JPH0427190B2 - - Google Patents

Info

Publication number
JPH0427190B2
JPH0427190B2 JP63045952A JP4595288A JPH0427190B2 JP H0427190 B2 JPH0427190 B2 JP H0427190B2 JP 63045952 A JP63045952 A JP 63045952A JP 4595288 A JP4595288 A JP 4595288A JP H0427190 B2 JPH0427190 B2 JP H0427190B2
Authority
JP
Japan
Prior art keywords
weight
construction
fine powder
parts
spray
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP63045952A
Other languages
Japanese (ja)
Other versions
JPH01224274A (en
Inventor
Takashi Yamamura
Masashi Mori
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shinagawa Refractories Co Ltd
Original Assignee
Shinagawa Refractories Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shinagawa Refractories Co Ltd filed Critical Shinagawa Refractories Co Ltd
Priority to JP63045952A priority Critical patent/JPH01224274A/en
Publication of JPH01224274A publication Critical patent/JPH01224274A/en
Publication of JPH0427190B2 publication Critical patent/JPH0427190B2/ja
Granted legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/66Monolithic refractories or refractory mortars, including those whether or not containing clay

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Ceramic Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Organic Chemistry (AREA)
  • Ceramic Products (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

[産業上の利用分野] 本発明は粗粒部と微粉部を別個に吹付ノズルに
供給し、該ノズル内で混合して吹付けする、いわ
ゆるスラリー添加吹付け施工に使用するための新
規な耐火組成物に関する。 [従来の技術] 溶融金属容器(取鍋、タイデイシユ、桶など)
の内張りの施工は近年れんが張り施工から不定形
耐火物による流し込み施工に変わつてきたが、現
場での混練あるいは枠掛け作業の煩雑さなどの点
から、更に、吹付施工に移行しつつある。 しかし、吹付施工においては、施工体の充填密
度が低いために、特にスラグライン部の耐食性が
低く、寿命が短いという欠点があつた。 本発明者らは上述の欠点を改良するために、特
公昭62−21754号公報に記載されている「吹付施
工用耐火組成物の施工方法」を完成することによ
つて高充填密度の施工体が得られるようになり、
かなり広く採用されるに至つた。該方法によれ
ば、「粒度調整された耐火骨材の74μ以上には硬
化剤を、74μ以下の微粉部には解膠剤を添加して
個別に混練し且つ該74μ以下の微粉部は液体バイ
ンダーでスラリー状とし、それぞれを吹付ノズル
に別個に供給し、両者をノズル部で混合し、吹付
けることからなる吹付施工用耐火組成物の施工方
法」であつて、アルミナセメントの添加量を極め
て少なくした、いわゆるアルミナフリーの吹付材
を使用することによつて低水分量でも振動成形あ
るいは流し込み施工と同等以上の品質(特性)の
吹付施工を行なうことができるようになつた。 [発明が解決しようとする課題] しかしながら、吹付材の充填密度が高くなる
と、乾燥・昇温時に、施工体の水分が表面から発
散せず、水蒸気が内部にこもり、ついには施工体
の表面を破壊して突出する、いわゆる爆裂を起こ
すので、そのまま使用すれば稼働時局部損傷を起
こして寿命が著しく低下したり、あるいは爆裂が
大きい場合には昇温を中断して再度吹付施工(補
修)する必要があるなどの問題を生じてきた。 これに対して、従来、吹付材に無機繊維または
有機繊維を添加する技術はあつたが、単にリバン
ドロスを低減するめたのものであつて、爆裂防止
用としては何ら効力のないものであつた。 また、類似の技術としては特開昭61−10079号
公報記載の「粒径5μ以下の超微粉を2〜25重量
%含有する耐火性骨材と結合剤との含量100重量
%に対しビニロン、ナイロン、ポリビニル、ポリ
エステル、ポリエチレン、ポリプロピレン等から
選択された200℃以下で溶融または分解する有機
繊維を0.01〜1.0重量%添加した流し込み施工用
耐火物」があるが、該有機繊維は熱によつて溶融
または分解するものであつて、本発明の目的とす
る乾燥昇温時における吹付け施工体の爆裂を防止
することは技術思想が全く異なるものである。 [課題を解決するための手段] 本発明者らは上述の爆裂を防止するためには、
乾燥開始前に水分の蒸発経路となる通気空隙を形
成しておけばよいことを知見し、種々研究した結
果、施工体の乾燥、昇温時に温度が上昇した添加
水に溶解する繊維状物質を配合した吹付施工用耐
火組成物を完成するに至つた。 すなわち、本発明は粗粒部と微粉部を別個に吹
付ノズルへ供給し、該ノズル内で所定の割合で混
合して吹付施工するための吹付施工用耐火組成物
において、粗粒部が耐火性原料の粒度3mm〜74μ
の粗粒100重量部、直径0.1〜20μ、長さ1〜5mm、
水に対する溶解温度50℃以上の温水可溶性繊維状
物質0.05〜1.0重量部、及び硬化剤0.1〜1.5重量部
よりなり;且つ微粉部が耐火性原料の粒度74μ以
下の微粉100重量部、固形分20〜30重量%のコロ
イダルシリカ液及び水よりなる泥漿であることを
特徴とする吹付施工用耐火組成物に係る。 [作用] 以下に、本発明の吹付施工用耐火組成物(以
下、単に吹付材という)を説明する。 本発明に使用する耐火性原料としては、珪砂、
珪石、ロー石等の珪酸質原料、電融アルミナ、仮
焼きアルミナ、ボーキサイト、バン土頁岩等の高
アルミナ質原料、炭化珪素、マグネシア原料、ジ
ルコニア及びジルコン等の慣用の原料を目的とす
る施工体に合わせて使用することができる。 耐火性原料の粗粒は上記原料の中から選ばれた
原料を常法によつて粉砕、篩分けしたものであつ
て、一般には3mm〜74μの粒度範囲のものをいう
が、篩分け時の不可避成分として74μ以下の微粉
も粗粒部全体の約20重量%程度は含まれていても
よい。耐火性原料の微粉は一般に74μ以下の粒度
範囲のものをいうが、粗粒部と同様の理由によつ
て74μ以上の粗粒を微粉部全体の約20重量%程度
まで含有することができる。 耐火性原料の粗粒及び微粉は共に上記範囲内に
粒度調整した上記原料を施工体の用途及び目的等
に応じて2種または3種以上組み合わせて使用す
ればよい。 本発明の吹付材の粗粒部には更に温水可溶性の
繊維状物質が含まれる。前記繊維状物質は直径が
0.1〜20μであり、長さが1〜5mmであり、更に水
への溶解温度が50℃以上であることを必要とす
る。 前記繊維状物質の直径が0.1μ未満の場合には後
述するようにして形成される通気空隙が余りにも
微小過ぎて、乾燥・昇温時に水蒸気が移動、発散
することができない。また、20μを超える場合に
は、通気空隙が大きくなり過ぎて施工体の組織が
ポーラスになるので耐食性が低下する。 また、前記繊維状物質の長さが1mm未満では通
気空隙を連続して形成することができず、水蒸気
の移動、発散が起こりにくい。また、5mmを超え
ると添加した繊維状物質が互いに絡み合い、吹付
施工時に均等に分散しにくい。 更に、温水可溶性繊維状物質の水への溶解温度
が50℃未満であると、吹付施工された時点で直ぐ
に水に溶解してしまうので、繊維状物質が占めて
いた部分が耐火性原料の微粉部で埋まつてしま
い、所望のように通気空隙を形成することができ
ない。 上述の温水可溶性繊維状物質のとしては有機質
または無機質の例えば市販の製紙用ポリビニルア
ルコール繊維あるいはセルロース繊維などを配合
することができる。該繊維状物質の添加配合量は
耐火性原料の粗粒100重量部当たり0.05〜0.5重量
部である。添加配合量が0.05重量部未満である
と、施工体に形成される通気空隙が少なく、爆裂
防止効果が少ない。また、0.5重量部を超えると
施工体の組織がポーラスになり過ぎ、耐食性が低
下する。 また、粗粒部には硬化剤を添加する。硬化剤と
しては市販の珪酸ソーダ(粉末)、珪酸カリウム、
消石灰粉末、塩化マグネシウム等を耐火性原料の
粗粒100重量部当たり0.1〜1.5重量部添加する。
硬化剤の添加配合量が0.1重量部未満であると、
吹付材の硬化速度が遅く、接着率が低下する。ま
た、1.5重量部を超えると、硬化速度が早過ぎて
ノズルに詰まり、吹付施工できなくなる恐れがあ
る。 本発明の吹付材の粗粒部は上述のように耐火性
原料の粗粒、温水可溶性繊維状物質及び硬化剤よ
りなる。 次に、本発明の吹付材の微粉部にはコロイダル
シリカ液を添加する。コロイダルシリカ液は市販
の固形分20〜30重量%のものを耐火性原料の微粉
100重量部当たり10〜30重量部配合する。コロイ
ダルシリカ液の配合量が10重量部未満であると、
固形分含量が少なくなり、施工体の強度が低下す
る。また、30重量部を超えると、全体として水分
量が多くなり過ぎて施工体がポーラスになり、強
度が低下する。 上述のようにして調合された微粉部には施工時
に更に施工水分量の残余として0〜10重量部程度
の水が添加され、水分含量15〜25重量%の耐火性
原料の微粉とコロイダルシリカよりなる泥漿とし
て提供される。なお、コロイダルシリカ液中の水
分量のみで施工水分量を賄える場合には更に水を
添加する必要はない。 本発明の吹付材の施工に際しては、粗粒部は予
め所定の割合に調合しておく。粗粒部はいわゆる
吹付ガンと称するフイーダーモーター付の吹付装
置に投入され、材料ホースを経てノズルへ供給さ
れる。 一方、微粉部は施工現場で、耐火性原料の微
粉、コロイダルシリカ液及び水を所定割合でスラ
リーユニツトへ投入して泥漿状とし、スラリーホ
ースを経て前記ノズルへ圧送され、ノズルにおい
て、粗粒部と微粉部を所定の割合で均等に混合
し、得られた混合物がノズルから噴出して所望の
施工体を形成することができる。 なお、粗粒部と微粉部の割合は施工体の大き
さ、形状などに合わせて種々変化させることがで
きるが、通常50:50〜75:25、好ましくは70:30
程度である。 また、施工体の硬化速度を調節するために硬化
剤とコロイダルシリカ液の配合割合を適宜変化さ
せることができる。 上述のようにして本発明の吹付材から得られた
施工体を常法に従つて毎分約1℃程度の昇温速度
加熱すると、施工体の加熱面から温度が50℃以上
の繊維状物質の溶解温度以上の温度に達した部分
から繊維状物質が水及び/またはコロイダルシリ
カ液中に溶解、消失し、そのあとに微細な通気空
隙が形成される。施工体内の繊維状部分の溶解温
度に達する部分の移動と共に通気空隙が順次施工
体内に形成され、やがて施工体全体にわたり形成
される。施工体内部に発生した水蒸気は形成され
た通気空隙を通過して外部へ放出されるので、爆
裂現象を防止することができる。 [実施例] 以下に実施例を挙げて本発明の吹付材を更に説
明する。 実施例 下記の第1表に記載する配合割合で粗粒部及び
微粉部を調合し、粗粒部を約20Kg/分の速度で吹
付ノズルへ供給し、一方、微粉部を8〜10Kg/分
の速度で前記ノズルへ供給し、ノズル内で粗粒部
と微粉部を混合して吹付施工し、110℃で24時間
乾燥することにより400mm×40mm×160mmの寸法の
物性試験用の供試体を得た。 また、耐爆裂性試験用の供試体は上述と同様に
吹付施工して得た60mm×60mm×60mmの施工体を12
時間放置後、第1表に記載する所定の温度に保持
した電気炉に投入し、30分で爆裂したものを×、
爆裂しなかつたものを○とした。 供試体の諸特性を第1表に併記する。
[Industrial Application Field] The present invention is a novel fire-resistant material for use in so-called slurry addition spraying construction, in which coarse particles and fine particles are separately supplied to a spray nozzle, mixed within the nozzle, and sprayed. Regarding the composition. [Conventional technology] Molten metal containers (ladles, tie-dishes, pails, etc.)
In recent years, the construction of interior linings has changed from brickwork to pouring with monolithic refractories, but due to the complexity of on-site kneading and framing work, there is a shift to spraying. However, the spraying method has the drawback of low corrosion resistance, especially in the slag line part, and short lifespan due to the low packing density of the construction body. In order to improve the above-mentioned drawbacks, the present inventors completed the "Construction Method for Fireproof Composition for Spraying Construction" described in Japanese Patent Publication No. 62-21754, thereby creating a construction material with high packing density. Now you can get
It has become quite widely adopted. According to this method, ``a curing agent is added to the particle size-adjusted refractory aggregate of 74 μm or more, a deflocculant is added to the fine powder portion of 74 μm or less, and the fine powder portion of 74 μm or less is mixed separately. A method for applying fireproof compositions for spraying, which consists of making slurry with a binder, supplying each slurry separately to a spray nozzle, mixing them at the nozzle, and spraying. By using less so-called alumina-free spray material, it has become possible to perform spray construction with quality (characteristics) equal to or better than vibration molding or pouring construction even with a low moisture content. [Problems to be Solved by the Invention] However, when the packing density of the sprayed material becomes high, when drying or heating up, the moisture of the construction object does not evaporate from the surface, and water vapor stays inside, eventually damaging the surface of the construction object. It breaks and protrudes, causing what is called an explosion, so if you continue to use it as is, it will cause local damage during operation and significantly shorten its life, or if the explosion is large, you will have to stop raising the temperature and spray it again (repair). This has led to problems such as the need for On the other hand, there has been a technique in the past to add inorganic fibers or organic fibers to the spray material, but this was only for reducing ribbon loss and was ineffective in preventing explosions. In addition, as a similar technique, ``vinylon, There is a refractory for pouring construction that contains 0.01 to 1.0% by weight of organic fibers selected from nylon, polyvinyl, polyester, polyethylene, polypropylene, etc. that melt or decompose at temperatures below 200°C. It melts or decomposes, and the objective of the present invention, which is to prevent the sprayed body from exploding during drying and heating, is a completely different technical idea. [Means for Solving the Problems] In order to prevent the above-mentioned explosion, the present inventors
We discovered that it is sufficient to create ventilation gaps that serve as a path for moisture evaporation before drying begins, and after conducting various research, we found that fibrous substances that dissolve in the added water whose temperature rose during drying of the construction body and temperature rise were found to be effective. We have completed a blended fire-resistant composition for spraying. That is, the present invention provides a fire-resistant composition for spraying, in which a coarse particle part and a fine powder part are separately supplied to a spray nozzle, and mixed at a predetermined ratio in the nozzle for spray construction. Particle size of raw material: 3mm to 74μ
100 parts by weight of coarse particles, diameter 0.1~20μ, length 1~5mm,
Consisting of 0.05 to 1.0 parts by weight of a hot water-soluble fibrous substance with a dissolution temperature of 50°C or higher in water, and 0.1 to 1.5 parts by weight of a hardening agent; and the fine powder part is 100 parts by weight of fine powder with a particle size of 74μ or less of refractory raw material, solid content 20 This invention relates to a fire-resistant composition for spraying, characterized in that it is a slurry consisting of ~30% by weight of colloidal silica liquid and water. [Function] The fireproof composition for spraying of the present invention (hereinafter simply referred to as spraying material) will be explained below. The refractory raw materials used in the present invention include silica sand,
Construction objects intended for use with siliceous raw materials such as silica stone and low stone, high alumina raw materials such as fused alumina, calcined alumina, bauxite, and clay shale, and conventional raw materials such as silicon carbide, magnesia raw materials, zirconia and zircon. It can be used accordingly. Coarse particles of refractory raw materials are obtained by crushing and sifting raw materials selected from the above raw materials by a conventional method, and generally refer to particles in the particle size range of 3 mm to 74μ, but the As an unavoidable component, fine powder of 74 μm or less may also be included in an amount of about 20% by weight of the entire coarse particle portion. The fine powder of the refractory raw material generally refers to those with a particle size range of 74μ or less, but for the same reason as the coarse particle portion, coarse particles of 74μ or more can be contained up to about 20% by weight of the entire fine powder portion. The coarse particles and fine particles of the refractory raw material may be used in combination of two or more of the above raw materials whose particle sizes are adjusted within the above range depending on the use and purpose of the construction body. The coarse particle portion of the spray material of the present invention further contains a fibrous substance soluble in hot water. The fibrous material has a diameter
It needs to have a diameter of 0.1 to 20 μm, a length of 1 to 5 mm, and a dissolution temperature in water of 50° C. or higher. When the diameter of the fibrous material is less than 0.1 μm, the ventilation voids formed as described below are too small to allow water vapor to move or diffuse during drying and heating. Moreover, if it exceeds 20μ, the ventilation voids become too large and the structure of the constructed body becomes porous, resulting in a decrease in corrosion resistance. Furthermore, if the length of the fibrous material is less than 1 mm, ventilation voids cannot be continuously formed, and movement and dispersion of water vapor are difficult to occur. Furthermore, if the thickness exceeds 5 mm, the added fibrous substances will become entangled with each other, making it difficult to disperse them evenly during spraying. Furthermore, if the dissolution temperature of the hot water-soluble fibrous material in water is less than 50°C, it will dissolve in water immediately after spraying, so the portion occupied by the fibrous material will become fine powder of the refractory raw material. The ventilation gap cannot be formed as desired. As the above-mentioned hot water-soluble fibrous material, organic or inorganic materials such as commercially available polyvinyl alcohol fibers for paper making or cellulose fibers can be blended. The amount of the fibrous material added is 0.05 to 0.5 parts by weight per 100 parts by weight of coarse particles of the refractory raw material. If the amount added is less than 0.05 part by weight, there will be few ventilation gaps formed in the construction body, and the explosion prevention effect will be low. Moreover, if it exceeds 0.5 part by weight, the structure of the construction body becomes too porous and corrosion resistance decreases. Further, a curing agent is added to the coarse grain portion. As a hardening agent, commercially available sodium silicate (powder), potassium silicate,
Slaked lime powder, magnesium chloride, etc. are added in an amount of 0.1 to 1.5 parts by weight per 100 parts by weight of coarse particles of the refractory raw material.
When the amount of curing agent added is less than 0.1 part by weight,
The curing speed of the spray material is slow and the adhesion rate decreases. Moreover, if it exceeds 1.5 parts by weight, the curing speed is too fast and the nozzle may become clogged, making spraying impossible. As described above, the coarse grain portion of the spray material of the present invention is composed of the coarse grains of the refractory raw material, the hot water soluble fibrous material, and the hardening agent. Next, colloidal silica liquid is added to the fine powder portion of the spray material of the present invention. Colloidal silica liquid is commercially available with a solid content of 20 to 30% by weight, and is a fine powder of refractory raw material.
Add 10 to 30 parts by weight per 100 parts by weight. When the amount of colloidal silica liquid is less than 10 parts by weight,
The solid content decreases and the strength of the construction body decreases. Moreover, if it exceeds 30 parts by weight, the water content will be too large as a whole, and the construction body will become porous and its strength will decrease. During construction, about 0 to 10 parts by weight of water is added to the fine powder part prepared as described above as a remainder of the construction water content, and the powder is mixed with colloidal silica and refractory raw material fine powder with a moisture content of 15 to 25% by weight. It is provided as a slurry. Note that if the amount of water in the colloidal silica liquid alone can cover the amount of water in the application, there is no need to add additional water. When applying the spray material of the present invention, the coarse particles are prepared in advance at a predetermined ratio. The coarse particles are put into a spray device equipped with a feeder motor, called a spray gun, and supplied to a nozzle through a material hose. On the other hand, at the construction site, the fine powder part is made into a slurry by putting fine powder of refractory raw materials, colloidal silica liquid, and water into a slurry unit at a predetermined ratio, and the slurry is fed under pressure to the nozzle through the slurry hose. A desired construction body can be formed by uniformly mixing the powder and the fine powder part at a predetermined ratio, and the resulting mixture is ejected from a nozzle. The ratio of coarse particles to fine particles can be varied depending on the size and shape of the construction object, but is usually 50:50 to 75:25, preferably 70:30.
That's about it. Further, in order to adjust the curing speed of the construction body, the blending ratio of the curing agent and the colloidal silica liquid can be changed as appropriate. When the construction body obtained from the sprayed material of the present invention as described above is heated at a rate of temperature increase of about 1°C per minute according to a conventional method, a fibrous material with a temperature of 50°C or higher is formed from the heated surface of the construction body. The fibrous material dissolves and disappears into the water and/or colloidal silica liquid from the portion that reaches a temperature equal to or higher than the dissolution temperature of the fibrous material, after which fine ventilation voids are formed. As the portion of the fibrous portion within the construction object reaches the melting temperature moves, ventilation voids are sequentially formed within the construction object, and eventually are formed over the entire construction object. Since the water vapor generated inside the construction body passes through the formed ventilation gap and is released to the outside, an explosion phenomenon can be prevented. [Example] The spray material of the present invention will be further explained by giving examples below. Example A coarse particle part and a fine powder part are mixed in the proportions shown in Table 1 below, and the coarse particle part is supplied to the spray nozzle at a rate of about 20 kg/min, while the fine powder part is supplied at a rate of 8 to 10 kg/min. The material was supplied to the nozzle at a speed of Obtained. In addition, the test specimens for the explosion resistance test were 12
After being left for a period of time, it was placed in an electric furnace maintained at the specified temperature listed in Table 1, and exploded in 30 minutes.
Items that did not explode were marked as ○. The characteristics of the specimen are also listed in Table 1.

【表】 [発明の効果] 以上、詳述したように、本発明の吹付材は別個
に準備された粗粒部と微粉部を同一ノズルへ供給
して施工する場合に使用されるものであり、その
粗粒部に50℃以上の温水に溶解する温水可溶性繊
維状物質を添加することにより、施工体を乾燥す
る時に極めて微小な通気空隙を形成し、急乾燥、
昇温しても施工体の爆裂を防止することができ、
特に新設炉において、乾燥、予熱期間を従来の約
30%まで短縮することができ、省エネルギーにも
非常に役立ち且つ使用時の耐食性も低下しない。 また、本発明の吹付材は慣用の吹付材と同様に
各種耐火物の補修等にも使用することができる。
[Table] [Effects of the Invention] As detailed above, the spray material of the present invention is used in construction by supplying separately prepared coarse grain portions and fine powder portions to the same nozzle. By adding a hot water-soluble fibrous substance that dissolves in hot water of 50℃ or higher to the coarse grain part, extremely small ventilation gaps are formed when drying the construction object, resulting in rapid drying.
It is possible to prevent the construction object from exploding even if the temperature rises,
Particularly in new furnaces, drying and preheating periods can be reduced compared to conventional methods.
It can be shortened by up to 30%, which is very useful for energy saving and does not reduce corrosion resistance during use. Further, the spray material of the present invention can be used for repairing various refractories as well as conventional spray materials.

Claims (1)

【特許請求の範囲】[Claims] 1 粗粒部と微粉部を別個に吹付ノズルへ供給
し、該ノズル内で所定の割合で混合して吹付施工
するための吹付施工用耐火組成物において、粗粒
部が耐火性原料の粒度3mm〜74μの粗粒100重量
部、直径0.1〜20μ、長さ1〜5mm、水に対する溶
解温度50℃以上の温水可溶性繊維状物質0.05〜
1.0重量部、及び硬化剤0.1〜1.5重量部よりなり;
且つ微粉部が耐火性原料の粒度74μ以下の微粉
100重量部、固形分20〜30重量%のコロイダルシ
リカ液及び水よりなる泥漿であることを特徴とす
る吹付施工用耐火組成物。
1. In a fire-resistant composition for spraying, in which a coarse particle part and a fine powder part are separately supplied to a spray nozzle and mixed at a predetermined ratio in the nozzle for spray construction, the coarse particle part has a particle size of 3 mm of the refractory raw material. 100 parts by weight of coarse particles of ~74μ, diameter 0.1~20μ, length 1~5mm, warm water soluble fibrous material with a water dissolution temperature of 50℃ or higher 0.05~
1.0 parts by weight, and 0.1 to 1.5 parts by weight of a curing agent;
In addition, the fine powder part is a fine powder with a particle size of 74μ or less of refractory raw material.
A fireproofing composition for spraying construction, characterized in that it is a slurry consisting of 100 parts by weight, a colloidal silica liquid and water having a solid content of 20 to 30% by weight.
JP63045952A 1988-03-01 1988-03-01 Refractory composition for spraying Granted JPH01224274A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63045952A JPH01224274A (en) 1988-03-01 1988-03-01 Refractory composition for spraying

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63045952A JPH01224274A (en) 1988-03-01 1988-03-01 Refractory composition for spraying

Publications (2)

Publication Number Publication Date
JPH01224274A JPH01224274A (en) 1989-09-07
JPH0427190B2 true JPH0427190B2 (en) 1992-05-11

Family

ID=12733612

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63045952A Granted JPH01224274A (en) 1988-03-01 1988-03-01 Refractory composition for spraying

Country Status (1)

Country Link
JP (1) JPH01224274A (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0925175A (en) * 1995-05-11 1997-01-28 Asahi Glass Co Ltd Method for spraying castable refractory
JP7277773B2 (en) * 2019-10-18 2023-05-19 日本製鉄株式会社 Manufacturing method of castable refractories

Also Published As

Publication number Publication date
JPH01224274A (en) 1989-09-07

Similar Documents

Publication Publication Date Title
KR101577467B1 (en) Calcium enriched refractory material by the addition of a calcium carbonate
US6117373A (en) Process for forming a furnace wall
JP2015044734A (en) Cement-free refractory
US5602063A (en) Lightweight sprayable tundish lining composition
JPH0617273B2 (en) Method of spraying refractory composition
JPS6221754B2 (en)
KR101047358B1 (en) Refractory Compositions for Steel Industry
JPH0427190B2 (en)
JP4382930B2 (en) Refractory spraying method and refractory spraying material
JP2604310B2 (en) Pouring refractories
JPS63396B2 (en)
JPS5812226B2 (en) Refractories for hot spray repair
US2465375A (en) Refractory and method of producing the same
JPH042543B2 (en)
JPH03159967A (en) Lining material of container for molten metal
US2253955A (en) Magnesia coated refractory parti
WO2004080915A1 (en) Refractory cement castables
JPH01212259A (en) Castable refractories for spray coating
JPH0137352B2 (en)
JP4456193B2 (en) Refractory spraying method
JPS6221752B2 (en)
JPH0971478A (en) Composition for castable refractory and drying of furnace wall using the same
JPS5945974A (en) Spray refractory composition
JPS6384747A (en) Dry type spray coating material
JPH03193672A (en) Coating material and weir for tundish

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees