タイミングを同一とし、第1
の気筒における排気タイミングのみを他の気筒よ
りもクランクシヤフトの回転角で約2度程度早く
させたものである。そしてこの排気タイミングの
変更は、各気筒における排気口の位置、特に排気
口の上死点に最も近い端部とピストンが上死点に
位置する時の上端面との距離を異ならせることに
よつて得るようにしている。
That is, in this embodiment, the second and third
The exhaust timing in the first cylinder is the same, and
The exhaust timing of only the cylinders is made about 2 degrees earlier in terms of crankshaft rotation angle than the other cylinders. This change in exhaust timing is achieved by changing the position of the exhaust port in each cylinder, especially the distance between the end of the exhaust port closest to top dead center and the top end surface when the piston is at top dead center. I'm trying to get the hang of it.

このような実施例の構成によれば、内燃機関全
体についてのエンジン回転数と出力の関係は第2
図に実線に示すような曲線を描くようになる。こ
の第2図において、横軸にエンジン回転数がとら
れ、縦軸に出力がとられているが、比較のため
に、点線で示す曲線は各気筒全ての排気タイミン
グをクランク回転角で94度に一致させた場合の曲
線であり、一点鎖線で示す曲線は全ての排気タイ
ミングを96度に一致させた場合の曲線である。ま
たエンジン回転数とトルクの関係が第3図に示さ
れ、上記実施例では実線で示す曲線を描くことに
なり、第2図と同様にして全ての排気タイミング
を94度にした場合には点線で示す曲線となり、一
方排気タイミングを96度に設定した場合には一点
鎖線で示すような曲線となる。
According to the configuration of this embodiment, the relationship between engine speed and output for the entire internal combustion engine is determined by the second
A curve like the solid line in the figure will be drawn. In this Figure 2, the horizontal axis shows the engine speed and the vertical axis shows the output. For comparison, the dotted line curve indicates the exhaust timing of all cylinders at 94 degrees in terms of crank rotation angle. The curve shown by the one-dot chain line is the curve when all exhaust timings are matched to 96 degrees. In addition, the relationship between engine speed and torque is shown in Figure 3. In the above example, the curve shown by the solid line is drawn, and when all exhaust timings are set to 94 degrees as in Figure 2, the curve is shown by the dotted line. On the other hand, if the exhaust timing is set to 96 degrees, the curve will be as shown by the dashed line.

この第2図および第3図からわかるように、最
大出力は全ての排気タイミングを94度に設定した
場合が最も高いが、一方、トルクは第3図に示す
ようにその低中速域で最も低くなり、一方排気タ
イミングを全て96度に一致して設定した場合には
低中速域におけるトルクは高くなるものの、最大
出力が低下してしまう。本発明による上記実施例
では第2図および第3図における点線と一点鎖線
のほぼ中間の出力ならびにトルクを呈することに
なり、これは少なくとも1つの気筒における排気
タイミングを前述のように他の気筒の排気タイミ
ングと異ならせることによつて達成されるもので
ある。
As can be seen from Figures 2 and 3, the maximum output is highest when all exhaust timings are set to 94 degrees, but the torque is highest in the low and medium speed range as shown in Figure 3. On the other hand, if the exhaust timings are all set to 96 degrees, the torque in the low and medium speed range will be high, but the maximum output will be lower. The above-described embodiment according to the present invention exhibits an output and torque approximately intermediate between the dotted line and the dashed-dotted line in FIGS. This is achieved by making the exhaust timing different.

[効果] 以上のように、本発明によれば、少なくとも1
つの気筒における排気タイミングを他の気筒にお
けるそれと異ならせることにより、最大出力なら
びに低中速域におけるトルクを同時にできるだけ
高く維持することができるという優れた効果があ
る。
[Effect] As described above, according to the present invention, at least one
By making the exhaust timing in one cylinder different from that in other cylinders, there is an excellent effect that the maximum output and the torque in the low and medium speed range can be simultaneously maintained as high as possible.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明に係る内燃機関の排気システム
の一実施例を示す断面図、第2図は同実施例のエ
ンジン回転数と出力の関係を示すグラフ、第3図
は同実施例におけるエンジン回転数とトルクの関
係を示すグラフである。 10……ピストン、28……排気口、30……
排気口、32……排気口。
FIG. 1 is a sectional view showing an embodiment of an exhaust system for an internal combustion engine according to the present invention, FIG. 2 is a graph showing the relationship between engine speed and output in the same embodiment, and FIG. 3 is an engine in the same embodiment. It is a graph showing the relationship between rotation speed and torque. 10... Piston, 28... Exhaust port, 30...
Exhaust port, 32...exhaust port.

Claims (1)

【特許請求の範囲】[Claims] 1 複数の気筒を備えた内燃機関の排気システム
において、少なくとも一つの気筒の排気口の上死
点に最も近い端部とピストンが上死点に位置する
時の上端面との距離を他の気筒の当該距離と異な
るように構成した内燃機関の排気システム。
1. In an exhaust system for an internal combustion engine equipped with multiple cylinders, the distance between the end of the exhaust port of at least one cylinder closest to top dead center and the upper end surface when the piston is located at top dead center relative to other cylinders. The exhaust system of an internal combustion engine configured to be different from the distance in question.
JP14919086A 1986-06-25 1986-06-25 Exhaust system for internal combustion engine Granted JPS635113A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP14919086A JPS635113A (en) 1986-06-25 1986-06-25 Exhaust system for internal combustion engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP14919086A JPS635113A (en) 1986-06-25 1986-06-25 Exhaust system for internal combustion engine

Publications (2)

Publication Number Publication Date
JPS635113A JPS635113A (en) 1988-01-11
JPH0563607B2 true JPH0563607B2 (en) 1993-09-10

Family

ID=15469770

Family Applications (1)

Application Number Title Priority Date Filing Date
JP14919086A Granted JPS635113A (en) 1986-06-25 1986-06-25 Exhaust system for internal combustion engine

Country Status (1)

Country Link
JP (1) JPS635113A (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5792528A (en) * 1994-06-17 1998-08-11 Atomic Energy Corporation Of South Africa Limited Process for the production of plastic components for containing and/or transporting fluids

Also Published As

Publication number Publication date
JPS635113A (en) 1988-01-11

Similar Documents

Publication Publication Date Title
JPH0247239Y2 (en)
CA2047516A1 (en) Internal combustion engine
US4821687A (en) Two-stroke engine
GB2063362A (en) I.C. engine cylinder head
US5881687A (en) Two-stroke internal combustion engine
JPH0563607B2 (en)
JPH0610412B2 (en) Exhaust system for 2-cycle V type engine for outboard motor
GB2089887A (en) Charge intake valving in a four- stroke engine
EP0643206B1 (en) Internal combustion engine
US20020078920A1 (en) Cylinder head for a multi-cylinder direct-injection spark - ingnition internal combustion engine
US20030226524A1 (en) Bazmi's six stroke engine
US6789513B2 (en) Bazmi's six-stroke engine with intake-exhaust valves
CA2017414A1 (en) Air-cooled internal combustion engine having canted combustion chamber and integral crossover intake manifold
JPS58148227A (en) Intake device of multi-cylinder engine
JPH045725Y2 (en)
JPH0112925B2 (en)
JP3440628B2 (en) Internal combustion engine
JPH02163414A (en) Four-cycle engine
JP2654591B2 (en) 4-cycle multi-cylinder engine
GB2366327A (en) Arrangement of engine cylinder valves and combustion chamber in i.c. engines
JPH0230921A (en) Air intake device for multiple valve engine
JP2001254625A (en) Self-supercharging principle of four-cycle engine
JP2005030306A (en) Uniflow type two-cycle multi-cylinder internal combustion engine
JPS60153431A (en) Energy-saving engine
JPS5813740B2 (en) 2 Cycle cycle