JPH0562896A - Manufacture of semiconductor quantum box - Google Patents
Manufacture of semiconductor quantum boxInfo
- Publication number
- JPH0562896A JPH0562896A JP4102991A JP4102991A JPH0562896A JP H0562896 A JPH0562896 A JP H0562896A JP 4102991 A JP4102991 A JP 4102991A JP 4102991 A JP4102991 A JP 4102991A JP H0562896 A JPH0562896 A JP H0562896A
- Authority
- JP
- Japan
- Prior art keywords
- semiconductor
- crystal
- box
- band gap
- layer
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Classifications
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01F—COMPOUNDS OF THE METALS BERYLLIUM, MAGNESIUM, ALUMINIUM, CALCIUM, STRONTIUM, BARIUM, RADIUM, THORIUM, OR OF THE RARE-EARTH METALS
- C01F11/00—Compounds of calcium, strontium, or barium
- C01F11/46—Sulfates
- C01F11/468—Purification of calcium sulfates
Landscapes
- Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Life Sciences & Earth Sciences (AREA)
- Geology (AREA)
- Inorganic Chemistry (AREA)
- Recrystallisation Techniques (AREA)
- Led Devices (AREA)
Abstract
Description
【0001】[0001]
【産業上の利用分野】本発明は量子効果を利用した半導
体素子に係り、特に、半導体量子箱を製造する方法に関
するものである。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a semiconductor device utilizing a quantum effect, and more particularly to a method of manufacturing a semiconductor quantum box.
【0002】[0002]
【従来の技術】半導体の量子効果を応用した素子とし
て、量子井戸構造を用いた半導体レーザなどがある。か
かる量子井戸レーザは、通常の半導体レーザに比べて発
光効率が高いとともにスペクトル線幅が狭いなどの特徴
を有する一方、井戸幅によって発光波長を制御できる利
点がある。2. Description of the Related Art As an element to which the quantum effect of semiconductor is applied, there is a semiconductor laser using a quantum well structure. Such a quantum well laser has characteristics such as higher emission efficiency and a narrower spectral line width than ordinary semiconductor lasers, while having an advantage that the emission wavelength can be controlled by the well width.
【0003】[0003]
【発明が解決しようとする課題】ところで、上記量子井
戸は従来、半導体結晶を1次元的に量子効果が表れる程
度にまで小さく、つまり薄くしたものであったが、素子
の更なる高性能化のためには2次元的(量子細線)、3
次元的(量子箱)に結晶を小さくすることが望ましく、
これによって発光波長の制御範囲の拡大を図ることもで
きる。しかしながら、結晶成長によってこれ等を形成す
るには、通常は結晶が平面的に成長するため、量子井戸
の場合には成長時間を短くすればよいが、量子細線や量
子箱の場合には、基板の上面全体を被覆するとともにそ
の被覆を小さく部分的に取り除いて選択成長を行うか、
或いは平面的に成長した結晶の大部分をエッチングなど
によって取り除くことになる。これ等の方法は、工程が
複雑であることは勿論であるが、量子効果が得られる程
度の結晶粒、すなわち1方向10nm以下の結晶を形成
することは極めて困難で、未だ期待通りの成果は得られ
ていないのである。By the way, the above-mentioned quantum well has conventionally been a semiconductor crystal that is small, that is, thin, to the extent that the quantum effect appears one-dimensionally. In order to be two-dimensional (quantum wire), 3
It is desirable to reduce the crystal dimensionally (quantum box),
As a result, the control range of the emission wavelength can be expanded. However, in order to form them by crystal growth, the crystal usually grows in a plane. Therefore, in the case of a quantum well, the growth time may be shortened. Coating the entire top surface of the and removing the coating in small portions to perform selective growth,
Alternatively, most of the crystals grown in a plane are removed by etching or the like. These methods, of course, involve complicated steps, but it is extremely difficult to form crystal grains to the extent that the quantum effect can be obtained, that is, crystals with a direction of 10 nm or less, and the expected results have not been obtained yet. It has not been obtained.
【0004】本発明は以上の事情を背景として為された
もので、その目的とするところは、充分な量子効果が得
られる半導体量子箱を簡単に製造できるようにすること
にある。The present invention has been made in view of the above circumstances, and an object of the present invention is to easily manufacture a semiconductor quantum box capable of obtaining a sufficient quantum effect.
【0005】[0005]
【課題を解決するための手段】かかる目的を達成するた
めに、本発明は、量子効果が表れる程度に小さい大きさ
の半導体箱結晶をその半導体箱結晶よりもバンドギャッ
プが大きい半導体障壁結晶により3次元的に包み込んだ
半導体量子箱の製造方法であって、(a)バンドギャッ
プおよび格子定数が共に異なる2種類の半導体のうちバ
ンドギャップが大きい方を結晶成長させて第1半導体障
壁結晶層を形成する工程と、(b)その第1半導体障壁
結晶層の上に、前記2種類の半導体のうちバンドギャッ
プが小さい方を前記半導体箱結晶として島状に3次元成
長させる工程と、(c)その半導体箱結晶が島状に形成
された前記第1半導体障壁結晶層の上に、その半導体箱
結晶が埋没するように前記2種類の半導体のうちバンド
ギャップが大きい方を再び結晶成長させて第2半導体障
壁結晶層を形成する工程とを含むことを特徴とする。To achieve the above object, the present invention provides a semiconductor box crystal having a size small enough to exhibit a quantum effect by a semiconductor barrier crystal having a band gap larger than that of the semiconductor box crystal. A method of manufacturing a semiconductor quantum box dimensionally enclosing, wherein (a) one of two types of semiconductors having different band gaps and lattice constants having a larger band gap is crystal-grown to form a first semiconductor barrier crystal layer. And (b) a step of three-dimensionally growing the semiconductor box crystal having the smaller band gap among the two types of semiconductors in an island shape on the first semiconductor barrier crystal layer, (c) Of the two types of semiconductors, the band gap is large so that the semiconductor box crystal is buried on the first semiconductor barrier crystal layer in which the semiconductor box crystal is formed in an island shape. It was again grown, characterized in that it comprises a step of forming a second semiconductor barrier crystal layer.
【0006】[0006]
【作用および発明の効果】すなわち、基板またはエピタ
キシャル層などの下地の上に格子定数が異なる半導体を
結晶成長させると、その初期には格子不整合により半導
体結晶は多数の島状に3次元成長し、その島が大きくな
って互いに連続した後は2次元的に結晶成長することが
知られており、本発明はかかる現象を利用して半導体箱
結晶を形成するようにしたのである。具体的には、量子
効果が期待できるバンドギャップ差および3次元成長が
期待できる格子定数差の2つを兼ね備えた2種類の半導
体を用い、先ず、バンドギャップが大きい方の半導体を
結晶成長させて第1半導体障壁結晶層を形成し、その
後、その第1半導体障壁結晶層の上にバンドギャップが
小さい方の半導体を短時間だけ結晶成長させると、格子
定数差によってその半導体は島状に3次元成長し、1辺
が10nm程度以下の半導体箱結晶が形成される。そし
て、その半導体箱結晶が島状に形成された第1半導体障
壁結晶層の上に、その半導体箱結晶が埋没するようにバ
ンドギャップが大きい方の半導体を再び結晶成長させて
第2半導体障壁結晶層を形成することにより、量子効果
が表れる程度に小さい大きさの半導体箱結晶をその半導
体箱結晶よりもバンドギャップが大きい半導体障壁結晶
により3次元的に包み込んだ半導体量子箱が製造され
る。That is, when a semiconductor having different lattice constants is grown on a substrate or an underlayer such as an epitaxial layer, the semiconductor crystals grow three-dimensionally in a large number of islands due to lattice mismatch at the initial stage. It is known that two-dimensional crystal growth occurs after the islands become large and continuous with each other, and the present invention utilizes such a phenomenon to form a semiconductor box crystal. Specifically, two kinds of semiconductors having both a band gap difference which can expect a quantum effect and a lattice constant difference which can expect a three-dimensional growth are used, and first, a semiconductor having a larger band gap is crystal-grown. When the first semiconductor barrier crystal layer is formed and then the semiconductor having the smaller bandgap is crystal-grown on the first semiconductor barrier crystal layer for a short time, the semiconductor becomes three-dimensional in an island shape due to the difference in lattice constant. By growth, a semiconductor box crystal with one side of about 10 nm or less is formed. Then, on the first semiconductor barrier crystal layer in which the semiconductor box crystal is formed in an island shape, the semiconductor having the larger band gap is crystal-grown again so that the semiconductor box crystal is buried, and the second semiconductor barrier crystal is grown. By forming the layer, a semiconductor quantum box in which a semiconductor box crystal having a size small enough to exhibit a quantum effect is three-dimensionally wrapped with a semiconductor barrier crystal having a band gap larger than that of the semiconductor box crystal is manufactured.
【0007】このように、本発明の製造方法によれば、
2種類の半導体を結晶成長させるだけで、充分な量子効
果が得られる程度に小さい半導体量子箱を簡単に製造す
ることができるのである。Thus, according to the manufacturing method of the present invention,
A semiconductor quantum box small enough to obtain a sufficient quantum effect can be easily manufactured only by growing crystals of two kinds of semiconductors.
【0008】[0008]
【実施例】以下、本発明の一実施例を図面に基づいて詳
細に説明する。DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS An embodiment of the present invention will be described in detail below with reference to the drawings.
【0009】図1は、本発明の一実施例である半導体量
子箱が形成されたエピタキシャルウェハ10の断面構造
を説明する図で、面方位が(100)のn−GaP基板
12上には、GaPバッファ層14、GaAs0.5 P
0.5 /GaP歪超格子層16、GaAs0.5 P0.5 第1
半導体障壁結晶層18、GaAs半導体箱結晶20、G
aAs0.5 P0.5 第2半導体障壁結晶層22が順次積層
されている。これ等の半導体は、縦型MOCVD(有機
金属化学気相成長)装置を用いて常圧でエピタキシャル
成長させたもので、バッファ層14の厚さは約0.5μ
mであり、歪超格子層16はGaAs0.5 P0.5 および
GaPをそれぞれ約10nmの厚さで交互に10サイク
ル積層したものであり、第1半導体障壁結晶層18の厚
さは約1.0μmである。また、半導体箱結晶20は、
たとえば2次元成長時換算で約5nm結晶成長させる時
間だけ上記第1半導体障壁結晶層18の上にGaAs半
導体を結晶成長させたものである。FIG. 1 is a view for explaining the cross-sectional structure of an epitaxial wafer 10 having a semiconductor quantum box according to an embodiment of the present invention. On an n-GaP substrate 12 having a plane orientation (100), GaP buffer layer 14, GaAs 0.5 P
0.5 / GaP strained superlattice layer 16, GaAs 0.5 P 0.5 1st
Semiconductor barrier crystal layer 18, GaAs semiconductor box crystal 20, G
The aAs 0.5 P 0.5 second semiconductor barrier crystal layer 22 is sequentially stacked. These semiconductors are epitaxially grown at atmospheric pressure using a vertical MOCVD (metal organic chemical vapor deposition) apparatus, and the thickness of the buffer layer 14 is about 0.5 μm.
The strained superlattice layer 16 is formed by alternately stacking GaAs 0.5 P 0.5 and GaP each having a thickness of about 10 nm for 10 cycles, and the first semiconductor barrier crystal layer 18 has a thickness of about 1.0 μm. is there. Further, the semiconductor box crystal 20 is
For example, a GaAs semiconductor is crystal-grown on the first semiconductor barrier crystal layer 18 only for a time for crystal growth of about 5 nm in terms of two-dimensional growth.
【0010】ここで、第1半導体障壁結晶層18を構成
するGaAs0.5P0.5 のバンドギャップEgおよび格
子定数はそれぞれ1.83eV、0.5552nmであ
り、半導体箱結晶20を構成するGaAsのバンドギャ
ップEgおよび格子定数はそれぞれ1.42eV、0.
5653nmである。このように格子定数が異なること
から、第1半導体障壁結晶層18上に僅かな時間だけ結
晶成長させられるGaAsは、格子不整合により多数島
状に3次元成長させられて半導体箱結晶20となる。こ
の半導体箱結晶20を透過型電子顕微鏡で写真撮影した
ところ、1辺が約10nmの四角錐形状を成しており、
これは量子効果が充分に期待できる大きさである。そし
て、このように多数の四角錐形状を成す半導体箱結晶2
0が形成された第1半導体障壁結晶層18の上に、前記
第2半導体障壁結晶層22を約0.5μmの厚さで形成
した。この第2半導体障壁結晶層22は、上記第1半導
体障壁結晶層18と同じGaAs0.5 P0.5 であるた
め、GaAs半導体箱結晶20は、バンドギャップが大
きいGaAs0.5 P0.5 によって3次元的に包み込ま
れ、半導体量子箱が形成される。この実施例ではGaA
s0.5 P0.5 およびGaAsが、バンドギャップおよび
格子定数が共に異なる2種類の半導体に相当する。な
お、図1の各半導体の膜厚は必ずしも正確な割合で図示
したものではない。Here, the band gap Eg and the lattice constant of GaAs 0.5 P 0.5 forming the first semiconductor barrier crystal layer 18 are 1.83 eV and 0.5552 nm, respectively, and the band gap of GaAs forming the semiconductor box crystal 20. Eg and lattice constant are 1.42 eV, 0.
It is 5653 nm. Since the lattice constants are different as described above, GaAs, which is crystal-grown on the first semiconductor barrier crystal layer 18 for a short time, is three-dimensionally grown in a large number of islands due to the lattice mismatch and becomes the semiconductor box crystal 20. . When this semiconductor box crystal 20 was photographed with a transmission electron microscope, it was in the shape of a quadrangular pyramid with one side of about 10 nm.
This is the size at which the quantum effect can be fully expected. Then, the semiconductor box crystal 2 having a large number of quadrangular pyramid shapes in this way
The second semiconductor barrier crystal layer 22 having a thickness of about 0.5 μm was formed on the first semiconductor barrier crystal layer 18 in which 0 was formed. Since the second semiconductor barrier crystal layer 22 is made of GaAs 0.5 P 0.5, which is the same as the first semiconductor barrier crystal layer 18, the GaAs semiconductor box crystal 20 is three-dimensionally enclosed by GaAs 0.5 P 0.5 having a large band gap. , A semiconductor quantum box is formed. In this example, GaA
s 0.5 P 0.5 and GaAs correspond to two types of semiconductors having different band gaps and lattice constants. The film thickness of each semiconductor in FIG. 1 is not necessarily shown in an accurate ratio.
【0011】そして、このようにして作製されたエピタ
キシャルウェハ10の量子効果を確かめるため、励起光
源として波長が514.5nmのArイオンレーザを用
いて、室温におけるフォトルミネッセンススペクトルを
測定した。その結果を通常のGaAs結晶(バルク)と
比較して表1および図2に示す。Then, in order to confirm the quantum effect of the thus-fabricated epitaxial wafer 10, a photoluminescence spectrum at room temperature was measured using an Ar ion laser having a wavelength of 514.5 nm as an excitation light source. The results are shown in Table 1 and FIG. 2 in comparison with a normal GaAs crystal (bulk).
【0012】 [0012]
【0013】かかる結果から明らかなように、本実施例
のエピタキシャルウェハ10すなわちGaAs量子箱
は、発光波長のピークが大きく短波長側にずれ、発光強
度は約2.87倍、半値幅は2分の1以下となってお
り、良好な量子箱が形成されていることが判る。なお、
発光波長は半導体箱結晶20の大きさ、すなわち結晶成
長時間を変更することによって制御できる。As is clear from the above results, in the epitaxial wafer 10 of the present embodiment, that is, the GaAs quantum box, the emission wavelength peak is largely shifted to the short wavelength side, the emission intensity is about 2.87 times, and the half width is 2 minutes. It is 1 or less, and it can be seen that a good quantum box is formed. In addition,
The emission wavelength can be controlled by changing the size of the semiconductor box crystal 20, that is, the crystal growth time.
【0014】このように、本実施例のエピタキシャルウ
ェハ10によれば期待通りの量子効果が得られるのであ
り、また、かかるエピタキシャルウェハ10は、MOC
VD装置を用いて簡単に製造することができるのであ
る。As described above, according to the epitaxial wafer 10 of this embodiment, the expected quantum effect can be obtained, and the epitaxial wafer 10 has a MOC.
It can be easily manufactured using a VD device.
【0015】次に、本発明の他の実施例を説明する。Next, another embodiment of the present invention will be described.
【0016】図3は本発明方法に従って製造された発光
ダイオード30の断面構造を説明する図で、面方位が
(100)のn−GaP基板32上には、n−GaPバ
ッファ層34、GaAs0.5 P0.5 /GaP歪超格子層
36、n−GaAs0.5 P0.5 クラッド層38、活性層
40、p−GaAs0.5 P0.5 クラッド層42、p+ −
GaAsキャップ層44が順次積層されており、活性層
40は、アンドープGaAs0.5 P0.5 第1半導体障壁
結晶層46、GaAs半導体箱結晶48、アンドープG
aAs0.5 P0.5 第2半導体障壁結晶層50にて構成さ
れている。また、基板32の下面およびキャップ層44
の上面には、それぞれ電極52、54が設けられてい
る。FIG. 3 is a view for explaining the cross-sectional structure of a light emitting diode 30 manufactured according to the method of the present invention. An n-GaP buffer layer 34 and GaAs 0.5 are formed on an n-GaP substrate 32 having a plane orientation of (100). P 0.5 / GaP strained superlattice layer 36, n-GaAs 0.5 P 0.5 clad layer 38, active layer 40, p-GaAs 0.5 P 0.5 clad layer 42, p + −
The GaAs cap layer 44 is sequentially stacked, and the active layer 40 includes an undoped GaAs 0.5 P 0.5 first semiconductor barrier crystal layer 46, a GaAs semiconductor box crystal 48, and an undoped G layer.
aAs 0.5 P 0.5 It is composed of the second semiconductor barrier crystal layer 50. In addition, the lower surface of the substrate 32 and the cap layer 44
Electrodes 52 and 54 are provided on the upper surface of each.
【0017】かかる発光ダイオード30も、前記第1実
施例と同様にMOCVD装置を用いて各半導体結晶を基
板32上に順次エピタキシャル成長させたもので、バッ
ファ層34の厚さは約0.5μmであり、歪超格子層3
6はGaAs0.5 P0.5 およびGaPをそれぞれ約10
nmの厚さで交互に10サイクル積層したものであり、
クラッド層38の厚さは約4μmであり、第1半導体障
壁結晶層46の厚さは約0.1μmである。半導体箱結
晶48は、前記実施例と同様に2次元成長時換算で約5
nm結晶成長させる時間だけ上記第1半導体障壁結晶層
46の上にGaAs半導体を結晶成長させたもので、格
子不整合により多数島状に形成されており、この上に第
2半導体障壁結晶層50を約0.1μmの厚さで形成し
た。これにより、バンドギャップが比較的小さいGaA
sの半導体箱結晶48を、バンドギャップが大きいGa
As0.5 P0.5 の第1半導体障壁結晶層46および第2
半導体障壁結晶層50によって3次元的に包み込んだ半
導体量子箱が形成される。また、その第2半導体障壁結
晶層50の上に形成されるクラッド層42の厚さは約4
μmであり、キャップ層44の厚さは約0.2μmであ
る。この図3の各半導体の膜厚も必ずしも正確な割合で
図示したものではない。The light emitting diode 30 is also one in which each semiconductor crystal is sequentially epitaxially grown on the substrate 32 by using the MOCVD apparatus as in the first embodiment, and the thickness of the buffer layer 34 is about 0.5 μm. , Strained superlattice layer 3
6 is about 10 for GaAs 0.5 P 0.5 and GaP, respectively.
It is a laminate of 10 cycles alternately with a thickness of nm,
The clad layer 38 has a thickness of about 4 μm, and the first semiconductor barrier crystal layer 46 has a thickness of about 0.1 μm. The semiconductor box crystal 48 is about 5 in terms of two-dimensional growth as in the above-mentioned embodiment.
nm, a GaAs semiconductor is crystal-grown on the first semiconductor barrier crystal layer 46 for the time for crystal growth, and is formed in a large number of islands due to lattice mismatch, and the second semiconductor barrier crystal layer 50 is formed thereon. Was formed to a thickness of about 0.1 μm. As a result, GaA having a relatively small band gap
s semiconductor box crystal 48 has a large band gap of Ga
As 0.5 P 0.5 first semiconductor barrier crystal layer 46 and second
A semiconductor quantum box that is three-dimensionally wrapped by the semiconductor barrier crystal layer 50 is formed. The thickness of the clad layer 42 formed on the second semiconductor barrier crystal layer 50 is about 4
μm, and the thickness of the cap layer 44 is about 0.2 μm. The film thickness of each semiconductor in FIG. 3 is not necessarily shown in an accurate ratio.
【0018】そして、このようにして作製された発光ダ
イオード30と、活性層が約0.2μmのアンドープG
aAs0.38P0.62から成る通常のダブルヘテロ構造の発
光ダイオードとを用いて、その光出力を測定したとこ
ろ、図4に示す結果が得られた。かかる図4においてQ
B−LEDで示されているグラフは本実施例の発光ダイ
オード30に関するもので、DH−LEDで示されてい
るグラフはダブルヘテロ構造の発光ダイオードに関する
ものであり、本実施例の発光ダイオード30によれば約
2.7倍の光出力が得られることが判る。すなわち、本
実施例においても良好な量子箱が形成されているのであ
る。Then, the light emitting diode 30 manufactured in this manner and the undoped G having an active layer of about 0.2 μm are formed.
The light output was measured using a light emitting diode having a normal double hetero structure made of aAs 0.38 P 0.62, and the results shown in FIG. 4 were obtained. In FIG. 4, Q
The graph indicated by B-LED relates to the light emitting diode 30 of this embodiment, and the graph indicated by DH-LED relates to the light emitting diode of the double hetero structure. According to this, it can be seen that a light output of about 2.7 times can be obtained. That is, a good quantum box is formed also in this embodiment.
【0019】以上、本発明の実施例を図面に基づいて詳
細に説明したが、本発明は他の態様で実施することもで
きる。Although the embodiments of the present invention have been described in detail with reference to the drawings, the present invention can be implemented in other modes.
【0020】例えば、前記実施例ではGaAs0.5 P
0.5 およびGaAsにて半導体量子箱が形成されている
場合について説明したが、GaAs0.5 P0.5 のAsと
Pの組成割合を変えてGaAsとの格子定数差を変更す
ることもできる。バンドギャップおよび格子定数が共に
異なる他の半導体を用いて量子箱を形成することも勿論
可能である。For example, in the above embodiment, GaAs 0.5 P
Although the case where the semiconductor quantum box is formed of 0.5 and GaAs has been described, the difference in lattice constant from GaAs can be changed by changing the composition ratio of As and P of GaAs 0.5 P 0.5 . Of course, it is possible to form the quantum box by using other semiconductors having different band gaps and lattice constants.
【0021】また、前記第2実施例ではGaAsP発光
ダイオード30について説明したが、AlGaAsやI
nPなどの他の発光ダイオード、或いは半導体レーザ等
の他の半導体素子の作製に本発明を適用することもでき
る。Although the GaAsP light emitting diode 30 has been described in the second embodiment, AlGaAs or I
The present invention can also be applied to the production of other light emitting diodes such as nP or other semiconductor elements such as semiconductor lasers.
【0022】また、前記第2実施例の第1半導体障壁結
晶層46および第2半導体障壁結晶層50は何れもアン
ドープGaAs0.5 P0.5 であったが、一方をp型とし
て他方をn型とすることによりpn接合の界面部分に量
子箱を形成することも可能である。Although both the first semiconductor barrier crystal layer 46 and the second semiconductor barrier crystal layer 50 of the second embodiment are undoped GaAs 0.5 P 0.5 , one is p type and the other is n type. As a result, a quantum box can be formed at the interface of the pn junction.
【0023】また、前記実施例では半導体箱結晶20,
48が一層設けられているだけであるが、半導体障壁結
晶層を挟んで半導体箱結晶を多層設けることもできる。In the above embodiment, the semiconductor box crystal 20,
Although only 48 is provided as a single layer, multiple semiconductor box crystals can be provided with the semiconductor barrier crystal layer sandwiched therebetween.
【0024】また、前記実施例では半導体箱結晶が四角
錐形状を成す例であるが、四角錐台、直方体など他の形
状に形成されても差支えない。Although the semiconductor box crystal has a quadrangular pyramid shape in the above embodiment, it may be formed in other shapes such as a quadrangular pyramid and a rectangular parallelepiped.
【0025】また、前記実施例ではMOCVD装置を用
いて半導体を結晶成長させる場合について説明したが、
分子線エピタキシー法などの他の結晶成長法を採用する
こともできる。In the above embodiment, the case where the semiconductor is crystal-grown by using the MOCVD apparatus has been described.
Other crystal growth methods such as molecular beam epitaxy can also be employed.
【0026】その他一々例示はしないが、本発明は当業
者の知識に基づいて種々の変更,改良を加えた態様で実
施することができる。Although not illustrated one by one, the present invention can be implemented in various modified and improved modes based on the knowledge of those skilled in the art.
【図1】本発明方法に従って作製されたエピタキシャル
ウェハの一例を説明する構造図である。FIG. 1 is a structural diagram illustrating an example of an epitaxial wafer manufactured according to the method of the present invention.
【図2】図1のエピタキシャルウェハおよび通常のGa
As結晶の発光波長特性を示す図である。2 is an epitaxial wafer of FIG. 1 and a normal Ga
It is a figure which shows the light emission wavelength characteristic of As crystal.
【図3】本発明方法に従って作製された発光ダイオード
の一例を説明する構造図である。FIG. 3 is a structural diagram illustrating an example of a light emitting diode manufactured according to the method of the present invention.
【図4】図3の発光ダイオードおよび通常のダブルヘテ
ロ構造発光ダイオードの光出力を示す図である。FIG. 4 is a diagram showing the light output of the light emitting diode of FIG. 3 and a conventional double heterostructure light emitting diode.
18:第1半導体障壁結晶層 20:半導体箱結晶 22:第2半導体障壁結晶層 46:第1半導体障壁結晶層 48:半導体箱結晶 50:第2半導体障壁結晶層 18: 1st semiconductor barrier crystal layer 20: Semiconductor box crystal 22: 2nd semiconductor barrier crystal layer 46: 1st semiconductor barrier crystal layer 48: Semiconductor box crystal 50: 2nd semiconductor barrier crystal layer
Claims (1)
半導体箱結晶を該半導体箱結晶よりもバンドギャップが
大きい半導体障壁結晶により3次元的に包み込んだ半導
体量子箱の製造方法であって、 バンドギャップおよび格子定数が共に異なる2種類の半
導体のうちバンドギャップが大きい方を結晶成長させて
第1半導体障壁結晶層を形成する工程と、 該第1半導体障壁結晶層の上に、前記2種類の半導体の
うちバンドギャップが小さい方を前記半導体箱結晶とし
て島状に3次元成長させる工程と、 該半導体箱結晶が島状に形成された前記第1半導体障壁
結晶層の上に、該半導体箱結晶が埋没するように前記2
種類の半導体のうちバンドギャップが大きい方を再び結
晶成長させて第2半導体障壁結晶層を形成する工程とを
含むことを特徴とする半導体量子箱の製造方法。1. A method of manufacturing a semiconductor quantum box, which comprises a semiconductor box crystal having a size small enough to exhibit a quantum effect and three-dimensionally wrapped by a semiconductor barrier crystal having a band gap larger than that of the semiconductor box crystal. Forming a first semiconductor barrier crystal layer by crystal growth of one of two kinds of semiconductors having different gaps and lattice constants, which has a larger band gap; and forming a first semiconductor barrier crystal layer on the first semiconductor barrier crystal layer. A step of three-dimensionally growing the semiconductor box crystal having a smaller band gap as the semiconductor box crystal in an island shape; and the semiconductor box crystal on the first semiconductor barrier crystal layer in which the semiconductor box crystal is formed in an island shape. 2 to be buried
A method of manufacturing a semiconductor quantum box, comprising a step of recrystallizing one having a larger bandgap among semiconductors of different types to form a second semiconductor barrier crystal layer.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP4102991A JPH0562896A (en) | 1991-02-12 | 1991-02-12 | Manufacture of semiconductor quantum box |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP4102991A JPH0562896A (en) | 1991-02-12 | 1991-02-12 | Manufacture of semiconductor quantum box |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH0562896A true JPH0562896A (en) | 1993-03-12 |
Family
ID=12596976
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP4102991A Pending JPH0562896A (en) | 1991-02-12 | 1991-02-12 | Manufacture of semiconductor quantum box |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH0562896A (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US7829154B2 (en) | 2004-10-21 | 2010-11-09 | Hoya Corporation | Particle deposition apparatus, particle deposition method, and manufacturing method of light-emitting device |
-
1991
- 1991-02-12 JP JP4102991A patent/JPH0562896A/en active Pending
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US7829154B2 (en) | 2004-10-21 | 2010-11-09 | Hoya Corporation | Particle deposition apparatus, particle deposition method, and manufacturing method of light-emitting device |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US6566595B2 (en) | Solar cell and process of manufacturing the same | |
US5838029A (en) | GaN-type light emitting device formed on a silicon substrate | |
EP0124924B1 (en) | Semiconductor devise for generating electromagnetic radiation | |
US8334157B2 (en) | Semiconductor device and a method of manufacture thereof | |
US7943494B2 (en) | Method for blocking dislocation propagation of semiconductor | |
JP3760663B2 (en) | Method for producing group III nitride compound semiconductor device | |
US20020136932A1 (en) | GaN-based light emitting device | |
JP2004336040A (en) | Method of fabricating plurality of semiconductor chips and electronic semiconductor baseboard | |
JP3184717B2 (en) | GaN single crystal and method for producing the same | |
WO2003072856A1 (en) | Process for producing group iii nitride compound semiconductor | |
KR20220140890A (en) | Semiconductor structure and manufacturing method | |
JP2854607B2 (en) | Semiconductor device and semiconductor laser device | |
JP3545197B2 (en) | Semiconductor device and method of manufacturing the same | |
US20060054942A1 (en) | Light emitting device | |
JP2000114599A (en) | Semiconductor light emitting element | |
JP4936653B2 (en) | Sapphire substrate and light emitting device using the same | |
JPH0562896A (en) | Manufacture of semiconductor quantum box | |
JP2000077770A (en) | Semiconductor laser and formation method of there | |
JP2000332293A (en) | Iii-v nitride semiconductor light emitting element and its manufacture | |
JP4174910B2 (en) | Group III nitride semiconductor device | |
JP2645055B2 (en) | Double hetero wafer and double hetero junction type semiconductor laser device | |
JPS62154789A (en) | Semiconductor light emitting element | |
JP2001352133A (en) | Semiconductor laser, semiconductor device, nitride-family iii-v group compound substrate, and their manufacturing method | |
JP4320396B2 (en) | Method for forming nitride semiconductor layer having excellent crystallinity on silicon substrate and nitride semiconductor light emitting device | |
JP3314794B2 (en) | Semiconductor laser and method of manufacturing the same |