JPH0563437B2 - - Google Patents

Info

Publication number
JPH0563437B2
JPH0563437B2 JP63034990A JP3499088A JPH0563437B2 JP H0563437 B2 JPH0563437 B2 JP H0563437B2 JP 63034990 A JP63034990 A JP 63034990A JP 3499088 A JP3499088 A JP 3499088A JP H0563437 B2 JPH0563437 B2 JP H0563437B2
Authority
JP
Japan
Prior art keywords
refractory
fine
spraying
monolithic
alumina
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP63034990A
Other languages
Japanese (ja)
Other versions
JPH01212259A (en
Inventor
Eiichi Yorita
Takashi Yamamura
Yukitoshi Kubota
Ichiro Hatsutori
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shinagawa Refractories Co Ltd
Original Assignee
Shinagawa Refractories Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shinagawa Refractories Co Ltd filed Critical Shinagawa Refractories Co Ltd
Priority to JP63034990A priority Critical patent/JPH01212259A/en
Publication of JPH01212259A publication Critical patent/JPH01212259A/en
Publication of JPH0563437B2 publication Critical patent/JPH0563437B2/ja
Granted legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/66Monolithic refractories or refractory mortars, including those whether or not containing clay

Description

【発明の詳細な説明】[Detailed description of the invention]

[産業上の利用分野] 本発明は、乾燥時の急昇熱に対して爆裂破壊が
発生しにくい(爆裂抵抗性に優れた)、高密度且
つ高耐食性を有する吹付け施工体を製造するため
の不定形耐火物の吹付け施工方法に関する。 [従来の技術] 従来より施工枠が不要であり、作業能率が高い
等の利点により、不定形耐火物の吹付け施工方法
が各種窯炉の施工に広く実施されている。この吹
付け方法によつて製造される耐火施工体の高品質
化、高耐用化を目的として、本発明者らは特開昭
62−36071号公報に、高密度且つ高強度吹付け施
工体を製造するための耐火組成物の吹付け方法を
提唱した。 この方法は耐火骨材、50μ以下の耐火超微粉、
水硬性アルミナセメント及び分散剤からなる耐火
組成物を、施工水分量の1/5〜3/4の水分で予め混
練してから、乾式吹付けガンによつて圧送し、前
記混練した耐火組成物に施工水分量の残量の水分
及び硬化促進剤よりなる溶液を、乾式吹付けガン
の吹付けノズルで添加する吹付け方法であり、こ
の吹付け方法で製造された施工体は見掛気孔率が
低く、緻密な施工体であり、強度も優れている。 [発明が解決しようとする課題] しかし、この吹付け方法で得られた施工体の大
きな欠点の1つに乾燥中に爆裂破壊が発生し易い
特性がある。この原因は低水分吹付け施工により
施工体が高充填性になるとともに、含有されてい
るアルミナセメントが吹付後の養生中に結晶構造
の大きな水和鉱物を生成するため、通気性が大巾
に減少し、乾燥中の施工体温度の上昇とともに内
部で蒸発した水蒸気が気孔を通つて施工体表面に
出られなくなり、施工体内の蒸気圧が施工体強度
以上に上がるためである。また、この施工体は
CaOを含有するアルミナセメントが添加されてお
り、このCaOはAl2O3−SiO2系、Al2O3系、ジル
コン系、Al2O3−MgO系では耐スラグ侵食性を劣
化する欠点がある。 本発明の目的は上記問題点を解決し、乾燥時の
急昇熱に対して爆裂破壊が発生しにくい、高密度
かつ高耐食性を有する吹付け施工体を得るための
不定形耐火物の吹付け施工方法を提供することに
ある。 [課題を解決するための手段] 即ち、本発明は、不定形耐火物を予め施工水分
量の1/5〜3/4の水分で予備混練し、得られた混練
物を吹付けガンによつて圧送し、吹付けノズルに
おいて施工水分量の残量を添加することからなる
不定形耐火物の吹付施工方法で使用するための不
定形耐火物の吹付け施工方法において、耐火骨材
94〜70重量部、粒子径50μ以下の耐火超微粉5〜
29重量部、粒子径が20μ以下の耐火粘土1〜15重
量部、及びアルカリ金属リン酸塩及びアルカリ金
属ポリリン酸塩からなる群より選択された1種ま
たは2種以上の分散剤0.01〜1重量部からなる不
定形耐火物の耐火組成物部を予め施工水分量の1/
5〜3/4の水分で予備混練し、得られた混練物を吹
付けガンによつて圧送し、吹付けノズルにおい
て、施工水分量の残量の水分及び凝結剤からなる
不定形耐火物の溶液部を添加することを特徴とす
る不定形耐火物の吹付け施工方法に係る。 [作用] 本発明方法に使用する不定形耐火物は特開昭62
−36071号公報に開示されているような高密度吹
付け施工体からアルミナセメントを抜いたもので
あり、水和鉱物の生成による通気性の著しい低下
を防止できるため、乾燥時の急昇熱に対して爆裂
破壊が発生しにくくなる。また、アルミナセメン
ト中に存在するCaOも同時に不在となるため、得
られる施工体の耐スラグ侵食性も向上する。 硬化剤としてのアルミナセメントを抜いて不定
形耐火物を硬化させる方法を研究した結果、凝集
性の強い超微粉の耐火粘土を分散剤により解膠さ
せて吹付けし、吹付ノズルから溶液として添加す
る凝結剤により解膠した粘土を凝結させることに
よつて施工体が硬化することが判明した。そして
アルミナセメントを含有しない高密度施工体を製
造する吹付け施工用不定形耐火物として有効であ
ることが判明した。 本発明方法に使用する不定形耐火物に用いる耐
火骨材は電融アルミナ、焼結アルミナ、ボーキサ
イト、カイヤナイト、シリマナイト、紅柱石、ム
ライト、シヤモツト、ロー石、珪石、アルミナ−
マグネシアスピネル、炭化珪素、黒鉛、窒化珪
素、フエロシリコン、無定形炭素、ピツチ粉、ジ
ルコン、ジルコニア、クロム及びマグネシア等か
らなる群より選択することができる。これらの耐
火骨材は必要に応じて1種または2種以上を併用
することができる。耐火骨材の添加配合量は94〜
70重量部である。 耐火超微粉としては微粉シリカ、微粉アルミ
ナ、微粉マグネシア、微粉酸化クロム、微粉シヤ
モツト、微粉ジルコン、微粉ムライト、微粉ジル
コニア、微粉炭化珪素、含水無定形シリカ、無水
無定形シリカ、含水無定形アルミナ、無水無定形
アルミナ、無定形チタニア等が挙げられ、必要に
応じて1種または2種以上を併用することができ
る。耐火超微粉の粒子径は、分散剤による減水効
果が充分に発揮されるために、50μ以下のものが
好ましい。耐火超微粉の添加配合量は5〜29重量
部が好ましく、耐火超微粉の添加配合量が29重量
部を超えると、施工水分量の増加を招き、高密度
化が困難であるため好ましくなく、また、5重量
部未満であると、耐火骨材粒子間に充分に存在さ
せることができず、高密度化及び高強度化を図る
ことができないために好ましくない。 本発明に使用する不定形耐火物に用いる耐火粘
土とはカオリナイトを主鉱物とした可塑性粘土で
あり、粒子径は凝結効果が充分に発揮されるため
に20μ以下が好ましい。耐火粘土の添加配合量は
1〜15重量部が好ましく、添加配合量が15重量部
を超えると、施工水分量の増加を招き高密度化が
困難であり、また、製造された施工体の乾燥及び
焼成収縮が大きくなり、施工体としての欠陥が生
ずるために好ましくない。また、添加配合量が1
重量部未満であると、施工体の凝結強度が不充分
であり、吹付け中に吹付け圧力及び自重により施
工体が崩壊して吹付け施工ができないため好まし
くない。分散剤として使用するアルカリ金属リン
酸塩及びアルカリ金属ポリリン酸塩は、例えばウ
ルトラポリリン酸ソーダ、ヘキサンメタリン酸ソ
ーダ等が挙げられる。分散剤の添加配合量は0.01
〜1重量部が好ましく、分散剤の添加配合量が
0.01重量部未満であると、良好な解膠効果を得る
ことができないため好ましくない。1重量部を超
えると最適解膠状態が得られないため好ましくな
い。なお、上述の分散剤は1種または2種以上を
併用して使用することができる。 上述の配合をもつ不定形耐火物の耐火組成物部
に必要施工水分量の1/5〜3/4の水分を添加してミ
キサーで予備混練することによつて超微粉、耐火
粘土が一部解膠状態となり、吹付けノズルで施工
水分量の残部を添加する時の短時間の混合、混練
でも完全に解膠効果が得られた状態となり、低水
分量の吹付け施工が可能となる。また、ノズルで
添加される施工水分の残量との溶液である凝結剤
の効果により、解膠していた耐火粘土が急速に凝
結し、吹付け施工体が流動崩壊することなく施工
することができる。 吹付けノズルで添加される凝結剤としては、例
えばCa(OH)2、珪酸ソーダ、アルミン酸ソーダ
等を挙げることができ、添加される凝結剤と施工
水分残量からなる溶液部の凝結剤濃度としては1
〜50重量%が好ましい。添加される凝結剤溶液の
濃度が1重量%未満であると、耐火粘土の凝結が
不充分であり、吹付け施工体が流動崩壊するため
好ましくなく、また、50重量%を超えると、耐火
粘土の凝結速度が速くなりすぎて、吹付けノズル
内で凝結して吹付けノズルの閉塞が発生しやすく
なり、吹付け施工体も層状組織になるため好まし
くない。 このようにして得られた吹付け施工用不定形耐
火物は慣用の不定形耐火物が吹付け施工されてい
る各種窯炉の施工に広く使用することができる。 [実施例] 以下に実施例を挙げて本発明の不定形耐火物の
吹付け施工方法を更に説明する。 実施例 以下の第1表及び第2表に記載する配合割合を
もつ耐火組成物に4重量%の水分を添加してミキ
サーで混練後、吹付けガンでこの混練物を圧送し
て、吹付けノズルにおいて本発明例は凝結剤溶液
を添加し、比較品は硬化促進剤溶液を添加して
500mm×500mm×100mm厚みの平板施工体及び100mm
φ×100mmの円柱施工体を吹付け施工により製造
した。平板施工体は24時間常温養生後、試験形状
に加工し、品質試験及びスラグ侵食試験を行なつ
た。円柱施工体は24時間常温養生後、所定温度に
加熱した電気炉に投入し、爆裂破壊の発生の有無
を確認した。各種温度で上記爆裂試験を行ない、
爆裂発生温度の高低で本発明例と比較例の比較し
た。爆裂発生温度が高いほど、乾燥時の耐爆裂性
が優れており、爆裂破壊が発生しにくい。得られ
た吹付け施工体の特性を第1表及び第2表に併記
する。
[Industrial Field of Application] The present invention is for producing a spray-applied body that is resistant to explosion failure (excellent explosion resistance), has high density, and has high corrosion resistance due to rapid heat rise during drying. This invention relates to a spraying construction method for monolithic refractories. [Prior Art] Conventionally, spraying construction methods of monolithic refractories have been widely implemented in the construction of various types of furnaces due to advantages such as no construction frame being required and high work efficiency. With the aim of improving the quality and durability of fireproof construction bodies manufactured by this spraying method, the present inventors and others
No. 62-36071 proposes a method for spraying a fire-resistant composition to produce a high-density and high-strength sprayed construction body. This method uses refractory aggregate, refractory ultrafine powder of less than 50μ,
A refractory composition consisting of hydraulic alumina cement and a dispersant is kneaded in advance with 1/5 to 3/4 of the construction water content, and then the kneaded refractory composition is pumped using a dry spray gun. This is a spraying method in which a solution consisting of water remaining in the amount of water to be applied and a curing accelerator is added using the spray nozzle of a dry spray gun, and the construction body manufactured by this spraying method has a low apparent porosity. It is a densely constructed structure with low resistance and excellent strength. [Problems to be Solved by the Invention] However, one of the major drawbacks of the constructed body obtained by this spraying method is that it is susceptible to explosive failure during drying. The reason for this is that low-moisture spraying makes the construction body highly filling, and the alumina cement contained in it forms hydrated minerals with a large crystal structure during curing after spraying, which greatly reduces air permeability. This is because as the temperature of the construction body increases during drying, the water vapor that evaporates inside becomes unable to exit to the surface of the construction body through the pores, and the vapor pressure inside the construction body rises above the strength of the construction body. In addition, this construction body
Alumina cement containing CaO is added, and this CaO has the disadvantage of deteriorating slag erosion resistance in Al 2 O 3 -SiO 2 series, Al 2 O 3 series, zircon series, and Al 2 O 3 -MgO series. be. The purpose of the present invention is to solve the above-mentioned problems, and to obtain a sprayed construction body having high density and high corrosion resistance, which is less prone to explosion failure due to rapid heat rise during drying. The purpose is to provide a construction method. [Means for Solving the Problems] That is, the present invention involves pre-mixing a monolithic refractory with a water content of 1/5 to 3/4 of the amount of water to be applied, and spraying the resulting kneaded product with a spray gun. In the spraying construction method for monolithic refractories, which consists of adding the remaining amount of construction moisture in the spray nozzle, the refractory aggregate is
94~70 parts by weight, ultrafine refractory powder with a particle size of 50μ or less 5~
29 parts by weight, 1 to 15 parts by weight of fireclay with a particle size of 20μ or less, and 0.01 to 1 part by weight of one or more dispersants selected from the group consisting of alkali metal phosphates and alkali metal polyphosphates. The refractory composition part of the monolithic refractory consisting of
The mixture is pre-kneaded with 5 to 3/4 of the water content, and the resulting kneaded material is pumped through a spray gun. The present invention relates to a spraying construction method for monolithic refractories characterized by adding a solution part. [Function] The monolithic refractory used in the method of the present invention is
- It is a high-density sprayed construction body as disclosed in Publication No. 36071 without alumina cement, and it can prevent a significant decrease in air permeability due to the formation of hydrated minerals, so it can prevent rapid heat rise during drying. On the other hand, explosive destruction is less likely to occur. In addition, since CaO present in alumina cement is also absent, the slag erosion resistance of the resulting construction body is also improved. As a result of research into a method for curing monolithic refractories without alumina cement as a hardening agent, we found that highly cohesive ultra-fine fireclay was peptized with a dispersant, sprayed, and added as a solution from a spray nozzle. It was found that the constructed body was hardened by coagulating the peptized clay with a coagulant. It was also found that it is effective as a monolithic refractory for spraying construction to produce high-density construction bodies that do not contain alumina cement. The refractory aggregates used for the monolithic refractories used in the method of the present invention include fused alumina, sintered alumina, bauxite, kyanite, sillimanite, andalusite, mullite, siyamoto, loite, silica, and alumina.
It can be selected from the group consisting of magnesia spinel, silicon carbide, graphite, silicon nitride, ferrosilicon, amorphous carbon, pitch powder, zircon, zirconia, chromium, magnesia, and the like. These refractory aggregates can be used alone or in combination of two or more, if necessary. Addition amount of refractory aggregate is 94~
It is 70 parts by weight. Ultrafine refractory powders include fine silica, fine alumina, fine magnesia, fine chromium oxide, fine siyamoto, fine zircon, fine mullite, fine zirconia, fine silicon carbide, hydrated amorphous silica, anhydrous amorphous silica, hydrated amorphous alumina, and anhydrous. Examples include amorphous alumina and amorphous titania, and one type or two or more types can be used in combination as necessary. The particle size of the refractory ultrafine powder is preferably 50 μm or less in order to fully exhibit the water-reducing effect of the dispersant. The addition amount of the refractory ultrafine powder is preferably 5 to 29 parts by weight, and if the addition amount of the refractory ultrafine powder exceeds 29 parts by weight, it is not preferable because it causes an increase in the amount of moisture in the construction and makes it difficult to achieve high density. Further, if the amount is less than 5 parts by weight, it is not preferable because it cannot be sufficiently present between the refractory aggregate particles, making it impossible to achieve high density and high strength. The fireclay used in the amorphous refractory used in the present invention is a plastic clay whose main mineral is kaolinite, and the particle size is preferably 20 μm or less in order to fully exhibit the coagulation effect. The addition amount of fireclay is preferably 1 to 15 parts by weight; if the addition amount exceeds 15 parts by weight, the amount of moisture in the construction increases, making it difficult to achieve high density, and the drying of the manufactured construction object becomes difficult. This is not preferable because the firing shrinkage increases, resulting in defects in the construction product. Also, the amount added is 1
If the amount is less than 1 part by weight, the setting strength of the construction object will be insufficient, and the construction object will collapse due to the spraying pressure and its own weight during spraying, making it impossible to perform spraying construction, which is not preferable. Examples of the alkali metal phosphates and alkali metal polyphosphates used as dispersants include sodium ultrapolyphosphate and sodium hexane metaphosphate. The amount of dispersant added is 0.01
~1 part by weight is preferable, and the amount of the dispersant added is
If it is less than 0.01 part by weight, it is not preferable because a good peptizing effect cannot be obtained. If it exceeds 1 part by weight, it is not preferable because an optimum peptized state cannot be obtained. In addition, the above-mentioned dispersants can be used alone or in combination of two or more. By adding 1/5 to 3/4 of the required amount of water for construction to the refractory composition part of the monolithic refractory having the above-mentioned composition and pre-kneading it with a mixer, some of the ultrafine powder and fireclay can be obtained. It becomes a peptized state, and even with a short time of mixing and kneading when adding the remaining amount of water with a spray nozzle, a complete peptizing effect is obtained, making it possible to perform spraying with a low water content. In addition, due to the effect of the coagulant, which is a solution with the remaining amount of construction water added through the nozzle, the peptized fireclay rapidly solidifies, making it possible to construct the sprayed construction without flowing and collapsing. can. Examples of the coagulant added by the spray nozzle include Ca(OH) 2 , sodium silicate, and sodium aluminate. as 1
~50% by weight is preferred. If the concentration of the coagulant solution added is less than 1% by weight, the coagulation of the fireclay will be insufficient and the sprayed construction will flow and collapse, which is undesirable. If the condensation speed becomes too high, condensation will condense in the spray nozzle, causing clogging of the spray nozzle, and the sprayed product will also have a layered structure, which is undesirable. The thus obtained monolithic refractories for spraying can be widely used in the construction of various types of furnaces in which conventional monolithic refractories are sprayed. [Example] The method for spraying a monolithic refractory according to the present invention will be further explained below with reference to Examples. Example: 4% by weight of water was added to a fireproof composition having the blending ratio shown in Tables 1 and 2 below, and the mixture was kneaded with a mixer, and then the kneaded material was pumped with a spray gun and sprayed. In the nozzle, the example of the present invention added a coagulant solution, and the comparative product added a curing accelerator solution.
500mm x 500mm x 100mm thick flat plate construction body and 100mm
A cylindrical construction body with a diameter of 100 mm was manufactured by spraying. After the flat plate construction body was cured at room temperature for 24 hours, it was processed into a test shape and subjected to quality tests and slag erosion tests. After the cylindrical construction body was cured at room temperature for 24 hours, it was placed in an electric furnace heated to a predetermined temperature, and the presence or absence of explosion failure was confirmed. The above explosion test was carried out at various temperatures,
The inventive example and the comparative example were compared in terms of explosion temperature. The higher the explosion temperature, the better the explosion resistance during drying, and the less likely explosion failure will occur. The properties of the sprayed body obtained are listed in Tables 1 and 2.

【表】【table】

【表】【table】

【表】【table】

【表】 第1表及び第2表からも明らかなように、本発
明例はアルミナセメントを添加した耐火組成物か
ら得られた高密度吹付け施工体の比較例と同等
に、見掛気孔率が低く、緻密な施工体であるが、
比較品より乾燥時の耐爆裂性が優れており、ま
た、耐スラグ侵食性も優れている。 [発明の効果] 本発明の不定形耐火物の吹付け施工方法は下記
の効果がある。 従来の乾式吹付法で施工される不定形耐火物
に比較して、低水分で吹付け施工ができるため
に高密度施工体が得られ、且つ乾燥時の急昇熱
に対して爆裂破壊が発生しにくい施工体が得ら
れる。 アルミナセメントに起因するCaOが存在しな
いので、高耐火性及び高耐食性を得ることがで
きる。
[Table] As is clear from Tables 1 and 2, the examples of the present invention have an apparent porosity equivalent to that of the comparative examples of high-density sprayed constructions obtained from fireproof compositions containing alumina cement. Although it is a carefully constructed structure with a low
It has better explosion resistance when dry and better slag erosion resistance than comparative products. [Effects of the Invention] The spraying construction method for monolithic refractories of the present invention has the following effects. Compared to monolithic refractories constructed using the conventional dry spraying method, spraying can be performed with low moisture content, resulting in a high-density construction body, and explosion failure occurs due to rapid heat rise during drying. A construction body that is difficult to construct can be obtained. Since there is no CaO caused by alumina cement, high fire resistance and high corrosion resistance can be obtained.

Claims (1)

【特許請求の範囲】 1 不定形耐火物を予め施工水分量の1/5〜3/4の
水分で予備混練し、得られた混練物を吹付けガン
によつて圧送し、吹付けノズルにおいて施工水分
量の残量を添加することからなる不定形耐火物の
吹付施工方法で使用するための不定形耐火物の吹
付け施工方法において、耐火骨材94〜70重量部、
粒子径50μ以下の耐火超微粉5〜29重量部、粒子
径が20μ以下の耐火粘土1〜15重量部、及びアル
カリ金属リン酸塩及びアルカリ金属ポリリン酸塩
からなる群より選択された1種または2種以上の
分散剤0.01〜1重量部からなる不定形耐火物の耐
火組成物部を予め施工水分量の1/5〜3/4の水分で
予備混練し、得られた混練物を吹付けガンによつ
て圧送し、吹付けノズルにおいて、施工水分量の
残量の水分及び凝結剤からなる不定形耐火物の溶
液部を添加することを特徴とする不定形耐火物の
吹付け施工方法。 2 耐火骨材が粒度調整された電融アルミナ、焼
結アルミナ、ボーキサイト、カイヤナイト、シリ
マナイト、紅柱石、ムライト、シヤモツト、ロー
石、珪石、アルミナ−マグネシアスピネル、炭化
珪素、黒鉛、窒化珪素、フエロシリコン、無定形
炭素、ピツチ粉、ジルコン、ジルコニア、クロム
及びマグネシアからなる群より選択された1種ま
たは2種以上である特許請求の範囲第1項記載の
不定形耐火物の吹付け施工方法。 3 耐火超微粉が微粉シリカ、微粉アルミナ、微
粉マグネシア、微粉酸化クロム、微粉シヤモツ
ト、微粉ジルコン、微粉ムライト、微粉ジルコニ
ア、微粉炭化珪素、含水無定形シリカ、無水無定
形シリカ、含水無定形アルミナ、無水無定形アル
ミナ、無定形チタニアからなる群より選択された
1種または2種以上である特許請求の範囲第1項
記載の不定形耐火物の吹付け施工方法。 4 凝結剤がCa(OH)2、珪酸ソーダ及びアルミ
ン酸ソーダからなる群より選択されたものである
特許請求の範囲第1項記載の不定形耐火物の吹付
け施工方法。
[Scope of Claims] 1. A monolithic refractory is pre-kneaded in advance with 1/5 to 3/4 of the amount of water to be applied, and the resulting kneaded material is fed under pressure with a spray gun, and then injected into a spray nozzle. In the spraying construction method for monolithic refractories for use in the spraying construction method for monolithic refractories, which consists of adding the remaining amount of construction moisture, 94 to 70 parts by weight of refractory aggregate;
5 to 29 parts by weight of ultrafine refractory powder with a particle size of 50μ or less, 1 to 15 parts by weight of fireclay with a particle size of 20μ or less, and one selected from the group consisting of alkali metal phosphates and alkali metal polyphosphates, or The refractory composition part of the monolithic refractory consisting of 0.01 to 1 part by weight of two or more types of dispersants is pre-kneaded with a water content of 1/5 to 3/4 of the construction water content, and the resulting kneaded product is sprayed. A spraying construction method for monolithic refractories, characterized in that the monolithic refractories are pumped by a gun, and a solution portion of the monolithic refractories consisting of a remaining amount of water to be applied and a coagulant is added in a spray nozzle. 2 The refractory aggregate is fused alumina, sintered alumina, bauxite, kyanite, sillimanite, andalusite, mullite, siyamoto, lowite, silica, alumina-magnesia spinel, silicon carbide, graphite, silicon nitride, fluorite, etc. The method for spraying a monolithic refractory according to claim 1, which is one or more selected from the group consisting of erosilicon, amorphous carbon, pitch powder, zircon, zirconia, chromium, and magnesia. . 3 The refractory ultrafine powders include fine silica, fine alumina, fine magnesia, fine chromium oxide, fine siyamoto, fine zircon, fine mullite, fine zirconia, fine silicon carbide, hydrated amorphous silica, anhydrous amorphous silica, hydrated amorphous alumina, and anhydrous. The method for spraying a monolithic refractory according to claim 1, wherein the spraying method is one or more selected from the group consisting of amorphous alumina and amorphous titania. 4. The method for spraying a monolithic refractory according to claim 1, wherein the coagulant is selected from the group consisting of Ca(OH) 2 , sodium silicate, and sodium aluminate.
JP63034990A 1988-02-19 1988-02-19 Castable refractories for spray coating Granted JPH01212259A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63034990A JPH01212259A (en) 1988-02-19 1988-02-19 Castable refractories for spray coating

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63034990A JPH01212259A (en) 1988-02-19 1988-02-19 Castable refractories for spray coating

Publications (2)

Publication Number Publication Date
JPH01212259A JPH01212259A (en) 1989-08-25
JPH0563437B2 true JPH0563437B2 (en) 1993-09-10

Family

ID=12429583

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63034990A Granted JPH01212259A (en) 1988-02-19 1988-02-19 Castable refractories for spray coating

Country Status (1)

Country Link
JP (1) JPH01212259A (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE4233015C1 (en) * 1992-10-01 1993-10-28 Veitscher Magnesitwerke Ag Binder for ceramic masses
JP3226260B2 (en) 1996-09-19 2001-11-05 大光炉材株式会社 Wet spraying of refractory composition for dense amorphous refractories
JP6259643B2 (en) * 2013-10-22 2018-01-10 株式会社ヨータイ High chromia castable refractory, precast block using the same, and waste melting furnace lined with one or both of them

Also Published As

Publication number Publication date
JPH01212259A (en) 1989-08-25

Similar Documents

Publication Publication Date Title
US9701588B2 (en) Method for producing light ceramic materials
DE69735116T2 (en) Hydraulic monolithic refractory containing a non-calzinc binder and consisting of hydrogenation-activatable alumina and magnesia
KR20180088658A (en) Refractory Magnesia Cement
US4152166A (en) Zircon-containing compositions and ceramic bodies formed from such compositions
EP0301092A1 (en) Method for spray-working refractory composition
EP0931780B1 (en) Method of wet-gunning a castable refractory composition
WO1996030316A1 (en) Light weight sprayable tundish lining composition
MX2009000161A (en) Cement-free refractory.
US3547664A (en) Refractory ramming mix
JPS59182280A (en) Monolithic refractory composition
JPH0563437B2 (en)
JP4141158B2 (en) SiC for amorphous refractories with excellent corrosion resistance, spalling resistance, and drying properties, and raw materials for amorphous refractories
RU2140407C1 (en) Refractory concrete mix
JP2604310B2 (en) Pouring refractories
JPS63162579A (en) Thermosettable monolithic refractories
JP2965957B1 (en) Amorphous refractory composition for wet spraying
JP2000016874A (en) Accelerating agent for refractory and spraying method using the same
KR100317307B1 (en) Monolithic Basic Refractories Having High Durability
JPH0383869A (en) Refractory for casting execution of work
JP4204246B2 (en) Silicon carbide raw material and amorphous refractory raw material for amorphous refractories with excellent drying and corrosion resistance
KR100218242B1 (en) Meterials for repair refractory lining of ladle or tundish and method for repair refractory lining
JP2869881B2 (en) Spray material for kiln repair
JPH0375274A (en) Castable refractory
JPH0427190B2 (en)
JPH03164460A (en) Calcined insulating refractories for rotary kiln for cement production

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees