JPH0563402B2 - - Google Patents

Info

Publication number
JPH0563402B2
JPH0563402B2 JP1260349A JP26034989A JPH0563402B2 JP H0563402 B2 JPH0563402 B2 JP H0563402B2 JP 1260349 A JP1260349 A JP 1260349A JP 26034989 A JP26034989 A JP 26034989A JP H0563402 B2 JPH0563402 B2 JP H0563402B2
Authority
JP
Japan
Prior art keywords
composition
sodium carbonate
soda ash
scp
stabilizer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP1260349A
Other languages
Japanese (ja)
Other versions
JPH02145406A (en
Inventor
Abii Hiruzu Uiriamu
Arubaato Pifuaa Za Saad Henrii
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
FMC Corp
Original Assignee
FMC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by FMC Corp filed Critical FMC Corp
Publication of JPH02145406A publication Critical patent/JPH02145406A/en
Publication of JPH0563402B2 publication Critical patent/JPH0563402B2/ja
Granted legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B15/00Peroxides; Peroxyhydrates; Peroxyacids or salts thereof; Superoxides; Ozonides
    • C01B15/055Peroxyhydrates; Peroxyacids or salts thereof
    • C01B15/10Peroxyhydrates; Peroxyacids or salts thereof containing carbon
    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D3/00Other compounding ingredients of detergent compositions covered in group C11D1/00
    • C11D3/39Organic or inorganic per-compounds
    • C11D3/3902Organic or inorganic per-compounds combined with specific additives
    • C11D3/3937Stabilising agents
    • C11D3/394Organic compounds
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B15/00Peroxides; Peroxyhydrates; Peroxyacids or salts thereof; Superoxides; Ozonides
    • C01B15/055Peroxyhydrates; Peroxyacids or salts thereof
    • C01B15/10Peroxyhydrates; Peroxyacids or salts thereof containing carbon
    • C01B15/103Peroxyhydrates; Peroxyacids or salts thereof containing carbon containing only alkali metals as metals
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B15/00Peroxides; Peroxyhydrates; Peroxyacids or salts thereof; Superoxides; Ozonides
    • C01B15/055Peroxyhydrates; Peroxyacids or salts thereof
    • C01B15/10Peroxyhydrates; Peroxyacids or salts thereof containing carbon
    • C01B15/106Stabilisation of the solid compounds, subsequent to the preparation or to the crystallisation, by additives or by coating

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Wood Science & Technology (AREA)
  • Detergent Compositions (AREA)
  • Processing Of Solid Wastes (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

<産業上の利用分野> 本発明は良好な貯蔵安定性を有し且つ水に溶解
した時に過酸化アルカリを与えるのに有用である
ソーダ灰と過酸化水素と固体組成物に関する。 <従来の技術及び発明が解決すべき課題> ソーダ灰としても知られている炭酸ナトリウム
は、少なくとも2種の過酸化水素との固体付加化
合物、2Na2CO3・3H2O2(炭酸ナトリウム三二過
酸化物)及び2Na2CO3・3H2O2・2H2O(炭酸ナ
トリウム三二過酸化物水和物)を形成することが
知られている。炭酸ナトリウム三二過酸化物は通
常、過炭酸ナトリウムして知られており、そして
炭酸ナトリウム過酸化物又は炭酸ナトリウム過水
和物とも呼ばれており、ここでは“SCP”と略称
する。SCPは水溶液に溶かした時の過酸素源とし
て多くの有効な用途があるために多くの研究の対
象とされている。 高い(15%以上の)活性酸素含量、水に対する
大きな溶解度、比較的安価な原料及び極めて低い
環境に対する悪影響にも拘らず、SCPは過硼酸ナ
トリウムの商業的好評に未だ達していない。 その故はSCPは過硼酸塩よりも遥かに不安定で
ある由の欠点を示すからである。同一条件下で固
体SCPは分解を受け、過硼酸塩の分解よりも実質
上多くの活性酸素を失なう。この問題は、小売り
の洗剤固体のカートン(紙函)中、洗剤生産処理
工程中又は洗剤製造業者に配達して後の保管中に
は特に好ましくない。不純物例えば分解反応を促
進する重金属の除去はSCP水溶液の不安定性を軽
減する。 固体SCPのこの安定性の課題を軽減するための
多くの解決策が提案されているが、現在迄完全な
成功に達していない。 米国特許第2380620号は珪酸ナトリウム、硫酸
マグネシウム又はアラビヤゴムが反応混合物に包
含させた時に不満足な安定剤であることを開示し
ている。この特許は好ましくは従来の安定剤の共
存下で、ジフエニルグアニジンを加えると分解を
減少することを教示している。 米国特許第2541733号は母液からのSCP結晶の
形成時にSCP結晶中への炭酸マグネシウムと珪酸
塩の包含方法を教示している。米国特許第
3677697号は乾燥前の結晶中への珪酸塩と安息香
酸の添加を教示している。 米国特許第3951838号は主として珪酸マグネシ
ウムによる化学的安定化の企図がSCPの長期的安
定化には、特に湿潤な雰囲気では、一般に無効で
あることを開示している。その代りにこの特許は
水性シリカゲルでの粒子の被覆と乾燥を教示して
いる。 Fumikatsu et al.の米国特許第3977988号はパ
ラフイン、ポリエチンレグリコール又はピロ燐酸
ナトリウムでのSCP被覆が実際的では無いことを
開示し、珪酸塩及び弗化珪素酸塩のフイルムでの
粒子の被覆を示唆している。同一発明者の米国特
許第3979318号は疎水性液体でのSCP粒子の被覆
を教示している。 米国特許第4075116号は過水和物を形成すると
知られている他の塩例えば硫酸ナトリウム、ピロ
燐酸ナトリウム、グリコヘプタン酸ナトリウム、
過硼酸ナトリウム等とのSCPの共結晶化を教示し
ている。 米国特許第4409197号はSCP結晶化に先立ち、
反応溶液中へのN,N,N′,N′−テトラ(ホス
ホノメチル)ジアミノアルカンの包含を教示して
いる。 米国特許第4171280号及び4260508号は炭酸ナト
リウム粒子上に充分な過酸化水素を散布して炭酸
ナトリウム又は炭酸ナトリウム1水和物を部分的
にSCPに変換するだけで、SCPとして6%以下の
活性酸素を含有する非ケーキ化漂白組成物が形成
できることを教示している。米国特許第4260508
号は安定剤として組成物への燐酸ナトリウムの添
加を教示している。この両特許は6%より多くの
活性酸素を含有する製品の製造には反対で、満足
すべき安定性を得るには6%以下の活性酸素(40
%以下のSCP)の含量が必要であることを教示し
ている。低い含有量はケーキング及び処方物の脱
混合又は分離の防止にとつて臨界的でもある。然
しかゝる低い含有値は輸送コストの増加、添加す
る不活性原材料のコスト及び所望の産出量を得る
のに必要な大きな設備が必要なための資本コスト
のために洗剤処方にとつては大きな不利益とな
る。さらにより障害となるのは処方作成者が6%
以下の活性酸素を含有する組成物をつくるのに末
端用途が低い分析値で制限されることである。 <課題を解決するための手段> 本発明は、 安定化したソーダ灰過酸素キヤリヤー組成物で
あつて、該組成物が炭酸ナトリウム、炭酸ナトリ
ウム過水和物及び安定化量の該組成物用の“安定
剤”から成り、炭酸ナトリウムが組成物中の“有
効水(available water)”の各1モルに対して少
なくとも1モル組成物中に存在する“粒子状固
体”から成るを特徴とする安定化したソーダ灰過
酸素キヤリヤー組成物を提供することで先行技術
の欠点を克服した。本発明の特に望ましい態様は
炭酸ナトリウム、SCP及び重量で0.1%乃至約3
%の式: 〔但し、Yは水素又はヒドロキシルであり、そし
てRは水素又は1乃至6個の炭素を有する脂肪族
炭化水素基である〕を有するジホスホン酸又はそ
の塩を含有し、組成物中の利用可能な水の各モル
に対して1乃至5モルの炭酸ナトリウムを与える
のに充分な炭酸ナトリウムを組成物中に存在させ
ている粒子状固体である。安定剤の有効な量は選
ばれた安定剤によつてきまることを当業者は承知
していよう。 充分な炭酸ナトリウムを組成物中に存在させ
て、組成物中の有効水のすべてと結合して炭酸ナ
トリウム1水和物を形成できるようにすることが
臨界的である;用語“有効水”には過酸化水素と
して化学的に利用可能な水、炭酸ナトリウム水和
物の結晶水及び組成物中に一時的に存在する遊離
水を包含する。 本明細書で用いる用語“粒子状固体”とは理想
的にはそのすべてが炭酸ナトリウム、SCP及び安
定剤を含有している粒子を指し、炭酸ナトリウム
とSCPが別々の粒子である物理的混合物を包含し
ないものとする。然しかゝる理想は、利用可能な
水1モル当り5モルの炭酸ナトリウムを含有する
組成物では特に、実際的では無い。望ましくは粒
子の主要部分(大部分)が炭酸ナトリウム、SCP
及び安定剤から成り、好ましくは粒子の90%が炭
酸ナトリウム、SCP及び安定剤から成る。 かゝる組成物は、米国特許第4171280号の教示
とは対照的に、無水炭酸ナトリウムの粒子を安定
剤を含有しており且つ70%より大の濃度を有する
過酸化水素の溶液の限られた量と接触させて、
SCP、炭酸ナトリウム1水和物及び若干の未反応
無水炭酸ナトリウムの混合物を形成して製造でき
る。 例えば、無水炭酸ナトリウムの粒子をジホスホ
ン酸の実質上無水(100%)の過酸化水素溶液と
接触できる。より簡単には同時係属米国特許出願
第254063号の方法を使用できる。 望ましくは、組成物の分析値(含量)はSCPと
して重量で45%乃至75%(過酸化水素として1.46
%乃至24%又は活性酸素として7%乃至10.6%)
である。好ましくは組成物の分析値(含量)は
SCPとして65%乃至75%(H2O2として21%乃至
24%又は活性酸素として9%乃至10.6%)であ
る。特記しない限り、本明細書中で用いるすべて
のパーセンテージは丸めた数字又は有効数字であ
る。 更にこれら組成物は洗剤組成物に配合した時に
固体として且つ貯蔵安定性な過酸素源として有用
である。SCPとして45%乃至75%を含有する組成
物が洗剤処方で特に有用な化合物であることが判
明した。 はからずも先行技術で必要とされた被覆を行な
わずとも組成物が安定であつた。さらにはからず
も、組成物の含量が45%乃至75%SCPであり、さ
らに水蒸気圧が炭酸ナトリウム1水和物の平衡蒸
気圧よりも実質上大きい時でさえも、湿潤な雰囲
気中での貯蔵で組成物がケーキングしないことが
見出された。 組成物への“安定剤”の包含は本発明にとつて
臨界的である。安定剤は組成物の分解を防止する
だけで無く、安定剤は炭酸ナトリウム1水和物の
平衡蒸気圧で示される組成物の物理性状並びに貯
蔵時の活性酸素安定性を変化させることが判明し
た。使用した標準分析法で明らかとなつた炭酸ナ
トリウム1水和物及び無水炭酸ナトリウムは明ら
かに単純化し過ぎているように見える。本発明の
目的に対して新規な組成物をあたかもSCP、無水
炭酸ナトリウム、炭酸ナトリウム1水和物、炭酸
ナトリウム10水和物及び安定剤の単なる混合物か
ら成るように示している。明確化するために新規
組成物を“ソーダ灰過酸素キヤリヤー(Soda
Ash Peroxygen Carrier)”又は単にSAPCと呼
ぶ。 特に望ましいジホスホン酸は市場で入手可能な
1−ヒドロキシアルキル−1,1−ジホスホン酸
である。典型的な例はミズリー州セントルイスの
モンサント化学会社で商品名Dequest2010ブラン
ドとして売られている1−ヒドロキシエチリデン
−1,1−ジホスホン酸である。驚くべきことに
はジホスホン酸又は塩が炭酸ナトリウム1水和物
結晶の平衡蒸気圧を変化させて公刊されたデータ
に比して極めて温和な条件下でその脱水を可能に
することが見出された。ジホスホン酸が吸湿性で
あるという事実からみてこれは全く予想外のこと
である。他方、無水炭酸ナトリウムのSAPC中で
の過剰は、炭酸ナトリウム1水和物を形成するこ
とで、炭酸ナトリウム10水和物として存在する水
までも除去できる。 ソーダ灰キヤリヤー組成物の分析に使用できる
標準的分析方法は次の通りである: 炭酸ナトリウム又は全アルカリ度(TA)はメ
チルオレンジ終点に標準化した滴定で測定し、%
Na2CO3(炭酸ナトリウム)として報告する。 活性酸素(AO)は標準化した過マンガン酸塩
又は硫酸第2セリウム溶液を用いて滴定し測定す
るか、標準化チオ硫酸塩溶液を用いて遊離した沃
素を滴定する沃度滴定法で測定するかして、%
AO、%H2O2(2.125×%AO)又は%SCP(6.542
×%AO)として報告する。詳細な方法はFMCコ
ーポレーシヨンのテクニカルブレテイン59、
“ジ・アナリシス・オブ・ハイドロジエン・パー
オキサイド・ソリユーシヨンズ(The Analysis
of Hydrogen Peroxide Solutions)”に好都合
に記載されている。 水(%H2O)は熱重量分析で又は室温でデシ
ケーターに放置した時の重量減少で都合良く測定
する。 利用可能な水(%AW)は試料をガス流中で約
200℃に加熱して、ガス流中の適切な吸着材例え
ば過塩素酸マグネシウムの重量増加を測定する重
量法で測定する。 利用可能な水は%AW=%H2O+0.529×%
H2O2と推定される。 以下の実施例は当業者に本発明の最善の実施方
法を説明するために示したものであつて、本発明
を限定しようとするものでは無い。安定剤は好ま
しい市販のジホスホン酸化合物を用いて例示す
る。 SAPCの実験室試料は(必要な時は)所望量の
ジホスホン酸を70重量%過酸化水素に添加して、
混合溶液を形成して調製した。特記しない限り温
度制御用の水浴を備えた実験室ロータリーエバポ
レータに無水炭酸ナトリウムを導入した。過酸化
水素と1−ヒドロキシエチリデン−1,1−ジホ
スホン酸の混合溶液の所望量を、均一性を保つた
めに混合し真空下にするか又は反応根混合物の面
に空気を吹付けるかして同時に水蒸気を除去しつ
つ、ソーダ灰上に散布して反応混合物を形成し
た。所望量の混合溶液を散布後、反応混合を生成
物とし取出した。 湿潤チヤンバー安定度は40℃、80%相対湿度の
湿潤チヤンバーに結晶皿の試料を入れて測定し
た。%過参加水素を沃度滴定で測定し、10日にわ
たり測定した。試料に吸着された水の量又は試料
から失なわれた水の量については補正を行なわな
かつた。 安定性は走査示差熱分析(DSC)及び熱重量
分析(TGA)でも確認した。 実施例 1 ジホスホン酸のある及びジホスホン酸無しの
SAPC組成物を調製し、その安定性を湿潤チヤン
バー中で測定した。過酸化水素とだけのソーダ灰
混合物は殆んどすべての組成物レベルで不安定で
あり、%過酸化水素が高ければ高い程、より不安
定であつた。ジホスホン酸を過酸化水素と共に加
えると、安定な過水和から得られた。表1は55%
乃至75%のSCPを含有する安定な組成物がこの方
法でつくられたことを示している。75%より多く
のSCP(25%より多くのH2O2)を含有する組成物
はジホスホン酸が存在するにも拘らず不安定であ
つた。 実施例 2 55%SCP(18%過酸化水素)を含有する組成物
の安定性を表2に要約する。50℃及び40%の相対
湿度での貯蔵に対する18%過酸化水素混合物の安
定性を表3に示す。これらのデータは比較的高い
温度と湿度での貯蔵に対して安定な製品がつくら
れることを示している。更にこの方法でつくられ
た組成物は企業で用いられている他の過酸素(化
合物)一過硼酸ナトリウム4水和物及び過硼酸ナ
トリウム1水和物及び珪酸塩で被覆した市販SCP
と同様に安定であることを示している(表4)。 実施例 3 55%SCP(18%過酸化水素)を含有する組成物
の熱安定性を熱重量分析(TGA)と示差熱分析
(DTA)で測定した。これらの分析は組成物が約
150℃迄安定であることを示している。TGA分析
は2種の結晶水が当初にこれらの組成物に存在す
ることも示しており、これは表面上炭酸ナトリウ
ム10水和物と炭酸ナトリウム1水和物とみられる
(図1)。前者は容易に除去するか又は1水和物に
変換できる。(表5)1水和物の水は除去がかな
り難かしい。1水和物の存在は10水和物が存在す
る時のような激しいケーキングを生じない。ジホ
スホン酸は驚くべきことに、1水和物結晶を変性
して結晶水が除去できるようにして殆んど無水の
生成物を形成する。これは図2及び3のTGA及
びDSC分析に示されている。この生成物は中程
度の湿潤環境と接触してもケーキングを起こし易
くない。 表5及び図1は又、炭酸ナトリウム1水和物の
40.4℃の水蒸気圧についての6.06kPa(45.4mm)の
公刊データと40.5℃及び80%相対湿度の6.06kPa
(45.4mm)の水蒸気圧と比較した時に、SAPCの
予期せざる性状を示す。公刊されたデータによる
と、SAPC中に形成された炭酸ナトリウム1水和
物は決して大気中から水分を吸収するはずがな
い。 実施例 4 ジホスホン酸は溶液安定化及びSAPC安定化並
びに水和水の除去を容易にするために必要であ
る。実験室ホーバト(Hobart)ブレンダーで0.2
%、0.7%及び1.3%のジホスホン酸を含有する試
料を調製した。表6は組成物の安定性に対するジ
ホスホン酸添加剤の作用を要約している。必要な
添加剤量は重金属とキレート化して単に過酸化水
素を安定化するのに必要な量よりも遥かに多い。
SAPC組成物は市販(被覆)SCP;過硼酸ナトリ
ウム・1水和物及び過硼酸ナトリウム4水和物と
同じく安定であることが判明した。これは表4に
示されている。 実施例 5 過酸化水素及び湿気の関数としてソーダ灰/過
酸化水素組成物の安定性を求める以外に、ソーダ
灰の粒子サイズ分布の関数として過酸化水素のと
りこみを測定した。これは表7に所定の過酸化水
素含量に対して示した。より小さな粒子の過酸化
水素含量は大きな粒子のものより大であつた。不
均一に高い濃度の過酸化水素を含有する微粒子の
存在は生成物の不安定性を生じる。 実施例 6 水ジヤケツト付のリボンブレンダーをパイロツ
トスケール試験用の0.15m3(5ft3)の容積を有す
る反応容器として用いた。通常ジホスホン酸を含
有した過酸化水素水溶液をドラムからブレンダー
の各端上の散布ノルズに圧送した。すべての場
合、70%H2O2溶液を用いた。 温度は熱電対を用いて反応混合物中の3点で測
定し、過酸化送入速度を変えて制御した。ブレン
ダージヤケツト中の水又は床上又は床を通過する
空気流かで冷却を行なつた。空気流に同伴してブ
レンダーから出る固体はベンチユリースクラバー
で捕捉し、生成溶液を物質収支の目的で分析し
た。 すべての実験について同一の方法を用いて熱収
支を注意深く制御した。 −ブレンダースタート、 −秤量した量のソーダ灰の送入、 −冷却水のスタート、 −所望重量が添加される迄のH2O2溶液の送入、 −生成物を冷却し、約1時間後に底部バルブから
放出。 安定性は50℃/20%相対湿度の室中に生成物の
0.14m3繊維ドラムを貯蔵し、19日後の活性酸素低
下を測定して求めた。生成物はドラム中で露出さ
せて、クランプの無いぶかぶかの蓋を頂部におい
た。 結果の要約を表8として示す。すべての場合、
添加後の過酸化物効率は95+%であつた。 安定な生成物については利用可能な水1モル当
り1モル又はそれ以上の炭酸ナトリウムの比が臨
界的であるのは明らかである。
INDUSTRIAL APPLICATIONS The present invention relates to soda ash and hydrogen peroxide solid compositions that have good storage stability and are useful for providing alkali peroxide when dissolved in water. <Prior Art and Problems to be Solved by the Invention> Sodium carbonate, also known as soda ash, is a solid addition compound with at least two hydrogen peroxides, 2Na 2 CO 3 3H 2 O 2 (sodium carbonate It is known to form 2Na 2 CO 3 .3H 2 O 2 .2H 2 O (sodium carbonate sesquiperoxide hydrate). Sodium carbonate peroxide is commonly known as sodium percarbonate, and is also referred to as sodium carbonate peroxide or sodium carbonate perhydrate, and is abbreviated herein as "SCP." SCP has been the subject of much research because it has many effective uses as a source of peroxygen when dissolved in aqueous solutions. Despite the high active oxygen content (more than 15%), great solubility in water, relatively cheap raw materials and very low negative environmental impact, SCP has not yet reached the commercial popularity of sodium perborate. This is because SCP exhibits the disadvantage of being much more unstable than perborates. Under the same conditions, solid SCP undergoes decomposition and loses substantially more active oxygen than perborate decomposition. This problem is particularly undesirable in cartons of retail detergent solids, during the detergent production process, or during storage after delivery to the detergent manufacturer. Removal of impurities such as heavy metals that promote decomposition reactions reduces the instability of SCP aqueous solutions. Many solutions have been proposed to alleviate this stability challenge of solid-state SCPs, but to date no complete success has been achieved. US Pat. No. 2,380,620 discloses that sodium silicate, magnesium sulfate or gum arabic are unsatisfactory stabilizers when included in the reaction mixture. This patent teaches that addition of diphenylguanidine, preferably in the presence of conventional stabilizers, reduces decomposition. US Pat. No. 2,541,733 teaches a method for incorporating magnesium carbonate and silicate into SCP crystals during the formation of SCP crystals from a mother liquor. US Patent No.
No. 3,677,697 teaches the addition of silicate and benzoic acid into the crystals before drying. US Pat. No. 3,951,838 discloses that attempts at chemical stabilization, primarily with magnesium silicate, are generally ineffective for long-term stabilization of SCPs, especially in humid atmospheres. Instead, this patent teaches coating and drying the particles with aqueous silica gel. U.S. Pat. No. 3,977,988 to Fumikatsu et al. discloses that SCP coating with paraffin, polyethine reglycol or sodium pyrophosphate is impractical and describes coating of particles with silicates and fluorosilicate films. Suggests. No. 3,979,318 by the same inventor teaches coating SCP particles with hydrophobic liquids. U.S. Pat. No. 4,075,116 discloses other salts known to form perhydrates such as sodium sulfate, sodium pyrophosphate, sodium glycoheptanoate,
He teaches co-crystallization of SCP with sodium perborate, etc. Prior to SCP crystallization, U.S. Patent No. 4,409,197
The incorporation of N,N,N',N'-tetra(phosphonomethyl)diaminoalkane into the reaction solution is taught. US Pat. No. 4,171,280 and US Pat. No. 4,260,508 only partially convert sodium carbonate or sodium carbonate monohydrate into SCP by dispersing sufficient hydrogen peroxide onto sodium carbonate particles, and the activity as SCP is less than 6%. It is taught that non-caking bleaching compositions containing oxygen can be formed. US Patent No. 4260508
No. 2, No. 1, No. 1, No. 1, No. 1, No. 1, No. 1, 2003, teaches the addition of sodium phosphate to the composition as a stabilizer. Both patents are against the production of products containing more than 6% active oxygen, stating that less than 6% active oxygen (40
% SCP) is required. Low content is also critical for caking and preventing demixing or separation of the formulation. However, such low content values are of great value to detergent formulations due to increased transportation costs, the cost of added inert raw materials, and the capital costs due to the large equipment needed to obtain the desired output. It will be disadvantageous. An even greater obstacle is prescription preparation at 6%.
The end use for making compositions containing active oxygen is limited by low analytical values. SUMMARY OF THE INVENTION The present invention provides a stabilized soda ash peroxygen carrier composition comprising sodium carbonate, sodium carbonate perhydrate, and a stabilizing amount of sodium carbonate for use in the composition. a "stabilizer" characterized in that it consists of a "particulate solid" in which sodium carbonate is present in the composition at least 1 mole for each mole of "available water" in the composition; The disadvantages of the prior art have been overcome by providing a peroxygenated soda ash carrier composition. Particularly preferred embodiments of the invention include sodium carbonate, SCP and 0.1% to about 3% by weight.
% formula: [However, Y is hydrogen or hydroxyl, and R is hydrogen or an aliphatic hydrocarbon group having 1 to 6 carbons.] A particulate solid having enough sodium carbonate present in the composition to provide from 1 to 5 moles of sodium carbonate for each mole of water. Those skilled in the art will recognize that the effective amount of stabilizer will depend on the stabilizer chosen. It is critical that sufficient sodium carbonate be present in the composition so that it can combine with all of the available water in the composition to form sodium carbonate monohydrate; the term "available water" includes water that is chemically available as hydrogen peroxide, water of crystallization of sodium carbonate hydrate, and free water temporarily present in the composition. As used herein, the term "particulate solid" refers to particles, ideally all of which contain sodium carbonate, SCP, and stabilizer, and refers to a physical mixture in which the sodium carbonate and SCP are separate particles. shall not be included. However, such an ideal is not practical, especially in compositions containing 5 moles of sodium carbonate per mole of available water. Preferably, the main part (most part) of the particles is sodium carbonate, SCP
and a stabilizer, preferably 90% of the particles consist of sodium carbonate, SCP and stabilizer. Such compositions, in contrast to the teachings of U.S. Pat. No. 4,171,280, combine particles of anhydrous sodium carbonate with a limited amount of a solution of hydrogen peroxide containing stabilizers and having a concentration greater than 70%. contact with the amount
It can be prepared by forming a mixture of SCP, sodium carbonate monohydrate, and some unreacted anhydrous sodium carbonate. For example, particles of anhydrous sodium carbonate can be contacted with a substantially anhydrous (100%) hydrogen peroxide solution of diphosphonic acid. More simply, the method of co-pending US patent application Ser. No. 254,063 can be used. Preferably, the analysis (content) of the composition is between 45% and 75% by weight as SCP (1.46% as hydrogen peroxide).
% to 24% or 7% to 10.6% as active oxygen)
It is. Preferably, the analytical value (content) of the composition is
65% to 75% as SCP (21% to 75% as H 2 O 2
24% or 9% to 10.6% as active oxygen). Unless otherwise specified, all percentages used herein are rounded numbers or significant figures. Additionally, these compositions are useful as a solid and storage stable source of peroxygen when incorporated into detergent compositions. Compositions containing 45% to 75% as SCP have been found to be particularly useful compounds in detergent formulations. Unexpectedly, the composition was stable without the coating required in the prior art. Furthermore, even when the composition content is between 45% and 75% SCP and the water vapor pressure is substantially greater than the equilibrium vapor pressure of sodium carbonate monohydrate, storage in a humid atmosphere may It has been found that things do not cake. The inclusion of "stabilizers" in the composition is critical to the present invention. It has been found that the stabilizer not only prevents the composition from decomposing, but also that the stabilizer changes the physical properties of the composition as indicated by the equilibrium vapor pressure of sodium carbonate monohydrate as well as the active oxygen stability during storage. . Sodium carbonate monohydrate and anhydrous sodium carbonate as revealed by the standard analytical methods used appear to be clearly oversimplified. A novel composition for the purposes of the present invention is presented as if it consisted of a simple mixture of SCP, anhydrous sodium carbonate, sodium carbonate monohydrate, sodium carbonate decahydrate and a stabilizer. In order to clarify the new composition “soda ash peroxygen carrier (Soda
Particularly preferred diphosphonic acids are the commercially available 1-hydroxyalkyl-1,1-diphosphonic acids; 1-Hydroxyethylidene-1,1-diphosphonic acid sold under the Dequest2010 brand.Surprisingly, published data show that diphosphonic acid or salts change the equilibrium vapor pressure of sodium carbonate monohydrate crystals. was found to allow its dehydration under extremely mild conditions compared to that of anhydrous sodium carbonate, which is quite unexpected in view of the fact that diphosphonic acid is hygroscopic. Excess in SAPC can be removed by forming sodium carbonate monohydrate, even the water present as sodium carbonate decahydrate. Standard analytical methods that can be used to analyze soda ash carrier compositions are: Sodium carbonate or total alkalinity (TA) is determined by titration standardized to the methyl orange end point and expressed as %
Report as Na 2 CO 3 (sodium carbonate). Active oxygen (AO) can be measured by titration using a standardized permanganate or ceric sulfate solution, or by iodometric titration, in which liberated iodine is titrated using a standardized thiosulfate solution. hand,%
AO, % H2O2 (2.125 x %AO) or %SCP (6.542
×%AO). For detailed methods, see FMC Corporation's Technical Bulletin 59.
“The Analysis of Hydrogen Peroxide Solutions”
Water (% H 2 O) is conveniently measured by thermogravimetric analysis or by weight loss when left in a desiccator at room temperature. Available water (% AW ) is approximately
It is heated to 200° C. and determined gravimetrically by measuring the weight gain of a suitable adsorbent, such as magnesium perchlorate, in the gas stream. Available water is %AW=% H2O +0.529×%
Estimated to be H 2 O 2 . The following examples are presented to explain to those skilled in the art how best to practice the invention, and are not intended to limit the invention. Stabilizers are exemplified using preferred commercially available diphosphonic acid compounds. Laboratory samples for SAPC are made by adding the desired amount of diphosphonic acid (when needed) to 70% by weight hydrogen peroxide.
A mixed solution was formed and prepared. Anhydrous sodium carbonate was introduced into a laboratory rotary evaporator equipped with a water bath for temperature control unless otherwise noted. The desired amount of a mixed solution of hydrogen peroxide and 1-hydroxyethylidene-1,1-diphosphonic acid is mixed to ensure homogeneity and either under vacuum or by blowing air over the surface of the reaction mixture. A reaction mixture was formed by sprinkling on soda ash while simultaneously removing water vapor. After spraying the desired amount of the mixed solution, the reaction mixture was taken out as a product. Wet chamber stability was measured by placing crystallization dish samples in a humid chamber at 40° C. and 80% relative humidity. The % hydrogen excess was determined by iodometric titration and measured over 10 days. No correction was made for the amount of water adsorbed to or lost from the sample. Stability was also confirmed by differential scanning calorimetry (DSC) and thermogravimetric analysis (TGA). Example 1 With and without diphosphonic acid
SAPC compositions were prepared and their stability was determined in a wet chamber. Soda ash mixtures with hydrogen peroxide alone were unstable at almost all composition levels, the higher the % hydrogen peroxide, the more unstable. Addition of diphosphonic acid along with hydrogen peroxide resulted in stable perhydration. Table 1 is 55%
It is shown that stable compositions containing 75% SCP were made in this manner. Compositions containing more than 75% SCP (more than 25% H 2 O 2 ) were unstable despite the presence of diphosphonic acid. Example 2 The stability of compositions containing 55% SCP (18% hydrogen peroxide) is summarized in Table 2. The stability of the 18% hydrogen peroxide mixture on storage at 50° C. and 40% relative humidity is shown in Table 3. These data indicate that a product is produced that is stable to storage at relatively high temperatures and humidity. In addition, compositions made in this manner are compatible with other peroxygen compounds used in the industry, such as sodium monoperborate tetrahydrate and sodium perborate monohydrate and commercially available SCP coated with silicate.
It shows that it is stable as well (Table 4). Example 3 The thermal stability of a composition containing 55% SCP (18% hydrogen peroxide) was determined by thermogravimetric analysis (TGA) and differential thermal analysis (DTA). These analyzes indicate that the composition is approximately
This shows that it is stable up to 150℃. TGA analysis also shows that two waters of crystallization are initially present in these compositions, ostensibly sodium carbonate decahydrate and sodium carbonate monohydrate (Figure 1). The former can be easily removed or converted to the monohydrate. (Table 5) Monohydrate water is quite difficult to remove. The presence of the monohydrate does not result in the severe caking that occurs when the decahydrate is present. Diphosphonic acids surprisingly modify the monohydrate crystals so that the water of crystallization can be removed to form an almost anhydrous product. This is shown in the TGA and DSC analyzes in Figures 2 and 3. This product is not prone to caking upon contact with moderately humid environments. Table 5 and Figure 1 also show that sodium carbonate monohydrate
Published data of 6.06kPa (45.4mm) for water vapor pressure at 40.4℃ and 6.06kPa at 40.5℃ and 80% relative humidity
When compared to the water vapor pressure of (45.4 mm), this shows the unexpected properties of SAPC. According to published data, the sodium carbonate monohydrate formed in SAPC should never absorb moisture from the atmosphere. Example 4 Diphosphonic acid is required for solution stabilization and SAPC stabilization and to facilitate removal of water of hydration. 0.2 in a laboratory Hobart blender
Samples containing %, 0.7% and 1.3% diphosphonic acid were prepared. Table 6 summarizes the effect of diphosphonic acid additives on the stability of the compositions. The amount of additive required is much greater than that required to simply stabilize hydrogen peroxide by chelating with heavy metals.
The SAPC composition was found to be as stable as commercially available (coated) SCP; sodium perborate monohydrate and sodium perborate tetrahydrate. This is shown in Table 4. Example 5 In addition to determining the stability of soda ash/hydrogen peroxide compositions as a function of hydrogen peroxide and moisture, hydrogen peroxide uptake was measured as a function of soda ash particle size distribution. This is shown in Table 7 for a given hydrogen peroxide content. The hydrogen peroxide content of the smaller particles was greater than that of the larger particles. The presence of particulates containing unevenly high concentrations of hydrogen peroxide results in product instability. Example 6 A ribbon blender with water jacket was used as a reaction vessel having a volume of 0.15 m 3 (5 ft 3 ) for pilot scale testing. An aqueous hydrogen peroxide solution, usually containing diphosphonic acid, was pumped from the drum to sparge knolls on each end of the blender. In all cases a 70% H2O2 solution was used. Temperature was measured at three points in the reaction mixture using thermocouples and controlled by varying the peroxide feed rate. Cooling was accomplished either by water in the blender jacket or by airflow on or through the bed. The solids leaving the blender entrained in the air stream were captured with a ventilate scrubber and the resulting solution was analyzed for mass balance purposes. Heat balance was carefully controlled using the same method for all experiments. - start the blender, - feed in the weighed amount of soda ash, - start the cooling water, - feed in the H 2 O 2 solution until the desired weight has been added, - cool the product and after about 1 hour. Released from the bottom valve. Stability of the product in a room at 50°C/20% relative humidity
A 0.14 m 3 fiber drum was stored and the active oxygen reduction was measured after 19 days. The product was exposed in the drum and topped with a loose lid without a clamp. A summary of the results is shown in Table 8. In all cases,
Peroxide efficiency after addition was 95+%. It is clear that for a stable product a ratio of 1 mole or more of sodium carbonate per mole of available water is critical.

【表】 表2 ソーダ灰過酸素キヤリヤー湿潤試験 40℃、80%相対湿度、当初H2O2濃度18%時間(日) 残留過酸化水素% 1 100.0 2 100.0 3 100.0 5 99.5 8 98.6 10 98.6 表3 ソーダ灰過酸素キヤリヤー貯蔵安定性 50℃、40%相対湿度時間(日) 残留過酸化水素% 11 98.4 18 99.8 25 97.1 32 99.8 表4 過硼酸ナトリウムとのSAPCの比較安定性
40℃、80%相対湿度化合物 残留過酸化水素% SAPC 96.5 SAPC(ジボスホン酸無し) 16.5 過硼酸ナトリウム1水和物 97.6 過硼酸ナトリウム4水和物 96.1 (被覆)市販炭酸 ナトリウム過酸化物 97.0
[Table] Table 2 Soda ash peroxygen carrier wet test 40℃, 80% relative humidity, initial H 2 O 2 concentration 18% Time (days) Residual hydrogen peroxide % 1 100.0 2 100.0 3 100.0 5 99.5 8 98.6 10 98.6 Table 3 Soda ash peroxygen carrier storage stability 50°C, 40% relative humidity Time (days) Residual hydrogen peroxide % 11 98.4 18 99.8 25 97.1 32 99.8 Table 4 Comparative stability of SAPC with sodium perborate
40°C, 80% relative humidity Compound Residual Hydrogen Peroxide % SAPC 96.5 SAPC (without dibosphonic acid) 16.5 Sodium perborate monohydrate 97.6 Sodium perborate tetrahydrate 96.1 (Coated) Commercially available sodium carbonate peroxide 97.0

【表】 表6 ジホスホン酸濃度付SAPC安定性 40℃、80%相対湿度 10日、18%過酸化水素%ジホスホン酸 残留過酸化水素% 0.2 81.2 0.7 92.5 1.3 95.9[Table] Table 6 SAPC stability with diphosphonic acid concentration 40℃, 80% relative humidity 10 days, 18% hydrogen peroxide % Diphosphonic acid residual hydrogen peroxide% 0.2 81.2 0.7 92.5 1.3 95.9

【表】【table】

【表】 *…ドラムが固体にケーキング
[Table] *…The drum is caking solid.

【図面の簡単な説明】[Brief explanation of the drawing]

図1は55%SCPを含有する組成物(SACP)の
熱重量分析の結果である。図2は無水SAPCの示
差熱分析の結果を、図3は同じく無水SAPCの熱
重量分析の結果を示す。
Figure 1 shows the results of thermogravimetric analysis of a composition containing 55% SCP (SACP). FIG. 2 shows the results of differential thermal analysis of anhydrous SAPC, and FIG. 3 similarly shows the results of thermogravimetric analysis of anhydrous SAPC.

Claims (1)

【特許請求の範囲】 1 安定化したソーダ灰過酸素キヤリヤー組成物
であつて、該組成物が炭酸ナトリウム、炭酸ナト
リウム過水和物及び該組成物用の安定剤から成り
且つ炭酸ナトリウムが組成物中の有効水の各1モ
ルに対して少なくとも1モル組成物中に存在する
粒子状固体から成ることを特徴とする安定化した
ソーダ灰過酸素キヤリヤー組成物。 2 該粒子状固体を構成している粒子の主要部分
が、複合して該粒子の分解速度を減少させるのに
有効な量の該炭酸ナトリウム、炭酸ナトリウム過
水和物及び安定剤をそれぞれ含有している請求項
1記載の組成物。 3 該主要部分が粒子の少なくとも90%よりも多
い請求項2記載の組成物。 4 該安定剤が式: 〔但し、Yは水素又はヒドロキシルであり、そし
てRは水素又は1乃至6個の炭素を有する脂肪族
炭化水素基である〕 を有するジホスホン酸又はその塩である請求項
1、2又は3に記載の組成物。 5 Yがヒドロキシルであり且つRがメチルであ
る請求項4記載の組成物。 6 炭酸ナトリウムが組成物中に存在する有効水
1モル当り1乃至5モル存在する請求項1、2又
は3に記載の組成物。 7 組成物が45%乃至75%の炭酸ナトリウム過水
和物を含有する請求項1、2又は3に記載の組成
物。 8 安定化したソーダ灰過酸素キヤリヤー組成物
であつて、該組成物が炭酸ナトリウム、炭酸ナト
リウム過水和物及び重量で0.1%乃至約3%の
式: 〔但し、Yは水素又はヒドロキシルであり、そし
てRは水素又は1乃至6個の炭素を有する脂肪族
炭化水素基である〕 のジホスホン酸又はその塩を含有しており、炭酸
ナトリウムが組成物中の有効水の各モルに対して
1乃至5モルの炭酸ナトリウムを与えるのにたる
量で組成物中に存在する粒子状固体から成ること
を特徴とする安定化したソーダ灰過酸素キヤリヤ
ー組成物。 9 Yがヒドロキシルであり且つRがメチルであ
る請求項8記載の組成物。 10 安定化したソーダ灰過酸素キヤリヤー組成
物であつて、該組成物が炭酸ナトリウム、炭酸ナ
トリウム過水和物及び重量で0.1%乃至約3%の
1−ヒドロキシエチリデン−1,1−ジホスホン
酸から成り、炭酸ナトリウムが組成物中の有効水
の各モルに対して1乃至5モルの炭酸ナトリウム
を与えるのにたる量で組成物中に存在する粒子状
固体から成ることを特徴とする安定化したソーダ
灰過酸素キヤリヤー組成物。
Claims: 1. A stabilized soda ash peroxygen carrier composition comprising sodium carbonate, sodium carbonate perhydrate, and a stabilizer for the composition, and wherein the composition comprises sodium carbonate, sodium carbonate perhydrate, and a stabilizer for the composition; A stabilized soda ash peroxygen carrier composition characterized in that it consists of at least 1 mole of particulate solids present in the composition for each mole of available water therein. 2. A major portion of the particles constituting the particulate solid contains amounts of each of the sodium carbonate, sodium carbonate perhydrate, and stabilizer that are effective in combination to reduce the rate of decomposition of the particles. The composition according to claim 1. 3. The composition of claim 2, wherein said major portion is greater than at least 90% of the particles. 4 The stabilizer has the formula: [Provided that Y is hydrogen or hydroxyl, and R is hydrogen or an aliphatic hydrocarbon group having 1 to 6 carbons] or a salt thereof, according to claim 1, 2 or 3, which is a diphosphonic acid or a salt thereof. Composition of. 5. The composition of claim 4, wherein Y is hydroxyl and R is methyl. 6. A composition according to claim 1, 2 or 3, wherein the sodium carbonate is present in 1 to 5 moles per mole of available water present in the composition. 7. A composition according to claim 1, 2 or 3, wherein the composition contains 45% to 75% sodium carbonate perhydrate. 8. A stabilized soda ash peroxygen carrier composition comprising sodium carbonate, sodium carbonate perhydrate, and from 0.1% to about 3% by weight: [However, Y is hydrogen or hydroxyl, and R is hydrogen or an aliphatic hydrocarbon group having 1 to 6 carbons.] A stabilized soda ash peroxygen carrier composition comprising particulate solids present in the composition in an amount sufficient to provide from 1 to 5 moles of sodium carbonate for each mole of available water. 9. The composition of claim 8, wherein Y is hydroxyl and R is methyl. 10. A stabilized soda ash peroxygen carrier composition comprising sodium carbonate, sodium carbonate perhydrate, and from 0.1% to about 3% by weight of 1-hydroxyethylidene-1,1-diphosphonic acid. stabilized solids, characterized in that the sodium carbonate consists of particulate solids present in the composition in an amount to provide from 1 to 5 moles of sodium carbonate for each mole of available water in the composition. Soda ash peroxygen carrier composition.
JP1260349A 1988-10-06 1989-10-06 Soda ash hyperoxygen carrier Granted JPH02145406A (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US253822 1988-10-06
US07/253,822 US4970058A (en) 1988-10-06 1988-10-06 Soda ash peroxygen carrier

Publications (2)

Publication Number Publication Date
JPH02145406A JPH02145406A (en) 1990-06-04
JPH0563402B2 true JPH0563402B2 (en) 1993-09-10

Family

ID=22961844

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1260349A Granted JPH02145406A (en) 1988-10-06 1989-10-06 Soda ash hyperoxygen carrier

Country Status (9)

Country Link
US (1) US4970058A (en)
EP (1) EP0363852B1 (en)
JP (1) JPH02145406A (en)
KR (1) KR960012705B1 (en)
BR (1) BR8905074A (en)
CA (1) CA2000100C (en)
DE (1) DE68904726T2 (en)
ES (1) ES2037932T3 (en)
MX (1) MX167231B (en)

Families Citing this family (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4970019A (en) * 1988-10-27 1990-11-13 Fmc Corporation Particulate composition containing bleach and optical brightener and process for its manufacture
GB8904007D0 (en) * 1989-02-22 1989-04-05 Procter & Gamble Stabilized,bleach containing,liquid detergent compositions
US5045296A (en) * 1989-10-30 1991-09-03 Fmc Corporation Sodium carbonate perhydrate process
KR960008939B1 (en) * 1990-04-06 1996-07-10 에프엠씨 코포레이션 Peroxygen laundary bleach
US5194176A (en) * 1990-04-06 1993-03-16 Fmc Corporation Peroxygen laundry bleach
DE4108043A1 (en) * 1991-03-13 1992-09-17 Peroxid Chemie Gmbh METHOD FOR IMPROVING THE STORAGE LIFE OF PERCARBONATE
US5328721A (en) * 1992-07-30 1994-07-12 Fmc Corporation Process for manufacturing sodium carbonate perhydrate particles and coating them with sodium borosilicate
US5891837A (en) * 1993-07-14 1999-04-06 The Procter & Gamble Company Stabilized bleaching compositions
US5922307A (en) 1995-09-25 1999-07-13 R. Eric Montgomery Tooth bleaching compositions
US6177392B1 (en) 1997-01-13 2001-01-23 Ecolab Inc. Stable solid block detergent composition
US6156715A (en) 1997-01-13 2000-12-05 Ecolab Inc. Stable solid block metal protecting warewashing detergent composition
US6258765B1 (en) * 1997-01-13 2001-07-10 Ecolab Inc. Binding agent for solid block functional material
US6150324A (en) 1997-01-13 2000-11-21 Ecolab, Inc. Alkaline detergent containing mixed organic and inorganic sequestrants resulting in improved soil removal
US20030198605A1 (en) * 1998-02-13 2003-10-23 Montgomery R. Eric Light-activated tooth whitening composition and method of using same
US6162055A (en) 1998-02-13 2000-12-19 Britesmile, Inc. Light activated tooth whitening composition and method of using same
US6638902B2 (en) 2001-02-01 2003-10-28 Ecolab Inc. Stable solid enzyme compositions and methods employing them
US6632291B2 (en) 2001-03-23 2003-10-14 Ecolab Inc. Methods and compositions for cleaning, rinsing, and antimicrobial treatment of medical equipment
US6773625B2 (en) * 2002-08-26 2004-08-10 Unilever Home & Personal Care Usa, Division Of Conopco, Inc. Dry bleach compositions
US20080190525A1 (en) * 2007-02-12 2008-08-14 Kerry Lee Wagaman Inorganic nitrate-hydrogen peroxide adducts and methods for their preparation
RU2577268C2 (en) * 2010-08-05 2016-03-10 Солвей Са Coated sodium percarbonate particles, method for thereof obtaining, thereof application in compositions of detergents and thereof-containing detergent compositions
KR102346354B1 (en) * 2020-03-23 2021-12-31 한서대학교 산학협력단 Adhesive comprising carrageenan and manufacturing method thereof

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4117087A (en) * 1976-05-20 1978-09-26 Peroxid-Chemie Gmbh. Process for preparing stabilized sodium percarbonate
JPS5738306A (en) * 1979-08-15 1982-03-03 Clorox Co Stable alkali metal percarbonate powder bleached composition and its manufacture
JPS606881A (en) * 1983-06-24 1985-01-14 Yoshifumi Amamiya Checking method of nuclear magnetic material
JPS6042206A (en) * 1983-08-16 1985-03-06 Nippon Peroxide Co Ltd Manufacture of stabilized sodium percarbonate

Family Cites Families (41)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1225722A (en) * 1917-01-16 1917-05-08 Roessler & Hasslacher Chemical Process of manufacturing alkali-metal percarbonate.
US1225832A (en) * 1917-01-27 1917-05-15 Roessler & Hasslacher Chemical Process of manufacturing alkali percarbonates.
GB202985A (en) * 1922-08-28 1924-10-09 Friedrich Noll
US1950320A (en) * 1932-05-10 1934-03-06 Muller Josef Process for the manufacture of high-percentage per compounds
BE429523A (en) * 1937-09-07
US2167997A (en) * 1938-02-16 1939-08-01 Du Pont Preparation of metal percarbonates
GB565653A (en) * 1943-04-23 1944-11-21 Oswald Hugh Walters Improvements in or relating to the production of alkali metal percarbonates
US2541733A (en) * 1947-05-22 1951-02-13 Du Pont Production of alkali metal carbonate perhydrates
NL130828C (en) * 1959-06-03
GB1165154A (en) * 1965-12-10 1969-09-24 Laporte Chemical Peroxygen Compounds
US3387939A (en) * 1966-07-06 1968-06-11 Du Pont Stannate stabilizer compositions containing an alkylidene diphosphonic acid, their preparation and hydrogen peroxide solutions stabilized therewith
US3677697A (en) * 1970-10-07 1972-07-18 Gni I Pi Osnovnoi Khim Method of producing sodium percarbonate
US3801706A (en) * 1971-04-21 1974-04-02 Allied Chem Preparation of sodium percarbonate
BE791037A (en) * 1971-11-09 1973-05-07 Fmc Corp PROCESS FOR AGGLOMERATION OF SODIUM CARBONATE PEROXOHYDRATE
IT986371B (en) * 1972-06-02 1975-01-30 Degussa PROCEDURE FOR THE PRODUCTION OF ALKALINE PERCARBONATE
US3860694A (en) * 1972-08-31 1975-01-14 Du Pont Process for the preparation of perhydrates
DE2343147C2 (en) * 1973-08-27 1982-06-09 Henkel KGaA, 4000 Düsseldorf Pyrrolidone-5,5-diphosphonic acids, their water-soluble salts, and processes for their preparation
FR2242328B1 (en) * 1973-08-28 1976-05-07 Ugine Kuhlmann
US3951838A (en) * 1973-10-10 1976-04-20 E. I. Du Pont De Nemours And Company Silica sol stabilizers for improving the stability of sodium percarbonate in solid bleaches and detergents
US3984342A (en) * 1973-11-23 1976-10-05 Fmc Corporation Process for agglomerating sodium carbonate peroxide
JPS5315717B2 (en) * 1973-12-20 1978-05-26
JPS53960B2 (en) * 1974-03-23 1978-01-13
JPS51135900A (en) * 1975-05-19 1976-11-25 Kao Corp Method for prod uction of the stable sodium percarbonate
US4020148A (en) * 1975-07-15 1977-04-26 Fmc Corporation Process for drying sodium carbonate peroxide
FR2323631A1 (en) * 1975-09-15 1977-04-08 Ugine Kuhlmann MIXED STAFF STABLE IN LIXIVIEL MIXTURE
FR2355774A1 (en) * 1976-03-29 1978-01-20 Air Liquide PROCESS FOR PREPARING SODIUM PERCARBONATE IN REGULAR RHOMBOEDRIC CRYSTALS
AT356627B (en) * 1976-10-22 1980-05-12 Treibacher Chemische Werke Ag METHOD FOR PRODUCING SODIUM PERCARBONATE
US4131562A (en) * 1977-06-17 1978-12-26 Fmc Corporation Stabilized particulate peroxygen compounds
DD132570A1 (en) * 1977-07-26 1978-10-11 Gerd Heinze APPARATUS FOR THE CONTINUOUS PRODUCTION OF HYDROGEN PEROXIDE COMPOSITION COMPOUNDS, PARTICULARLY THROUGH SODIUM CARBONATE PERHYDRATE AND PHOSPHATE PERHYDRATE
US4171280A (en) * 1977-11-03 1979-10-16 The Clorox Company Powder percarbonate bleach and formation thereof
US4279769A (en) * 1978-03-20 1981-07-21 Kao Soap Co., Ltd. Bleaching composition
DD140140B1 (en) * 1978-11-28 1986-04-23 Eilenburger Chemie Process for the preparation of a stable sodium bicarbonate perhydrate
JPS596802B2 (en) * 1980-10-28 1984-02-14 三菱瓦斯化学株式会社 Method for producing soda percarbonate
JPS596801B2 (en) * 1980-10-27 1984-02-14 三菱瓦斯化学株式会社 Manufacturing method of soda percarbonate
IT1142023B (en) * 1981-07-20 1986-10-08 Montedison Spa PROCEDURE FOR THE PREPARATION OF SODIUM PERCARBONATE
US4481129A (en) * 1981-12-23 1984-11-06 Lever Brothers Company Bleach compositions
JPS58217599A (en) * 1982-06-10 1983-12-17 花王株式会社 Bleaching detergent composition
DD213417B5 (en) * 1982-12-31 1994-03-24 Eilenburger Chemie Werk Gmbh PROCESS FOR PREPARING SODIUM CARBONATE PERHYDRATE
DD212947A1 (en) * 1982-12-31 1984-08-29 Eilenburger Chemie PROCESS FOR PRODUCING GRANULATED SODIUM CARBONATE PERHYDRATE
JPS6011210A (en) * 1983-06-25 1985-01-21 Nippon Peroxide Co Ltd Manufacture of stabilized sodium percarbonate
US4623357A (en) * 1985-04-02 1986-11-18 Lever Brothers Company Bleach compositions

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4117087A (en) * 1976-05-20 1978-09-26 Peroxid-Chemie Gmbh. Process for preparing stabilized sodium percarbonate
JPS5738306A (en) * 1979-08-15 1982-03-03 Clorox Co Stable alkali metal percarbonate powder bleached composition and its manufacture
JPS606881A (en) * 1983-06-24 1985-01-14 Yoshifumi Amamiya Checking method of nuclear magnetic material
JPS6042206A (en) * 1983-08-16 1985-03-06 Nippon Peroxide Co Ltd Manufacture of stabilized sodium percarbonate

Also Published As

Publication number Publication date
CA2000100A1 (en) 1990-04-06
CA2000100C (en) 1997-08-05
JPH02145406A (en) 1990-06-04
MX167231B (en) 1993-03-10
EP0363852A1 (en) 1990-04-18
KR900006228A (en) 1990-05-07
DE68904726D1 (en) 1993-03-18
EP0363852B1 (en) 1993-02-03
ES2037932T3 (en) 1993-07-01
BR8905074A (en) 1990-05-15
DE68904726T2 (en) 1993-08-05
KR960012705B1 (en) 1996-09-24
US4970058A (en) 1990-11-13

Similar Documents

Publication Publication Date Title
JPH0563402B2 (en)
JPH0563403B2 (en)
KR100308473B1 (en) Coated sodium percarbonate particles, preparation methods thereof and detergents, detergents and bleach compositions comprising them
US3860694A (en) Process for the preparation of perhydrates
EP1807344B1 (en) Sodium percarbonate particles having a shell layer comprising thiosulfate
US2706178A (en) Preparation of hydrated perborate products
IL110331A (en) Coated sodium percarbonate particles, a process for their preparation and their use
MXPA03002758A (en) Sodium percarbonate fluid bed granulated material and method for the production thereof.
JP2640572B2 (en) Preparation and coating method of sodium carbonate perhydrate stable in detergent formulations
US6054066A (en) Process for preparing a sodium percarbonate product
EP0658150B1 (en) A process for preparing a crystalline, stable sodium percarbonate
KR960015976B1 (en) Particulate composition containing bleach and an optical brightener and process for its manufacture
US4316879A (en) Stabilized sodium carbonate peroxide preparation method
US5290476A (en) Process for preparing microcrystalline perborate products
JP2011506256A (en) Method for producing coated sodium percarbonate particles
TH6917B (en) Sodium production process Carbonate perhydrate