JPH0563544A - Binmos logic circuit - Google Patents

Binmos logic circuit

Info

Publication number
JPH0563544A
JPH0563544A JP3224134A JP22413491A JPH0563544A JP H0563544 A JPH0563544 A JP H0563544A JP 3224134 A JP3224134 A JP 3224134A JP 22413491 A JP22413491 A JP 22413491A JP H0563544 A JPH0563544 A JP H0563544A
Authority
JP
Japan
Prior art keywords
output
nmos
transistor
turned
gate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP3224134A
Other languages
Japanese (ja)
Inventor
Takeo Kuramochi
健夫 倉持
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Oki Electric Industry Co Ltd
Original Assignee
Oki Electric Industry Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Oki Electric Industry Co Ltd filed Critical Oki Electric Industry Co Ltd
Priority to JP3224134A priority Critical patent/JPH0563544A/en
Publication of JPH0563544A publication Critical patent/JPH0563544A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To decrease number of circuit components while the performance such as an operating speed and low power consumption is kept. CONSTITUTION:When input signals Si1-SiN are all at an H level, PMOS 12-1-12-N are all turned off and an NMOS 13 for extracting a base charge and output NMOS 16-1-16-N for extracting an output charge are all tuned on, the output TR 14 is turned off and an output signal So goes to an L level. Since the NMOS 16-2-16-N for extracting an output charge extract the base charge at the trailing of the output signal So, number of the base charge extract NMOS TRs 13 is minimized.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、出力段がバイポ―ラト
ランジスタ及びN型MOSトランジスタ(以下、NMO
Sという)で構成され、複数の入力信号の論理を求める
BiNMOS論理回路に関するものである。
BACKGROUND OF THE INVENTION The present invention relates to a bipolar transistor and an N-type MOS transistor (hereinafter referred to as NMO) in an output stage.
S)) and obtains the logic of a plurality of input signals.

【0002】[0002]

【従来の技術】従来、このような分野の技術としては、
例えば次のような文献に記載されるものがあった。
2. Description of the Related Art Conventionally, as a technique in such a field,
For example, some documents were described in the following documents.

【0003】1990年電子情報通信学会秋季全国大会
予稿集SC−10−2、瀬田等「0,5μm BiNM
OS Gateの性能評価」P.5−304 前記文献に記載されているように、種々の集積回路には
低消費電力動作が可能なCMOS(相補型MOSトラン
ジスタ)が多く使用されている。ところが、このCMO
Sは動作速度が遅いため、動作速度の速いバイポ―ラト
ランジスタと低消費電力動作可能なCMOSとを組合わ
せたBiCMOS論理回路が種々提案さている。
Proceedings of the 1990 Autumn Meeting of the Institute of Electronics, Information and Communication Engineers SC-10-2, Seta et al., "0.5 μm BiNM
Performance Evaluation of OS Gate "P. 5-304 As described in the above-mentioned document, CMOS (complementary MOS transistor) capable of low power consumption operation is often used in various integrated circuits. However, this CMO
Since S has a slow operation speed, various BiCMOS logic circuits have been proposed in which a bipolar transistor having a high operation speed and a CMOS capable of low power consumption operation are combined.

【0004】このBiCMOS論理回路は、CMOSと
バイポ―ラ各々の利点を持つことから、CMOS論理回
路に比べて動作速度が速いという利点を有している。し
かし、半導体製造プロセス技術が例えば0.5μmのよ
うに微細化されるに従い、信頼性上の理由から、低電源
電圧化(例えば、3.3V)されると、そのメリットを
失うことが問題とされている。そのため、BiCMOS
論理回路に代わるものとして、BiNMOS論理回路が
注目を浴びている。その一構成例を、図2に示す。
This BiCMOS logic circuit has the advantages of a CMOS and a bipolar, and therefore has the advantage of operating at a higher speed than the CMOS logic circuit. However, as the semiconductor manufacturing process technology is miniaturized to, for example, 0.5 μm, if the power supply voltage is lowered (for example, 3.3 V) for reliability reasons, there is a problem that the advantage is lost. Has been done. Therefore, BiCMOS
BiNMOS logic circuits are drawing attention as an alternative to logic circuits. An example of the configuration is shown in FIG.

【0005】図2は、前記文献に記載された従来のBi
NMOS構成の2入力NANDゲ―トの回路図である。
FIG. 2 shows the conventional Bi described in the above document.
It is a circuit diagram of a 2-input NAND gate having an NMOS configuration.

【0006】この2入力NANDゲ―トは、入力信号S
i1,Si2を入力する入力端子1−1,1−2を有
し、その入力端子1−1,1−2には、P型MOSトラ
ンジスタ(以下、PMOSという)2−2,2−1のゲ
―トがそれぞれ接続されると共に、ベ―ス電荷引抜き用
のNMOS3−1,3−2のゲ―トがそれぞれ接続され
ている。
This 2-input NAND gate has an input signal S
It has input terminals 1-1 and 1-2 for inputting i1 and Si2. P-type MOS transistors (hereinafter referred to as PMOS) 2-2 and 2-1 are provided at the input terminals 1-1 and 1-2. The gates are connected to each other, and the gates of the NMOS 3-1 and 3-2 for extracting the base charges are also connected to each other.

【0007】PMOS2−1,2−2は、電源VCCと
NPN型出力トランジスタ4のベ―スとの間に並列接続
され、その出力トランジスタ4のコレクタが電源VCC
に、エミッタが出力信号So用の出力端子5にそれぞれ
接続されている。NMOS3−1,3−2は、出力トラ
ンジスタ4のベ―スとグランドVSSとの間に直列接続
されている。このNMOS3−1,3−2のゲ―トと共
通接続されたゲ―トを有する出力電荷引抜き用の出力用
NMOS6−1,6−2は、出力端子5とグランドVS
Sとの間に直列接続されている。
The PMOSes 2-1 and 2-2 are connected in parallel between the power supply VCC and the base of the NPN type output transistor 4, and the collector of the output transistor 4 is connected to the power supply VCC.
The emitters are respectively connected to the output terminals 5 for the output signal So. The NMOSs 3-1 and 3-2 are connected in series between the base of the output transistor 4 and the ground VSS. The output NMOSs 6-1 and 6-2 for extracting the output charges, which have the gates commonly connected to the gates of the NMOSs 3-1 and 3-2, have output terminals 5 and ground VS.
It is connected in series with S.

【0008】次に、動作を説明する。Next, the operation will be described.

【0009】入力端子1−1,1−2に入力される入力
信号Si1,Si2のいずれか一方が“L”レベルのと
き、PMOS2−1または2−2がオンし、NMOS3
−1または3−2のいずれか一方がオフすると共に、N
MOS6−1または6−2のいずれか一方がオフ状態と
なる。すると、出力トランドシスタ4のベ―スが“H”
レベルとなり、該出力トランジスタ4がオン状態となっ
て出力端子5から出力される出力信号Soが“H”レベ
ルになる。
When either one of the input signals Si1 and Si2 input to the input terminals 1-1 and 1-2 is at "L" level, the PMOS 2-1 or 2-2 is turned on and the NMOS 3 is turned on.
Either one of -1 and 3-2 is turned off, and N
One of the MOSs 6-1 and 6-2 is turned off. Then, the output transistor 4 base is "H".
Then, the output transistor 4 is turned on and the output signal So output from the output terminal 5 becomes "H" level.

【0010】次に、入力信号Si1,Si2の双方が
“H”レベルとなると、PMOS2−1,2−2がオフ
し、NMOS3−1,3−2がオンするため、出力トラ
ンジスタ4がオフ状態となる。また、NMOS6−1,
6−2がオン状態となるため、出力信号Soは“L”レ
ベルとなる。
Next, when both the input signals Si1 and Si2 become "H" level, the PMOS 2-1 and 2-2 are turned off and the NMOS 3-1 and 3-2 are turned on, so that the output transistor 4 is turned off. Becomes In addition, NMOS 6-1,
Since 6-2 is turned on, the output signal So becomes "L" level.

【0011】この2入力NANDゲ―トでは、NMOS
3−1,3−2が省略された原始的なBiNMOS構成
の2入力NANDゲ―トに比べ、出力トランジスタ4の
ベ―ス・コレクタ間容量の電荷を素早く引抜くためのN
MOS3−1,3−2を用いることにより、出力信号S
oの立下り時に出力トランジスタ4を素早くオフさせ、
消費電力及び動作速度を向上させている。
In this 2-input NAND gate, the NMOS
Compared to a two-input NAND gate having a primitive BiNMOS configuration in which 3-1 and 3-2 are omitted, N for quickly extracting the charge of the base-collector capacitance of the output transistor 4
By using the MOS 3-1 and 3-2, the output signal S
The output transistor 4 is turned off quickly when o falls,
It improves power consumption and operating speed.

【0012】[0012]

【発明が解決しようとする課題】しかしながら、従来の
回路では、出力信号Soが“L”レベルになるとき、出
力トランジスタ4のベ―スの寄生容量を引抜くために、
出力電荷引抜き用のNMOS6−1,6−2と同じ数
の、入力信号Si1,Si2によってゲ―ト制御される
NMOS3−1,3−2が必要になる。そのため、入力
信号Si1,Si2の入力数の増大に伴なって出力用N
MOS6−1,6−2の数が増えると、それに応じてベ
―ス電荷引抜き用のNMOS3−1,3−2の数が増え
るため、素子数の増大を招き、動作速度や低消費電力化
といった性能を維持しつつ素子数を低減することが困難
であった。
However, in the conventional circuit, in order to pull out the base parasitic capacitance of the output transistor 4 when the output signal So becomes "L" level,
It is necessary to have the same number of NMOSs 3-1 and 6-2 as the output charge extraction NMOSs 6-1 and 6-2, which are gate-controlled by the input signals Si1 and Si2. Therefore, as the number of inputs of the input signals Si1 and Si2 increases, the output N
As the number of MOSs 6-1 and 6-2 increases, the number of base charge extracting NMOSs 3-1 and 3-2 also increases accordingly, which leads to an increase in the number of elements, resulting in reduction in operating speed and low power consumption. It was difficult to reduce the number of elements while maintaining such performance.

【0013】本発明は、前記従来技術が持っていた課題
として、動作速度や低消費電力化という性能を維持しつ
つ、回路構成素子数を低減することが困難な点について
解決したBiNMOS論理回路を提供するものである。
The present invention provides a BiNMOS logic circuit which solves the problem that it is difficult to reduce the number of circuit constituent elements while maintaining the performance such as operating speed and low power consumption, which is a problem of the prior art. Is provided.

【0014】[0014]

【課題を解決するための手段】本発明は前記課題を解決
するため、出力段がバイポ―ラトランジスタ及びNMO
Sで構成されたBiNMOS論理回路において、電源と
出力端子との間に接続されたNPN型出力トランジスタ
と、前記出力端子とグランドとの間に直列接続され、複
数の入力信号によりゲ―ト制御される複数の出力電荷引
抜き用の出力NMOSと、前記電源と前記出力トランジ
スタのベ―スとの間に並列接続され、1つまたは複数の
前記入力信号によりゲ―ト制御される複数のPMOS
と、ベ―ス電荷引抜き用のNMOSとを、備えている。
In order to solve the above problems, the present invention has a bipolar transistor and an NMO as an output stage.
In a BiNMOS logic circuit composed of S, an NPN type output transistor connected between a power supply and an output terminal and a series connection between the output terminal and a ground are gate-controlled by a plurality of input signals. A plurality of output NMOSs for extracting the output charge, and a plurality of PMOSs connected in parallel between the power supply and the base of the output transistor and gate-controlled by the one or more input signals.
And an NMOS for extracting the base charge.

【0015】ここで、ベ―ス電荷引抜き用のNMOS
は、ドレイン(またはソ―ス)が前記出力トランジスタ
のベ―スに接続され、ソ―ス(またはドレイン)が前記
複数の出力NMOS中の前記出力端子に接続された出力
NMOSのソ―ス(またはドレイン)に接続され、前記
入力信号によりゲ―ト制御されるトランジスタである。
Here, an NMOS for base charge extraction
Is a source of the output NMOS whose drain (or source) is connected to the base of the output transistor and whose source (or drain) is connected to the output terminal of the plurality of output NMOSs. Or a drain) and is gate-controlled by the input signal.

【0016】[0016]

【作用】本発明によれば、以上のようにBiNMOS論
理回路を構成したので、出力トランジスタがオフ状態に
なると共に出力NMOSがオン状態となって出力信号が
立下がる際に、ベ―ス電荷引抜き用のNMOSと出力電
荷引抜き用の出力NMOSとが出力トランジスタのベ―
ス電荷をグランド側に引抜くので、該出力信号の立下り
時間が高速化される。
According to the present invention, since the BiNMOS logic circuit is constructed as described above, when the output transistor is turned off and the output NMOS is turned on and the output signal falls, the base charge is extracted. For the output transistor and the output NMOS for extracting the output charge
Since the electric charge is extracted to the ground side, the fall time of the output signal is shortened.

【0017】このように、出力NMOSは、出力電荷引
抜き機能を有すると共に、ベ―ス電荷引抜き機能をも有
するので、ベ―ス電荷引抜き用のNMOSの個数を従来
に比べて大幅に削減でき、それによって回路構成素子数
の低減化が図れる。従って、前記課題を解決できるので
ある。
As described above, the output NMOS has not only the output charge extraction function but also the base charge extraction function, so that the number of base charge extraction NMOSs can be significantly reduced as compared with the conventional one. As a result, the number of circuit constituent elements can be reduced. Therefore, the above problem can be solved.

【0018】[0018]

【実施例】図1は、本発明の一実施例を示すBiNMO
S論理回路で構成された多入力NANDゲ―トの回路図
である。この多入力NANDゲ―トは、複数の入力信号
Si1〜SiNを入力する入力端子11−1〜11−N
を有し、その入力端子11−1〜11−Nには、PMO
S12−1〜12−Nのゲ―トがそれぞれ接続されると
共に、ベ―ス電荷引抜き用のNMOS13のゲ―トが接
続されている。PMOS12−1〜12−Nは、電源V
CCとNPN型出力トランジスタ14のゲ―トとの間に
並列接続され、さらにその出力トランジスタ14のベ―
スに、NMOS13のドレインが接続されている。出力
トランジスタ14のコレクタは電源VCCに、エミッタ
は出力信号Soを出力する出力端子15にそれぞれ接続
されている。
FIG. 1 is a BiNMO showing an embodiment of the present invention.
FIG. 6 is a circuit diagram of a multi-input NAND gate including an S logic circuit. This multi-input NAND gate has input terminals 11-1 to 11-N for inputting a plurality of input signals Si1 to SiN.
And the input terminals 11-1 to 11-N have PMO
The gates of S12-1 to 12-N are connected to each other, and the gate of the NMOS 13 for extracting the base charge is also connected. The PMOS 12-1 to 12-N have a power source V
It is connected in parallel between the CC and the gate of the NPN type output transistor 14, and the base of the output transistor 14 is connected.
The drain of the NMOS 13 is connected to the drain. The collector of the output transistor 14 is connected to the power supply VCC, and the emitter is connected to the output terminal 15 that outputs the output signal So.

【0019】出力端子15とグランドVSSとの間に
は、複数の出力電荷引抜き用の出力NMOS16−1〜
16−Nが直列に接続され、その各出力NMOS16−
1〜16−Nのゲ―トが、入力端子11−1〜11−N
にそれぞれ接続されている。さらに、出力NMOS16
−1のソ―スとNMOS13のソ―スとが、共通接続さ
れている。
Between the output terminal 15 and the ground VSS, a plurality of output NMOSs 16-1 to 16-2 for extracting output charges are provided.
16-N are connected in series and each output NMOS 16-
Gates 1 to 16-N have input terminals 11-1 to 11-N
Respectively connected to. Furthermore, output NMOS16
The -1 source and the NMOS 13 source are commonly connected.

【0020】次に、動作を説明する。入力端子11−1
〜11−Nに入力される入力信号Si1〜SiNのいず
れかが“L”レベルのときには、PMOS12−1〜1
2−N中のいずれかがオンし、出力NMOS16−1〜
16−N中のいずれかがオフするため、出力トランジス
タ14がオン状態となって出力端子15から出力される
出力信号Soが“H”レベルとなる。
Next, the operation will be described. Input terminal 11-1
To 11-N, when any of the input signals Si1 to SiN is at "L" level, the PMOS 12-1 to 1
Any of 2-N turns on, and output NMOS 16-1 to
Since any one of 16-N is turned off, the output transistor 14 is turned on and the output signal So output from the output terminal 15 becomes "H" level.

【0021】入力信号Si1〜SiNの全てが“H”レ
ベルのときには、PMOS12−1〜12−Nの全てが
オフ状態となり、NMOS13及び出力NMOS16−
1〜16−Nが全てオン状態となるため、出力トランジ
スタ14がオフ状態となり、出力信号Soが“L”レベ
ルとなる。
When all of the input signals Si1 to SiN are at "H" level, all of the PMOS 12-1 to 12-N are in the off state, and the NMOS 13 and the output NMOS 16-.
Since all of 1 to 16-N are turned on, the output transistor 14 is turned off and the output signal So becomes "L" level.

【0022】このように、本実施例の多入力NANDゲ
―トでは、入力信号Si1〜SiNが全て“H”レベル
のとき、NMOS13及び出力NMOS16−1〜16
−Nが全てオン状態となり、該NMOS13,16−2
〜16−Nによって出力トランジスタ14のベ―ス電荷
がグランドVSS側に引抜かれるので、出力信号Soの
立下り時に、該出力トランジスタ14を素早くオフ状態
にさせる。これにより、消費電力の低減及び動作速度の
向上が図れる。
As described above, in the multi-input NAND gate of this embodiment, when the input signals Si1 to SiN are all at the "H" level, the NMOS 13 and the output NMOSs 16-1 to 16 are provided.
-N are all turned on, and the NMOS 13, 16-2
.About.16-N extracts the base charge of the output transistor 14 to the ground VSS side, so that the output transistor 14 is quickly turned off at the fall of the output signal So. As a result, power consumption can be reduced and operating speed can be improved.

【0023】さらに、出力NMOS16−2〜16−N
は、出力電荷引抜き機能のほかに、出力トランジスタ1
4のベ―ス電荷引抜き機能も持っているので、従来に比
べ出力トランジスタ14のベ―ス電荷引抜き用の素子数
を最少限にでき、しかも動作速度や低消費電力化の性能
を従来と同様の性能に維持できる。
Further, output NMOS 16-2 to 16-N
Is the output transistor 1 in addition to the output charge extraction function.
Since it also has a 4 base charge extraction function, the number of elements for base charge extraction of the output transistor 14 can be minimized compared to the conventional one, and the operation speed and low power consumption performance are the same as the conventional one. The performance of can be maintained.

【0024】なお、本発明は上記実施例に限定されず、
種々の変形が可能である。その変形例としては、例えば
次のようなものがある。
The present invention is not limited to the above embodiment,
Various modifications are possible. Examples of such modifications include the following.

【0025】(a)複数のPMOS12−1〜12−N
は、複数の入力信号Si1〜SiN中の1つによって共
通にゲ―ト制御する構成にすれば、上記実施例とほぼ同
様の作用、効果が得られる。
(A) A plurality of PMOSs 12-1 to 12-N
If the gate control is performed in common by one of the plurality of input signals Si1 to SiN, substantially the same operation and effect as in the above embodiment can be obtained.

【0026】(b)入力信号Si1〜SiN及び出力N
MOS16−2〜16−Nの数は、2以上の任意の数に
設定でき、それに応じてPMOS12−1〜12−Nの
数を変更できる。
(B) Input signals Si1 to SiN and output N
The number of MOSs 16-2 to 16-N can be set to an arbitrary number of 2 or more, and the number of PMOSs 12-1 to 12-N can be changed accordingly.

【0027】(c)上記実施例では、多入力NANDゲ
―トの例について説明したが、図1のMOSトランジス
タの極性を変えたり、或いはインバ―タ等の他の素子を
付加すること等により、NANDゲ―ト以外の他の論理
回路を構成することも可能である。
(C) In the above embodiment, an example of a multi-input NAND gate has been described. However, by changing the polarity of the MOS transistor of FIG. 1 or adding another element such as an inverter. It is also possible to configure a logic circuit other than the NAND gate.

【0028】[0028]

【発明の効果】以上詳細に説明したように、本発明によ
れば、BiNMOS論理回路において、出力トランジス
タのベ―ス電荷引抜き素子として、出力電荷引抜き用の
出力NMOSと別個に、入力数に応じた他のNMOSを
設けることなく、該出力NMOSを出力電荷引抜き機能
の他に、出力トランジスタ用ベ―ス電荷引抜き機能を持
たせている。そのため、動作速度や低消費電力化の性能
を維持しつつ、ベ―ス電荷引抜き素子数を最少限に抑
え、それによって回路構成素子数の大幅な削減が可能と
なる。
As described in detail above, according to the present invention, in a BiNMOS logic circuit, a base charge extracting element of an output transistor is provided in accordance with the number of inputs separately from an output NMOS for extracting an output charge. In addition to the output charge extraction function, the output NMOS is provided with the output transistor base charge extraction function without providing another NMOS. Therefore, it is possible to minimize the number of base charge extraction elements while maintaining the performance of operation speed and low power consumption, and thereby to significantly reduce the number of circuit constituent elements.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の実施例を示すBiNMOS論理回路で
構成された多入力NANDゲ―トの回路図である。
FIG. 1 is a circuit diagram of a multi-input NAND gate including a BiNMOS logic circuit according to an embodiment of the present invention.

【図2】従来のBiNMOS論理回路で構成された2入
力NANDゲ―トの回路図である。
FIG. 2 is a circuit diagram of a 2-input NAND gate including a conventional BiNMOS logic circuit.

【符号の説明】[Explanation of symbols]

11−1〜11−N 入力端子 12−1〜12−N PMOS 13 ベ―ス電荷引抜き用のNMO
S 14 NPN型出力トランジスタ 15 出力端子 16−1〜16−N 出力電荷引抜き用の出力NM
OS
11-1 to 11-N input terminals 12-1 to 12-N PMOS 13 NMO for base charge extraction
S 14 NPN type output transistor 15 Output terminal 16-1 to 16-N Output charge extraction NM
OS

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 電源と出力端子との間に接続されたNP
N型出力トランジスタと、 前記出力端子とグランドとの間に直列接続され、複数の
入力信号によりゲ―ト制御される複数の出力電荷引抜き
用のN型出力MOSトランジスタと、 前記電源と前記出力トランジスタのベ―スとの間に並列
接続され、1つまたは複数の前記入力信号によりゲ―ト
制御される複数のP型MOSトランジスタと、 ドレインまたはソ―スが前記出力トランジスタのベ―ス
に接続され、ソ―スまたはドレインが前記複数の出力M
OSトランジスタ中の前記出力端子に接続された出力M
OSトランジスタのソ―スまたはドレインに接続され、
前記入力信号によりゲ―ト制御されるベ―ス電荷引抜き
用のN型MOSトランジスタとを、 備えたことを特徴とするBiNMOS論理回路。
1. A NP connected between a power supply and an output terminal
An N-type output transistor, a plurality of N-type output MOS transistors connected in series between the output terminal and the ground for gate extraction of a plurality of output charges for gate charge control, the power supply and the output transistor And a plurality of P-type MOS transistors gate-controlled by the one or more input signals, and a drain or a source connected to the output transistor base. And the source or drain is the output M
Output M connected to the output terminal in the OS transistor
Connected to the source or drain of the OS transistor,
A BiNMOS logic circuit, comprising: an N-type MOS transistor for gate charge extraction that is gate-controlled by the input signal.
JP3224134A 1991-09-04 1991-09-04 Binmos logic circuit Pending JPH0563544A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3224134A JPH0563544A (en) 1991-09-04 1991-09-04 Binmos logic circuit

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3224134A JPH0563544A (en) 1991-09-04 1991-09-04 Binmos logic circuit

Publications (1)

Publication Number Publication Date
JPH0563544A true JPH0563544A (en) 1993-03-12

Family

ID=16809080

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3224134A Pending JPH0563544A (en) 1991-09-04 1991-09-04 Binmos logic circuit

Country Status (1)

Country Link
JP (1) JPH0563544A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6793744B1 (en) 2000-11-15 2004-09-21 Research Institute Of Industrial Science & Technology Martenstic stainless steel having high mechanical strength and corrosion

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6793744B1 (en) 2000-11-15 2004-09-21 Research Institute Of Industrial Science & Technology Martenstic stainless steel having high mechanical strength and corrosion

Similar Documents

Publication Publication Date Title
EP0279943B1 (en) Gate circuit of combined field-effect and bipolar transistors
US4694202A (en) Bi-MOS buffer circuit
JPH0552687B2 (en)
JPH0490215A (en) Bicmos logic gate circuit
JP3028840B2 (en) Composite circuit of bipolar transistor and MOS transistor, and semiconductor integrated circuit device using the same
JP2728013B2 (en) BiCMOS logic gate circuit
JPH0337767B2 (en)
JPS5979641A (en) Semiconductor integrated circuit device
JPH0563544A (en) Binmos logic circuit
JP2546904B2 (en) Semiconductor logic circuit
JPH0535927B2 (en)
JP2538986B2 (en) Logic circuit
US5239212A (en) Gate circuit of combined field-effect and bipolar transistors with an improved discharge arrangement
KR950000352B1 (en) Semiconductor logic circuit
JPS61174814A (en) Ecl output circuit
JPH0541487A (en) Vertical type insulated collector p-n-p transistor structure
JPH06343035A (en) Low power bipolar current mode logic which is efficient in area
JP2555321B2 (en) Semiconductor integrated circuit device
JPH0681033B2 (en) Semiconductor integrated circuit
JP3008469B2 (en) Semiconductor integrated circuit
JP2549185B2 (en) Semiconductor integrated circuit device
JP3099351B2 (en) BiCMOS logic circuit
JPH01125023A (en) Semiconductor integrated circuit device
JPH0629830A (en) Semiconductor integrated circuit device
JPH05335933A (en) Semiconductor integrated circuit

Legal Events

Date Code Title Description
A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20001107