JPH0562986A - Semiconductor device and manufacture thereof - Google Patents

Semiconductor device and manufacture thereof

Info

Publication number
JPH0562986A
JPH0562986A JP22195391A JP22195391A JPH0562986A JP H0562986 A JPH0562986 A JP H0562986A JP 22195391 A JP22195391 A JP 22195391A JP 22195391 A JP22195391 A JP 22195391A JP H0562986 A JPH0562986 A JP H0562986A
Authority
JP
Japan
Prior art keywords
base
conductivity type
region
substrate
opposite conductivity
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP22195391A
Other languages
Japanese (ja)
Inventor
Hiroyuki Fukuma
宏之 福間
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Original Assignee
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd filed Critical Fujitsu Ltd
Priority to JP22195391A priority Critical patent/JPH0562986A/en
Publication of JPH0562986A publication Critical patent/JPH0562986A/en
Withdrawn legal-status Critical Current

Links

Landscapes

  • Bipolar Transistors (AREA)

Abstract

PURPOSE:To enable the base and the base lead-out electrode of a bipolar transistor to be fully connected together to lessen the bipolar transistor in base resistance. CONSTITUTION:An opposite conductivity type link base diffusion layer 1L which is lower in concentration than a base contact region and formed in a region that spreads over a base region and a base contact region is provided, an opposite conductivity type semiconductor film is deposited on a certain conductivity type semiconductor substrate 1, an insulating film 4 provided with an opening correspondent to a base forming region is formed thereon, the opposite conductivity type semiconductor film is etched using the insulating film 4 as a mask to form a base lead-out electrode 3, opposite conductivity type impurities are introduced into the opening for the formation of a P-type base region 1B, an insulating film is formed on the side face of the opening to serve as a side wall 5, opposite conductivity type ions are obliquely implanted into the opening to form a link base diffusion layer 1L, an emitter electrode 6 of certain conductivity type semiconductor film is formed on the substrate 1 covering the opening, and the substrate 1 is thermally treated.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は半導体装置およびその製
造方法に係り,特にバイポーラトランジスタのベースと
ベース引き出し電極の接続に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a semiconductor device and a method for manufacturing the same, and more particularly to connection between a base of a bipolar transistor and a base lead electrode.

【0002】ベース引き出し電極に自己整合して,絶縁
物からなる側壁を介してエミッタを形成する構造のバイ
ポーラトランジスタで,ベース領域とベース引き出し電
極からの不純物拡散層(ベースコンタクト領域)との接
続が側壁下で横方向拡散によって行われていた。
In a bipolar transistor having a structure in which an emitter is formed by self-alignment with a base extraction electrode through a side wall made of an insulator, a connection between a base region and an impurity diffusion layer (base contact region) from the base extraction electrode is established. It was done by lateral diffusion under the sidewall.

【0003】本発明はこの接続を完全化するために利用
できる。
The present invention can be used to complete this connection.

【0004】[0004]

【従来の技術】図3(A),(B) はバイポーラトランジスタ
の従来例を説明する断面図である。図3(A) はバイポー
ラトランジスタの全体図, 図3(B) は従来例のベース引
き出し接続部の拡大図である。
2. Description of the Related Art FIGS. 3A and 3B are sectional views for explaining a conventional example of a bipolar transistor. FIG. 3 (A) is an overall view of the bipolar transistor, and FIG. 3 (B) is an enlarged view of the conventional base lead-out connection portion.

【0005】図において,1はn型シリコン(n-Si)基
板,1Bは(内部)ベース領域, 1Eはエミッタ領域, 1BC
はベースコンタクト領域, 2は分離絶縁膜で二酸化シリ
コン(SiO2)膜,3はベース引き出し電極でポリシリコン
膜,4はポリシリコンのエッチングマスクでSiO2膜, 5
はSiO2からなる側壁, 6はエミッタ電極でポリシリコン
膜,7はポリシリコンのエッチングマスクでSiO2膜, 8
はカバー絶縁膜でりん珪酸ガラス(PSG) 膜,9は電極配
線でアルミニウム(Al)配線である。
In the figure, 1 is an n-type silicon (n-Si) substrate, 1B is an (internal) base region, 1E is an emitter region, and 1BC.
Is a base contact region, 2 is an isolation insulating film which is a silicon dioxide (SiO 2 ) film, 3 is a base extraction electrode which is a polysilicon film, 4 is a polysilicon etching mask which is a SiO 2 film, 5
Is a sidewall made of SiO 2 , 6 is an emitter electrode, which is a polysilicon film, 7 is a polysilicon etching mask, which is a SiO 2 film, 8
Is a cover insulating film, a phosphosilicate glass (PSG) film, and 9 is an electrode wiring, which is an aluminum (Al) wiring.

【0006】図は, ベース引き出し電極3に自己整合し
て,絶縁物からなる側壁5を介してエミッタ1Eを形成す
る構造のバイポーラトランジスタで,ベース領域1Bとベ
ースコンタクト領域(ベース引き出し電極3からの不純
物拡散層)1BC との接続が側壁5の下で不純物の横方向
拡散によって行われていた。
The figure shows a bipolar transistor having a structure in which the emitter 1E is self-aligned with the base extraction electrode 3 and the side wall 5 made of an insulator is formed, and a base region 1B and a base contact region (from the base extraction electrode 3) are formed. The connection with the impurity diffusion layer) 1BC was made by lateral diffusion of impurities under the side wall 5.

【0007】さらに従来は,エミッタ−ベース耐圧を確
保するため,側壁5を形成する前にベース領域1Bを形成
し,その後側壁5を横方向に厚めに形成し,側壁直下で
ベース領域1Bとベースコンタクト領域1BC とのコンタク
トを得ていた。
Further, in the prior art, in order to secure the emitter-base breakdown voltage, the base region 1B is formed before the side wall 5 is formed, then the side wall 5 is formed laterally thicker, and the base region 1B and the base are formed immediately below the side wall. Had contact with contact area 1BC.

【0008】[0008]

【発明が解決しようとする課題】従来例の構造によれ
ば,エミッタ接合からベース引き出し電極3に到る間の
ベース抵抗は,ベース領域1Bの濃度で決まってしまい,
一般的に高めに設定され,トランジスタ特性を悪くして
いた。
According to the structure of the conventional example, the base resistance between the emitter junction and the base lead electrode 3 is determined by the concentration of the base region 1B.
Generally, it was set to a high value, which deteriorated the transistor characteristics.

【0009】また, 近年, デバイスの微細化が進むにつ
れ,拡散工程やイオン注入後における不純物の活性化熱
処理が低温化され,拡散が横方向に延びなくなり, ます
ますベース抵抗が増加してきた。
Further, in recent years, with the progress of miniaturization of devices, the diffusion process and the heat treatment for activating impurities after ion implantation are lowered in temperature, diffusion is not extended laterally, and the base resistance is further increasing.

【0010】本発明はベース領域とベースコンタクト領
域との接続を完全化し,ベース抵抗の低減を目的とす
る。
An object of the present invention is to reduce the base resistance by perfecting the connection between the base region and the base contact region.

【0011】[0011]

【課題を解決するための手段】上記課題の解決は,1)
一導電型基板(1) 内に形成された反対導電型ベース領域
(1B)と,該反対導電型ベース領域内に形成された一導電
型エミッタ領域(1E)と,該ベース領域に隣接して該基板
に形成された高濃度反対導電型ベースコンタクト領域(1
BC) と,該ベース領域と該ベースコンタクト領域にまた
がった領域の該基板内に形成され且つ該ベースコンタク
ト領域より低濃度の反対導電型リンクベース拡散層(1L)
とを有する半導体装置,あるいは2)一導電型半導体基
板(1) 上に反対導電型半導体膜を被着し,その上にベー
ス形成領域が開口され絶縁膜(4)を形成し,該絶縁膜を
マスクにして反対導電型半導体膜をエッチングしてベー
ス引き出し電極(3)を形成する工程と,該絶縁膜および
ベース引き出し電極の開口部の該基板内に反対導電型不
純物を導入してp型ベース領域(1B)を形成する工程と,
該開口部の側面に絶縁膜からなる側壁(5) を形成する工
程と, 該開口部の該基板内に反対導電型イオンを斜め注
入してリンクベース拡散層 (1L)を形成する工程と,該
基板上に該開口部を覆って一導電型半導体膜からなるエ
ミッタ電極(6) を形成する工程と, 該基板を熱処理する
工程とを有する半導体装置の製造方法により達成され
る。
[Means for Solving the Problems] 1)
Base region of opposite conductivity type formed in one conductivity type substrate (1)
(1B), a one conductivity type emitter region (1E) formed in the opposite conductivity type base region, and a high concentration opposite conductivity type base contact region (1) formed in the substrate adjacent to the base region.
BC), an opposite conductivity type link base diffusion layer (1L) formed in the substrate in a region extending over the base region and the base contact region and having a lower concentration than the base contact region
Or 2) a semiconductor film of opposite conductivity type is deposited on a semiconductor substrate (1) of one conductivity type, and an insulating film (4) is formed on the substrate to form a base formation region. And forming a base extraction electrode (3) by etching the opposite conductivity type semiconductor film using the mask as a mask, and introducing the opposite conductivity type impurity into the substrate in the opening of the insulating film and the base extraction electrode to form a p-type A step of forming a base region (1B),
A step of forming a side wall (5) made of an insulating film on the side surface of the opening, and a step of obliquely implanting ions of opposite conductivity type into the substrate of the opening to form a link base diffusion layer (1L), This is achieved by a method of manufacturing a semiconductor device, which includes a step of forming an emitter electrode (6) made of a semiconductor film of one conductivity type on the substrate so as to cover the opening, and a step of heat-treating the substrate.

【0012】[0012]

【作用】本発明は,ベース領域とベースコンタクト領域
との接続部である側壁直下にリンクベース拡散層を設
け, これを介して両者を接続することにより, 接続を完
全化したものである。
According to the present invention, the link base diffusion layer is provided immediately below the side wall, which is the connecting portion between the base region and the base contact region, and the two are connected via this, whereby the connection is completed.

【0013】これにより, ベース抵抗が低減でき,ま
た, 熱処理温度の低減化に伴うベース抵抗の増大が抑制
されるようになった。
As a result, the base resistance can be reduced and the increase of the base resistance due to the reduction of the heat treatment temperature can be suppressed.

【0014】[0014]

【実施例】図1(A),(B) はバイポーラトランジスタの本
発明の実施例を説明する断面図である。
1 (A) and 1 (B) are sectional views for explaining an embodiment of the present invention of a bipolar transistor.

【0015】図1(A) はバイポーラトランジスタの全体
図, 図1(B) は実施例のベース引き出し接続部の拡大図
である。図において,1はn-Si基板,1Bはp型ベース領
域, 1Eは高濃度n型(n+ 型) エミッタ領域, 1BC は高濃
度p型(p+ 型) ベースコンタクト領域, 1Lはp型リンク
ベース拡散層, 2は分離絶縁膜でSiO2膜,3はベース引
き出し電極でポリシリコン膜,4はポリシリコンのエッ
チングマスクでSiO2膜, 5はSiO2からなる側壁,6はエ
ミッタ電極でポリシリコン膜,7はポリシリコンのエッ
チングマスクでSiO2膜, 8はカバー絶縁膜でPSG 膜,9
は電極配線でAl配線である。
FIG. 1 (A) is an overall view of a bipolar transistor, and FIG. 1 (B) is an enlarged view of a base lead-out connection portion of an embodiment. In the figure, 1 is an n-Si substrate, 1B is a p-type base region, 1E is a high-concentration n-type (n + -type) emitter region, 1BC is a high-concentration p-type (p + -type) base contact region, and 1L is a p-type. Link base diffusion layer, 2 is an isolation insulating film of SiO 2 film, 3 is a base extraction electrode of polysilicon film, 4 is an etching mask of polysilicon, SiO 2 film, 5 is a sidewall made of SiO 2 , 6 is an emitter electrode Polysilicon film, 7 is an etching mask of polysilicon, SiO 2 film, 8 is a cover insulating film, PSG film, 9
Is an electrode wiring and is an Al wiring.

【0016】このデバイスの製造プロセスの概要は以下
のようである。n-Si基板は通常エピタキシャルSi層を用
い, 抵抗率は0.5Ωcmである。次いで,LOCOS(選択酸化)
法により,素子分離領域に分離絶縁膜としてSiO2膜2
を形成する。
The outline of the manufacturing process of this device is as follows. The n-Si substrate usually uses an epitaxial Si layer and has a resistivity of 0.5 Ωcm. Next, LOCOS (selective oxidation)
The SiO 2 film 2 as an isolation insulating film in the element isolation region by
To form.

【0017】次いで,基板上に気相成長(CVD) 成長法に
より厚さ3000Åのポリシリコン膜を成長し,全面に硼素
イオン(B+ ) をエネルギー 35 KeV,ドーズ量 3×1015cm
-2で注入した後, その上にリソグラフィ工程によりパタ
ーニングされた厚さ2000ÅのSiO2膜4を形成し,これを
マスクにしてポリシリコン膜をエッチングしてベース引
き出し電極3を形成する。
Then, a 3000 Å-thick polysilicon film is grown on the substrate by the vapor phase epitaxy (CVD) growth method, and boron ions (B + ) are energy 35 KeV and the dose is 3 × 10 15 cm.
After implantation at -2 , a 2000Å-thick SiO 2 film 4 patterned by a lithography process is formed thereon, and the polysilicon film is etched by using this as a mask to form a base extraction electrode 3.

【0018】次いで,SiO2膜4およびベース引き出し電
極3の開口部の基板内に B+ を注入してp型ベース領域
1Bを形成する。注入条件の一例は, エネルギー 25 KeV,
ドーズ量 3×1013cm-2である。
Then, B + is injected into the substrate at the opening of the SiO 2 film 4 and the base extraction electrode 3 to p-type base region.
Form 1B. An example of injection conditions is energy 25 KeV,
The dose is 3 × 10 13 cm -2 .

【0019】次いで,基板上に厚さ2500ÅのCVD SiO2
の成長と,この膜の異方性エッチングにより側壁5を形
成する。次いで,図2の条件で,開口部の基板内に B+
を斜め注入する。
Then, a side wall 5 is formed on the substrate by growing a 2500Å-thick CVD SiO 2 film and anisotropically etching this film. Then, under the conditions of Fig. 2, B +
Inject diagonally.

【0020】次いで,基板上に厚さ2000Åのポリシリコ
ン膜を成長し,その上にリソグラフィ工程によりパター
ニングされた厚さ2000ÅのSiO2膜7を形成し,これをマ
スクにしてポリシリコン膜をエッチングしてエミッタ電
極6を形成する。
Then, a 2000 Å-thick polysilicon film is grown on the substrate, and a 2000 Å-thick SiO 2 film 7 patterned by a lithography process is formed on the polysilicon film, and the polysilicon film is etched using this as a mask. Then, the emitter electrode 6 is formed.

【0021】n+ 型エミッタ領域1Eは高濃度にドープし
たエミッタ電極6から熱拡散により,側壁5に自己整合
して形成される。この際の熱処理により p+ 型ベース引
き出し電極のポリシリコン膜3から基板内に不純物が拡
散してベースコンタクト領域1BC が形成され,ベース領
域に注入された不純物が活性化される。
The n + type emitter region 1E is formed in self-alignment with the side wall 5 by thermal diffusion from the heavily doped emitter electrode 6. By the heat treatment at this time, impurities are diffused from the polysilicon film 3 of the p + type base extraction electrode into the substrate to form the base contact region 1BC, and the impurities implanted in the base region are activated.

【0022】次いで,基板上にカバー絶縁膜のPSG 膜8
を成長し,電極上を開口してAl配線9を形成して工程を
終わる。図2はリンクベース拡散層形成の実施例を説明
する断面図である。
Next, the PSG film 8 as a cover insulating film is formed on the substrate.
Is grown, an Al wiring 9 is formed by opening on the electrode, and the process is completed. FIG. 2 is a cross-sectional view illustrating an example of forming the link base diffusion layer.

【0023】リンクベース拡散層1Lは B+ を基板に斜め
に注入して形成する。いま, エミッタ形成のための開口
部の幅をW,開口部の高さをdとすると,基板に立てた
垂線とイオンビームとのなす角θは次式で決まる。
The link base diffusion layer 1L is formed by injecting B + into the substrate obliquely. Now, assuming that the width of the opening for forming the emitter is W and the height of the opening is d, the angle θ formed by the perpendicular line standing on the substrate and the ion beam is determined by the following equation.

【0024】θ= tan-1 (W/d). B+ 注入条件の一例は, エネルギー 25 KeV,ドーズ量 1
×1014cm-2である。
Θ = tan -1 (W / d). B + An example of implantation conditions is an energy of 25 KeV and a dose of 1
× 10 14 cm -2 .

【0025】[0025]

【発明の効果】ベース領域とベースコンタクト領域との
接続が完全化され,ベース抵抗が低減した。
The connection between the base region and the base contact region is perfected and the base resistance is reduced.

【0026】この結果,バイポーラトランジスタの高速
化に寄与することができた。
As a result, it was possible to contribute to the speedup of the bipolar transistor.

【図面の簡単な説明】[Brief description of drawings]

【図1】 バイポーラトランジスタの本発明の実施例を
説明する断面図
FIG. 1 is a sectional view illustrating an embodiment of the present invention of a bipolar transistor.

【図2】 リンクベース拡散層形成の実施例を説明する
断面図
FIG. 2 is a cross-sectional view illustrating an example of forming a link base diffusion layer.

【図3】 バイポーラトランジスタの従来例を説明する
断面図
FIG. 3 is a sectional view illustrating a conventional example of a bipolar transistor.

【符号の説明】[Explanation of symbols]

1は半導体基板でn-Si基板 1B p型ベース領域 1E n+ 型エミッタ領域 1BC p+ 型ベースコンタクト領域 1L p型リンクベース拡散層 2 分離絶縁膜でSiO2膜 3 ベース引き出し電極でポリシリコン膜 4 ポリシリコンのエッチングマスクでSiO2膜 5 SiO2からなる側壁 6 エミッタ電極でポリシリコン膜 7 ポリシリコンのエッチングマスクでSiO2膜 8 カバー絶縁膜でPSG 膜 9 電極配線でAl配線1 is a semiconductor substrate, which is an n-Si substrate 1B p-type base region 1E n + -type emitter region 1BC p + -type base contact region 1L p-type link base diffusion layer 2 isolation insulating film SiO 2 film 3 base extraction electrode polysilicon film 4 SiO 2 film with a polysilicon etching mask 5 Sidewall made of SiO 2 6 Polysilicon film with an emitter electrode 7 SiO 2 film with a polysilicon etching mask 8 PSG film with a cover insulating film 9 Al wiring with an electrode wiring

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 一導電型基板(1) 内に形成された反対導
電型ベース領域(1B)と,該反対導電型ベース領域内に形
成された一導電型エミッタ領域(1E)と,該ベース領域に
隣接して該基板に形成された高濃度反対導電型ベースコ
ンタクト領域(1BC) と,該ベース領域と該ベースコンタ
クト領域にまたがった領域の該基板内に形成され且つ該
ベースコンタクト領域より低濃度の反対導電型リンクベ
ース拡散層(1L)とを有することを特徴とする半導体装
置。
1. An opposite conductivity type base region (1B) formed in a one conductivity type substrate (1), a one conductivity type emitter region (1E) formed in the opposite conductivity type base region, and the base. A high-concentration opposite conductivity type base contact region (1BC) formed on the substrate adjacent to the region, and a region lower than the base contact region formed in the substrate in a region extending over the base region and the base contact region. A semiconductor device comprising: a link base diffusion layer (1L) of opposite conductivity type.
【請求項2】 一導電型半導体基板(1) 上に反対導電型
半導体膜を被着し,その上にベース形成領域が開口され
絶縁膜(4)を形成し,該絶縁膜をマスクにして反対導電
型半導体膜をエッチングしてベース引き出し電極(3)を
形成する工程と, 該絶縁膜およびベース引き出し電極の開口部の該基板内
に反対導電型不純物を導入してp型ベース領域(1B)を形
成する工程と, 該開口部の側面に絶縁膜からなる側壁(5) を形成する工
程と, 該開口部の該基板内に反対導電型イオンを斜め注入して
リンクベース拡散層(1L)を形成する工程と, 該基板上に該開口部を覆って一導電型半導体膜からなる
エミッタ電極(6) を形成する工程と, 該基板を熱処理する工程とを有することを特徴とする半
導体装置の製造方法。
2. A semiconductor film of opposite conductivity type is deposited on a semiconductor substrate of one conductivity type (1), a base formation region is opened on the semiconductor film to form an insulation film (4), and the insulation film is used as a mask. A step of etching the opposite conductivity type semiconductor film to form a base lead electrode (3), and introducing a opposite conductivity type impurity into the substrate at the opening of the insulating film and the base lead electrode to form the p-type base region (1B). ), A step of forming a side wall (5) made of an insulating film on the side surface of the opening, and an ion of opposite conductivity type is obliquely injected into the substrate of the opening to form a link base diffusion layer (1L). ), A step of forming an emitter electrode (6) made of a one conductivity type semiconductor film on the substrate so as to cover the opening, and a step of heat treating the substrate. Device manufacturing method.
JP22195391A 1991-09-03 1991-09-03 Semiconductor device and manufacture thereof Withdrawn JPH0562986A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP22195391A JPH0562986A (en) 1991-09-03 1991-09-03 Semiconductor device and manufacture thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP22195391A JPH0562986A (en) 1991-09-03 1991-09-03 Semiconductor device and manufacture thereof

Publications (1)

Publication Number Publication Date
JPH0562986A true JPH0562986A (en) 1993-03-12

Family

ID=16774750

Family Applications (1)

Application Number Title Priority Date Filing Date
JP22195391A Withdrawn JPH0562986A (en) 1991-09-03 1991-09-03 Semiconductor device and manufacture thereof

Country Status (1)

Country Link
JP (1) JPH0562986A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5726069A (en) * 1994-12-02 1998-03-10 National Semiconductor Corporation Use of oblique implantation in forming emitter of bipolar transistor
US5899723A (en) * 1994-10-07 1999-05-04 National Semiconductor Corporation Oblique implantation in forming base of bipolar transistor

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5899723A (en) * 1994-10-07 1999-05-04 National Semiconductor Corporation Oblique implantation in forming base of bipolar transistor
US5726069A (en) * 1994-12-02 1998-03-10 National Semiconductor Corporation Use of oblique implantation in forming emitter of bipolar transistor

Similar Documents

Publication Publication Date Title
US4546536A (en) Fabrication methods for high performance lateral bipolar transistors
US4682405A (en) Methods for forming lateral and vertical DMOS transistors
US6534836B1 (en) MOSFET semiconductor device
US4583106A (en) Fabrication methods for high performance lateral bipolar transistors
US6534365B2 (en) Method of fabricating TDMOS device using self-align technique
JPH06318697A (en) Dmos structure and preparation thereof
JPH09213934A (en) Power semiconductor device and manufacturing method thereof
JP3307112B2 (en) Method for manufacturing semiconductor device
US5877539A (en) Bipolar transistor with a reduced collector series resistance
JPH0817848A (en) Manufacture of mos type electric power device
JPS63200568A (en) Bipolar transistor employing cmos technology and manufacture of the same
JP3106757B2 (en) Method for manufacturing MOS field effect semiconductor device
US6740562B2 (en) Manufacturing method of a semiconductor device having a polysilicon electrode
JPH0562986A (en) Semiconductor device and manufacture thereof
JPH0817179B2 (en) Semiconductor device and manufacturing method thereof
JPH04255233A (en) Semiconductor device and manufacture thereof
JP2615652B2 (en) Manufacturing method of bipolar transistor
JP3039166B2 (en) Semiconductor device and manufacturing method thereof
JP2890509B2 (en) Method for manufacturing semiconductor device
JP2004022720A (en) Semiconductor device
JP3211804B2 (en) Method for manufacturing semiconductor device
JP4681090B2 (en) Manufacturing method of semiconductor device
JPH0555585A (en) Manufacture of insulated-gate field-effect transistor
JPH11289082A (en) Semiconductor device and its manufacture
JPH09275154A (en) Semiconductor device and its manufacturing method

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 19981203