JPH0562118A - Manufacture of joined ferrite material - Google Patents

Manufacture of joined ferrite material

Info

Publication number
JPH0562118A
JPH0562118A JP34194491A JP34194491A JPH0562118A JP H0562118 A JPH0562118 A JP H0562118A JP 34194491 A JP34194491 A JP 34194491A JP 34194491 A JP34194491 A JP 34194491A JP H0562118 A JPH0562118 A JP H0562118A
Authority
JP
Japan
Prior art keywords
ferrite material
polycrystalline
single crystal
ferrite
interface
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP34194491A
Other languages
Japanese (ja)
Inventor
Shinji Nagata
伸二 永田
Norio Sasaki
教雄 佐々木
Koichi Aso
興一 阿蘇
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sony Corp
Original Assignee
Sony Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sony Corp filed Critical Sony Corp
Publication of JPH0562118A publication Critical patent/JPH0562118A/en
Withdrawn legal-status Critical Current

Links

Landscapes

  • Magnetic Heads (AREA)

Abstract

PURPOSE:To integrally join a single-crystal ferrite material with a polycrystalline ferrite material at a low temperature in a short time so as to improve the productivity and reduce the cost of a joined ferrite material and, at the same time, to improve the controllability of the interface between both ferrite materials. CONSTITUTION:A single-crystal ferrite material and polycrystalline ferrite material are integrally jointed to each other by a discharge plasma sintering method while the joining surfaces of both materials are closely adhered to each other. It is possible to put coprecipitated ferrite power between the joining surfaces of the materials.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、例えば複合型磁気ヘッ
ド等に用いられる接合フェライト材の製造方法に関し、
特に低温にて加熱圧着を行う新規な接合フェライト材の
製造方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for manufacturing a bonded ferrite material used in, for example, a composite magnetic head,
In particular, the present invention relates to a method for manufacturing a novel bonded ferrite material that performs thermocompression bonding at a low temperature.

【0002】[0002]

【従来の技術】近年、磁気ヘッド、例えばビデオヘッド
においては、摺動ノイズを低減させ、CN比の向上を図
るために、これまでの単結晶フェライトヘッドから、単
結晶フェライト材と多結晶フェライト材との接合フェラ
イト材による複合型磁気ヘッドに切替えられつつある。
2. Description of the Related Art In recent years, in magnetic heads such as video heads, in order to reduce sliding noise and improve the CN ratio, single crystal ferrite materials and polycrystalline ferrite materials have been used in comparison with conventional single crystal ferrite heads. It is being switched to a composite type magnetic head made of a ferrite material.

【0003】この複合型磁気ヘッドは、高飽和磁束密度
を有する単結晶フェライトをフロントギャップ側に、高
透磁率を有する多結晶フェライトをバックギャップ側に
配したもので、簡単な構造でありながら、高密度記録が
可能で優れた電磁変換効率を発揮するという長所を有す
るものである。
This composite magnetic head has a simple structure in which a single crystal ferrite having a high saturation magnetic flux density is arranged on the front gap side and a polycrystalline ferrite having a high magnetic permeability is arranged on the back gap side. It has an advantage that high density recording is possible and excellent electromagnetic conversion efficiency is exhibited.

【0004】このような複合型磁気ヘッドにおいて磁気
コアとして用いられる接合フェライト材は、例えば単結
晶フェライト材と多結晶フェライト材とをそれぞれ作成
し、続いて加熱圧着によりこれら両者を接合一体化させ
る方法により製造される。上記加熱圧着させる方法とし
ては、外部から圧力を加えながら加熱処理を行うホット
・プレス焼成法等が採用されている。
As a joining ferrite material used as a magnetic core in such a composite magnetic head, for example, a single crystal ferrite material and a polycrystalline ferrite material are prepared, respectively, and then the two are integrally bonded by thermocompression bonding. Manufactured by. As a method for the above-mentioned thermocompression bonding, a hot-press firing method in which a heat treatment is performed while applying pressure from the outside is adopted.

【0005】[0005]

【発明が解決しようとする課題】しかしながら、従来の
ホット・プレス焼成法により単結晶フェライト材と多結
晶フェライト材を接合一体化させるためには、低温処理
では固相反応が不十分となり接合状態が悪化するので、
通常で焼成温度を1000℃以上、好ましくは1200
℃以上というかなりの高温で行うことが必要である。こ
のように高温で熱処理を行うと、単結晶フェライト材と
多結晶フェライト材との界面の一部で多結晶フェライト
材の単結晶化や結晶成長が起こり、上記界面がランダム
に移動するという現象がしばしば観察される。この結
果、上記界面に大きなうねりが発生する等、界面の制御
性が劣化し、摺動ノイズの原因となるという問題が生ず
る。
However, in order to bond and integrate the single crystal ferrite material and the polycrystalline ferrite material by the conventional hot press firing method, the solid state reaction becomes insufficient at low temperature treatment, and the bonding state becomes poor. Because it gets worse
Normally, the firing temperature is 1000 ° C or higher, preferably 1200
It is necessary to carry out at a considerably high temperature of ℃ or more. When the heat treatment is performed at a high temperature in this way, the phenomenon that single crystallization or crystal growth of the polycrystalline ferrite material occurs at a part of the interface between the single crystal ferrite material and the polycrystalline ferrite material, and the interface moves randomly Often observed. As a result, there arises a problem that the controllability of the interface is deteriorated such that a large undulation occurs on the interface, which causes sliding noise.

【0006】この問題に対して、例えばK+ ,Rb+
Cs+ 等の添加により界面を制御する方法や、特開平2
−137103号公報に記載がみられるように、単結晶
フェライト材と多結晶フェライト材との界面にケイ酸ナ
トリウム等の接合助剤を介在させて多結晶フェライト材
が物質移動する温度以下の温度で熱処理する方法等が提
案されているが、生産性やコスト面から満足な方法であ
るとは言い難い。
To solve this problem, for example, K + , Rb + ,
A method of controlling the interface by adding Cs +, etc.
As described in JP-A-137103, at a temperature equal to or lower than the temperature at which the polycrystalline ferrite material mass-transfers with a joining aid such as sodium silicate interposed at the interface between the single crystal ferrite material and the polycrystalline ferrite material. Although a method of heat treatment has been proposed, it is hard to say that it is a satisfactory method in terms of productivity and cost.

【0007】そこで、本発明はこのような実情に鑑みて
提案されたものであって、生産性の向上を図るととも
に、コストを低減させることが可能な接合フェライト材
の製造方法を提供することを目的とする。
Therefore, the present invention has been proposed in view of such circumstances, and it is an object of the present invention to provide a method for producing a bonded ferrite material which can improve productivity and reduce cost. To aim.

【0008】[0008]

【課題を解決するための手段】本発明者等は、上述の目
的を達成せんものと鋭意研究の結果、単結晶フェライト
材と多結晶フェライト材とを結合させる際に放電プラズ
マ焼結法を採用すれば、比較的低温で接合一体化させる
ことができることを見出し、本発明を完成するに至っ
た。
Means for Solving the Problems The inventors of the present invention have conducted intensive studies as a result of achieving the above-mentioned object, and as a result, adopted a discharge plasma sintering method when bonding a single crystal ferrite material and a polycrystalline ferrite material. Then, they found that they can be joined and integrated at a relatively low temperature, and completed the present invention.

【0009】即ち、本発明は単結晶フェライト材と多結
晶フェライト材とを接合してなる接合フェライト材の製
造方法において、前記接合を放電プラズマ焼結法により
行うことを特徴とするものであり、さらには接合に際し
て単結晶フェライト材と多結晶フェライト材の接合界面
に共沈フェライト粉末を介在させることを特徴とするも
のである。
That is, the present invention is characterized in that in the method for producing a bonded ferrite material obtained by bonding a single crystal ferrite material and a polycrystalline ferrite material, the bonding is performed by a spark plasma sintering method. Further, the present invention is characterized in that a coprecipitated ferrite powder is interposed at the bonding interface between the single crystal ferrite material and the polycrystalline ferrite material during bonding.

【0010】本発明においては、単結晶フェライト材と
多結晶フェライト材を接合一体化する際の加熱圧着手段
として放電プラズマ焼結法を用いる。この放電プラズマ
焼結法(プラズマ活性化焼結法とも言う。)は、鏡面研
磨した単結晶フェライト材と、同じく鏡面研磨した多結
晶フェライト材を所定の圧力及び所定の加熱温度にして
短時間保持しておくことで、これら単結晶フェライト材
と多結晶フェライト材の固相反応によって接合するもの
である。この時、加熱温度は900℃以下とすることが
好ましく、より好ましくは900℃とする。また、保持
時間は3〜5分間程度の極めて短時間で良い。このよう
な放電プラズマ焼結法を採用することにより、900℃
という低温で上記接合一体化を図ることができ、生産性
の向上及びコストの低減を図ることができる。
In the present invention, the discharge plasma sintering method is used as the thermocompression bonding means for joining and integrating the single crystal ferrite material and the polycrystalline ferrite material. This spark plasma sintering method (also called plasma activation sintering method) is a method for holding a mirror-polished single crystal ferrite material and a mirror-polished polycrystalline ferrite material at a predetermined pressure and a predetermined heating temperature for a short time. By doing so, the single crystal ferrite material and the polycrystalline ferrite material are joined by a solid phase reaction. At this time, the heating temperature is preferably 900 ° C. or lower, and more preferably 900 ° C. Further, the holding time may be an extremely short time of about 3 to 5 minutes. By adopting such a discharge plasma sintering method, 900 ° C
The above-mentioned joining and integration can be achieved at such a low temperature, and productivity can be improved and cost can be reduced.

【0011】また、この放電プラズマ焼結法により単結
晶フェライト材と多結晶フェライト材を接合させるに際
しては、上記加熱圧着工程の前処理として、プラズマ活
性化処理等を行うことが望ましい。
Further, when the single crystal ferrite material and the polycrystalline ferrite material are joined by this discharge plasma sintering method, it is desirable to perform a plasma activation treatment or the like as a pretreatment of the thermocompression bonding step.

【0012】さらに、接合に際して、前記単結晶フェラ
イト材と多結晶フェライト材との接合界面に、水溶液中
での共沈反応で合成されこれらフェライト材と同一組成
を有する共沈フェライト粉末、あるいはこれを分散させ
た磁性ペーストを介在しておけば、600〜700℃と
いう低温での接合一体化が可能となる。このとき、前記
共沈フェライト粉末あるいは磁性ペーストは、塗布等の
手法によって単結晶フェライト材と多結晶フェライト材
の接合界面に介在せしめればよい。また、これら共沈フ
ェライト粉末あるいは磁性ペーストは、単結晶フェライ
ト材あるいは多結晶フェライト材の何れか一方にのみ塗
布するようにしてもよいし、これら両者の接合界面に塗
布するようにしてもよい。
Further, at the time of joining, a coprecipitated ferrite powder synthesized by a coprecipitation reaction in an aqueous solution and having the same composition as these ferrite materials, or a coprecipitated ferrite powder, at the joint interface between the single crystal ferrite material and the polycrystalline ferrite material. By interposing the dispersed magnetic paste, it becomes possible to join and integrate at a low temperature of 600 to 700 ° C. At this time, the coprecipitated ferrite powder or magnetic paste may be interposed at the bonding interface between the single crystal ferrite material and the polycrystalline ferrite material by a method such as coating. Further, the coprecipitated ferrite powder or the magnetic paste may be applied to only one of the single crystal ferrite material and the polycrystalline ferrite material, or may be applied to the bonding interface between the two.

【0013】[0013]

【作用】放電プラズマ焼結法は、焼結反応に放電プラズ
マを利用する新規な焼結法であり、その実施に際して
は、例えば図1に示すように、試料2を耐熱性、耐衝撃
性を有する円筒状の容器1内に充填し、前記容器1の両
端開口部に凸部を有する電極3,3を嵌合挿入し、試料
2に対して所定の圧力を加える。
The discharge plasma sintering method is a novel sintering method utilizing discharge plasma in the sintering reaction. In carrying out the sintering method, the sample 2 is subjected to heat resistance and impact resistance as shown in FIG. 1, for example. It is filled in a cylindrical container 1 having the same, electrodes 3 having protrusions are fitted and inserted into openings at both ends of the container 1, and a predetermined pressure is applied to the sample 2.

【0014】そして、試料である 単結晶フェライト材
と多結晶フェライト材間に直接電圧をかけると、当該試
料2の表面粒子4間隙(すなわち単結晶フェライト材と
多結晶フェライト材間隙、あるいは共沈フェライト粉末
の粒子間隙)に放電が起きてプラズマが発生する。この
プラズマの衝撃により上記単結晶フェライト材や多結晶
フェライト材の表面の酸化皮膜や吸着ガス等の不純物が
蒸発して除去されると同時に、上記単結晶フェライト材
や多結晶フェライト材の表面に熱や歪みのエネルギーが
蓄積されて活性化される。その結果、多くの空格子点が
生成され、原子移動の拡散定数が通常の数百倍まで高ま
るとともに、上記単結晶フェライト材と多結晶フェライ
ト材間にジュール熱が発生し、熱拡散が活発に起こる。
このため、900℃程度(共沈フェライト粉末を介在さ
せた場合には600〜700℃程度)の低温でも上記単
結晶フェライト材と多結晶フェライト材との界面で固相
反応が起こり、これら両者の接合一体化がなされる。従
って、多結晶フェライト材の結晶成長や単結晶化が抑え
られ、上記界面の制御性が良好となる。
When a voltage is directly applied between the sample single crystal ferrite material and the polycrystalline ferrite material, the surface particle 4 gap of the sample 2 (that is, the single crystal ferrite material and the polycrystalline ferrite material gap, or the coprecipitated ferrite material). A discharge is generated in the powder particle space) and plasma is generated. The impact of this plasma evaporates and removes the oxide film and adsorbed gas impurities on the surface of the single crystal ferrite material and the polycrystalline ferrite material, and at the same time, heats the surface of the single crystal ferrite material and the polycrystalline ferrite material. And energy of strain is accumulated and activated. As a result, many vacancies are generated, the diffusion constant of atom transfer is increased to several hundred times the usual value, and Joule heat is generated between the single crystal ferrite material and the polycrystalline ferrite material, resulting in active thermal diffusion. Occur.
Therefore, even at a low temperature of about 900 ° C. (about 600 to 700 ° C. when the coprecipitated ferrite powder is interposed), a solid-phase reaction occurs at the interface between the single crystal ferrite material and the polycrystalline ferrite material, and both of them Joined and integrated. Therefore, the crystal growth and single crystallization of the polycrystalline ferrite material are suppressed, and the controllability of the above interface is improved.

【0015】[0015]

【実施例】以下、本発明を具体的な実施例により説明す
るが、本発明がこの実施例に限定されるものでないこと
は言うまでもない。
EXAMPLES The present invention will be described below with reference to specific examples, but it goes without saying that the present invention is not limited to these examples.

【0016】実施例1 本実施例は、酸化鉄,酸化亜鉛,酸化マンガンを主成分
とするMn−Znフェライト材を放電プラズマ焼結法に
よる固相反応で接合一体化させた例である。先ず、多結
晶Mn−Zn系フェライト材を合成した。即ち、原料と
してFe原料(例えばαFe2 3 ),Zn原料(例え
ばZnO)及びMn原料(例えばMnO)を用い、これ
ら原料をFe2 3 :ZnO:MnO=52:20:2
8(モル比)なる割合となるようにそれぞれ秤量し、ス
テンレス製のボールミル内で混合,粉砕し、続いて成形
した後、1%酸素ガス雰囲気中にて温度を1300℃と
して2時間焼成を行って多結晶Mn−Zn系フェライト
材を得た。
Example 1 This example is an example in which Mn-Zn ferrite material containing iron oxide, zinc oxide, and manganese oxide as main components was joined and integrated by a solid-state reaction by a discharge plasma sintering method. First, a polycrystalline Mn-Zn ferrite material was synthesized. That is, Fe raw materials (eg αFe 2 O 3 ), Zn raw materials (eg ZnO) and Mn raw materials (eg MnO) are used as raw materials, and these raw materials are Fe 2 O 3 : ZnO: MnO = 52: 20: 2.
8 (molar ratio), each was weighed, mixed and crushed in a stainless steel ball mill, and subsequently molded, followed by firing at a temperature of 1300 ° C. for 2 hours in a 1% oxygen gas atmosphere. As a result, a polycrystalline Mn-Zn ferrite material was obtained.

【0017】次に、単結晶Mn−Zn系フェライト材を
合成した。即ち、上述の多結晶Mn−Zn系フェライト
材の合成方法と同様にして多結晶Mn−Zn系フェライ
ト材を作製し、得られた多結晶Mn−Zn系フェライト
材をブリッジマン法により白金ルツボ中で1700℃の
温度で溶融させた後、底部より固化させることにより単
結晶化させて単結晶Mn−Zn系フェライト材とした。
Next, a single crystal Mn-Zn ferrite material was synthesized. That is, a polycrystalline Mn-Zn based ferrite material was produced in the same manner as the above-described method for synthesizing the polycrystalline Mn-Zn based ferrite material, and the obtained polycrystalline Mn-Zn based ferrite material was subjected to a Bridgman method in a platinum crucible. After being melted at a temperature of 1700 ° C., it was single-crystallized by solidifying from the bottom to obtain a single-crystal Mn—Zn-based ferrite material.

【0018】続いて、これら多結晶Mn−Zn系フェラ
イト材及び単結晶Mn−Zn系フェライト材を直径20
mm、厚さ2mmの大きさにそれぞれ成形加工し、これ
ら多結晶Mn−Zn系フェライト材及び単結晶Mn−Z
n系フェライト材の接合面を鏡面状態となるように仕上
げた。
Subsequently, the polycrystalline Mn-Zn based ferrite material and the single crystal Mn-Zn based ferrite material have a diameter of 20.
mm and a thickness of 2 mm, the polycrystalline Mn-Zn based ferrite material and the single crystal Mn-Z are processed.
The joint surface of the n-type ferrite material was finished to be a mirror surface.

【0019】そして、鏡面状態に仕上げられた接合面同
士を密着させて、プラズマ活性化処理を1分間行った。
その後、放電プラズマ焼結法により圧力500kg/c
2 、電流密度570A/cm2 、焼成温度900℃の
条件下で3分間保持して固相反応させて接合フェライト
材を得た。
Then, the mirror-finished joint surfaces were brought into close contact with each other, and plasma activation treatment was performed for 1 minute.
After that, the pressure is 500 kg / c by the spark plasma sintering method.
A bonded ferrite material was obtained by holding for 3 minutes under the conditions of m 2 , current density of 570 A / cm 2 , and firing temperature of 900 ° C. for solid phase reaction.

【0020】このようにして接合フェライト材を作製し
たところ、上記多結晶Mn−Zn系フェライト材と単結
晶Mn−Zn系フェライト材が十分な強度で結合一体化
していることが判った。また、この接合フェライト材の
多結晶Mn−Zn系フェライト材と単結晶Mn−Zn系
フェライト材との界面を観察したところ、図1に示すよ
うに、単結晶フェライト材と多結晶フェライト材との界
面の分離が非常に良好で、且つ界面のうねりが極めて少
ないことが判った。
When the bonded ferrite material was produced in this manner, it was found that the above-mentioned polycrystalline Mn-Zn ferrite material and the single crystal Mn-Zn ferrite material were bonded and integrated with sufficient strength. Further, when the interface between the polycrystalline Mn—Zn based ferrite material and the single crystal Mn—Zn based ferrite material of this bonded ferrite material was observed, as shown in FIG. 1, the single crystal ferrite material and the polycrystalline ferrite material were It was found that the separation of the interface was very good and the waviness of the interface was extremely small.

【0021】これに対して、上述のようにして得られた
多結晶Mn−Zn系フェライト材と単結晶Mn−Zn系
フェライト材を上述の放電プラズマ焼結法の代わりに従
来のホット・プレス法により加熱圧着させたところ、こ
れら多結晶Mn−Zn系フェライト材と単結晶Mn−Z
n系フェライト材は接合一体化せず、剥がれてしまっ
た。
On the other hand, the polycrystalline Mn-Zn ferrite material and the single crystal Mn-Zn ferrite material obtained as described above are replaced by the conventional hot pressing method instead of the above-mentioned spark plasma sintering method. When heat-pressed by, the polycrystalline Mn-Zn ferrite material and the single-crystal Mn-Z
The n-type ferrite material did not join together and was peeled off.

【0022】次に、上述の放電プラズマ焼結法によるプ
ラズマ活性化処理後の焼成条件を検討するために、焼成
温度と保持時間を下記の表1に示すように変化させて、
その他は上述と同様の手法により接合一体化を図り、得
られた接合フェライト材の接合状態を調べた。この結果
を表1に示す。なお、電流密度は、450〜640A/
cm2 となるように調節した。
Next, in order to examine the firing conditions after the plasma activation treatment by the above-mentioned discharge plasma sintering method, the firing temperature and the holding time were changed as shown in Table 1 below.
Others were joined and integrated by the same method as described above, and the joining state of the obtained joined ferrite material was examined. The results are shown in Table 1. The current density is 450 to 640 A /
It was adjusted to be cm 2 .

【0023】[0023]

【表1】 [Table 1]

【0024】表1に示すように、本発明を適用した場
合、900℃の比較的低温でも短時間で多結晶Mn−Z
n系フェライト材と単結晶Mn−Zn系フェライト材を
接合一体化させることができることが判った。また、焼
成温度を700℃とした場合には、良好な接合一体化を
図ることができなかったが、焼成温度が800℃であれ
ば、十分に接合一体化させることができた。
As shown in Table 1, when the present invention is applied, polycrystalline Mn-Z is produced in a short time even at a relatively low temperature of 900 ° C.
It has been found that the n-type ferrite material and the single crystal Mn-Zn-based ferrite material can be joined and integrated. When the firing temperature was 700 ° C., good joining and integration could not be achieved, but when the firing temperature was 800 ° C., the joining and integration could be sufficiently performed.

【0025】以上の実験結果から、多結晶Mn−Zn系
フェライト材と単結晶Mn−Zn系フェライト材を放電
プラズマ焼成法により焼成を行うと、900℃程度の低
温で良好に接合一体化されることが明らかとなった。
From the above experimental results, when the polycrystalline Mn-Zn based ferrite material and the single crystal Mn-Zn based ferrite material are fired by the discharge plasma firing method, they are well joined and integrated at a low temperature of about 900 ° C. It became clear.

【0026】実施例2 先ず、水溶液中での共沈反応により、Mn−Zn系フェ
ライト粉末を湿式合成した。この方法としては、例え
ば、原料として、MnSO4 ・5H2 O、ZnSO4
7H2 O、FeSO4 ・7H2 Oを用い、MnO:Zn
O:Fe2 3 =28:20:52となるような割合で
含む溶液を調整した。この水溶液にアルカリとして水酸
化カリウムKOHを加えてpHが9となるように調整し
た。
Example 2 First, Mn-Zn ferrite powder was wet-synthesized by coprecipitation reaction in an aqueous solution. Examples of this method include, as raw materials, MnSO 4 .5H 2 O and ZnSO 4.
7H 2 O, FeSO 4 · 7H 2 O, MnO: Zn
A solution containing O: Fe 2 O 3 = 28: 20: 52 was prepared. To this aqueous solution, potassium hydroxide KOH was added as an alkali to adjust the pH to 9.

【0027】さらに、この溶液を十分撹拌しながら、酸
化剤として塩素酸カリウムKClO3 を添加し、その
後、反応溶液の温度を100℃に1時間保持することに
より反応を進行させた。反応終了後、得られた生成物を
十分水洗し、ろ過、乾燥することにより、Mn−Znフ
ェライトの共沈フェライト粉末を得た。
Furthermore, while sufficiently stirring this solution, potassium chlorate KClO 3 was added as an oxidizing agent, and then the temperature of the reaction solution was maintained at 100 ° C. for 1 hour to allow the reaction to proceed. After the reaction was completed, the obtained product was thoroughly washed with water, filtered, and dried to obtain a coprecipitated ferrite powder of Mn-Zn ferrite.

【0028】次いで、このようにして得られたMn−Z
nフェライトの共沈フェライト粉末を水中に十分に混
合、分散させ、ペースト状に調整した。このペースト
を、先の実施例1で作製した多結晶Mn−Zn系フェラ
イト材と単結晶Mn−Zn系フェライト材の接合面にそ
れぞれ塗布し、乾燥した。
Then, the Mn-Z thus obtained was obtained.
The n-ferrite coprecipitated ferrite powder was thoroughly mixed and dispersed in water to prepare a paste. This paste was applied to the joint surfaces of the polycrystalline Mn—Zn based ferrite material and the single crystal Mn—Zn based ferrite material prepared in Example 1 above, and dried.

【0029】このようにして準備した多結晶Mn−Zn
系フェライト材と単結晶Mn−Zn系フェライト材とを
接合面同志を密着させ、放電プラズマ焼結法により、プ
ラズマ活性化処理1分間、圧力500kgf/cm2
電流密度400〜650A/cm2 なる条件下、接合温
度を500度から700℃まで変化させて固相反応を行
わせた。接合温度による接合状態を表2に示す。
Polycrystalline Mn-Zn prepared in this way
System ferrite material and single crystal Mn-Zn system ferrite material are adhered to each other at their joint surfaces, and plasma activation treatment is performed for 1 minute by a discharge plasma sintering method at a pressure of 500 kgf / cm 2 ,
Under the condition that the current density was 400 to 650 A / cm 2 , the bonding temperature was changed from 500 ° C. to 700 ° C. to carry out the solid phase reaction. Table 2 shows the bonding state depending on the bonding temperature.

【0030】[0030]

【表2】 [Table 2]

【0031】その結果、600℃以上の接合温度で十分
な強度で接合一体化ができることがわかった。このよう
に、共沈フェライト粉末を介在させることにより、60
0〜700℃という低温での接合一体化が可能であるこ
とが確認された。
As a result, it was found that the joining can be performed with sufficient strength at a joining temperature of 600 ° C. or higher. Thus, by interposing the coprecipitated ferrite powder, 60
It was confirmed that the joining and integration can be performed at a low temperature of 0 to 700 ° C.

【0032】[0032]

【発明の効果】上述のように、本発明では、単結晶フェ
ライト材と多結晶フェライト材の接合一体化を放電プラ
ズマ焼結法により行っているので、900℃以下とい
う、従来に比べてはるかに低温で処理を行うことが可能
となる。特に、接合界面に共沈フェライト粉末を介在さ
せた場合には、600〜700℃という低温で接合一体
化が可能である。したがって、これに伴って、生産性が
向上すると同時に、コストの低減が図られる。
As described above, in the present invention, since the single crystal ferrite material and the polycrystalline ferrite material are joined and integrated by the discharge plasma sintering method, the temperature is 900 ° C. or less, which is far higher than the conventional method. It becomes possible to perform the treatment at a low temperature. In particular, when the coprecipitated ferrite powder is interposed at the joint interface, the joint can be integrated at a low temperature of 600 to 700 ° C. Therefore, along with this, productivity is improved and at the same time cost is reduced.

【0033】また、上記放電プラズマ焼結法による焼結
工程においては、焼結完了までに要する時間が僅か数分
程度と極めて短時間であるので、単結晶フェライト材と
多結晶フェライト材との界面の分離が非常に良好で、且
つ界面のうねりが極めて少ない等、界面の制御性に優れ
ている。
Further, in the sintering process by the above-mentioned discharge plasma sintering method, since the time required for the completion of sintering is only a few minutes, which is an extremely short time, the interface between the single crystal ferrite material and the polycrystalline ferrite material is very small. Is very good, and the undulation of the interface is extremely small, and the controllability of the interface is excellent.

【図面の簡単な説明】[Brief description of drawings]

【図1】放電プラズマ焼結法を説明するための模式的な
斜視図である。
FIG. 1 is a schematic perspective view for explaining a discharge plasma sintering method.

【図2】放電プラズマ焼結法による焼結反応のメカニズ
ムを説明するための模式図である。
FIG. 2 is a schematic diagram for explaining a mechanism of a sintering reaction by a discharge plasma sintering method.

【図3】本発明を適用して作製された接合フェライト材
の界面の結晶構造を示す顕微鏡写真である。
FIG. 3 is a micrograph showing a crystal structure of an interface of a bonded ferrite material produced by applying the present invention.

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 単結晶フェライト材と多結晶フェライト
材とを接合してなる接合フェライト材の製造方法におい
て、 前記接合を放電プラズマ焼結法により行うことを特徴と
する接合フェライト材の製造方法。
1. A method for manufacturing a bonded ferrite material, which comprises bonding a single crystal ferrite material and a polycrystalline ferrite material, wherein the bonding is performed by a spark plasma sintering method.
【請求項2】 接合に際して単結晶フェライト材と多結
晶フェライト材の接合界面に共沈フェライト粉末を介在
させることを特徴とする請求項1記載の接合フェライト
材の製造方法。
2. The method for producing a bonded ferrite material according to claim 1, wherein a coprecipitated ferrite powder is interposed at a bonding interface between the single crystal ferrite material and the polycrystalline ferrite material during bonding.
JP34194491A 1991-06-26 1991-11-30 Manufacture of joined ferrite material Withdrawn JPH0562118A (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP18059391 1991-06-26
JP3-180593 1991-06-26

Publications (1)

Publication Number Publication Date
JPH0562118A true JPH0562118A (en) 1993-03-12

Family

ID=16085978

Family Applications (1)

Application Number Title Priority Date Filing Date
JP34194491A Withdrawn JPH0562118A (en) 1991-06-26 1991-11-30 Manufacture of joined ferrite material

Country Status (1)

Country Link
JP (1) JPH0562118A (en)

Similar Documents

Publication Publication Date Title
CN113185276A (en) Normal-temperature high-standard soft magnetic ferrite material and preparation method thereof
US5302306A (en) Process for preparing polycrystalline ferrite materials and composites containing them
JP4194013B2 (en) Ferrite magnet manufacturing method
JPH0562118A (en) Manufacture of joined ferrite material
CN113135749B (en) Wide-temperature-range high-efficiency soft magnetic ferrite material and preparation method thereof
JPH0597507A (en) Ferrite material
CA2133642A1 (en) Process for Producing Single Phase Magnetite Powder
JPS6215517B2 (en)
JP2799238B2 (en) Method for producing Mn-Zn ferrite joined body
JP2823626B2 (en) Method for producing Mn-Zn ferrite joined body
JPH06333724A (en) Sintered ferrite with crystallite particle and manufacture thereof
JP3284638B2 (en) Manufacturing method of bonded ferrite
CN113292327B (en) Soft magnetic ferrite material with wide temperature range property and production process thereof
US3533948A (en) Process for producing magnesium manganese ferrite cores
JPS6241797A (en) Single crystal ferrite and production thereof
JP2002118300A (en) Oxide thermoelectric element manufactured by discharge plasma sintering method
JP3158540B2 (en) Manufacturing method of thermoelectric material
JPS61101484A (en) Production of single crystal ferrite
JPH09270312A (en) Manufacture of manganese-zinc ferrite
JPH08193203A (en) Method for sintering amorphous alloy powder
JP2862692B2 (en) Manufacturing method of single crystal ferrite
Sata Synthesis of 110K Phase of Bi-Sr-Ca-Cu-O Superconductor Oxide by New Firing Method
JPS627831A (en) Manufacture of permanent magnet material
JPH0558791A (en) Production of single-crystalline ferrite
JPH04240193A (en) Production of combined ferrite

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 19990204