JPH0561792B2 - - Google Patents

Info

Publication number
JPH0561792B2
JPH0561792B2 JP3053789A JP3053789A JPH0561792B2 JP H0561792 B2 JPH0561792 B2 JP H0561792B2 JP 3053789 A JP3053789 A JP 3053789A JP 3053789 A JP3053789 A JP 3053789A JP H0561792 B2 JPH0561792 B2 JP H0561792B2
Authority
JP
Japan
Prior art keywords
film
conductive layer
copper
thickness
plastic film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP3053789A
Other languages
Japanese (ja)
Other versions
JPH02209797A (en
Inventor
Hisao Matsura
Yasuo Iijima
Kazuo Iwaoka
Hiroyuki Muto
Toshuki Inagaki
Yoshihiko Chiba
Junichi Niiyama
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP3053789A priority Critical patent/JPH02209797A/en
Publication of JPH02209797A publication Critical patent/JPH02209797A/en
Publication of JPH0561792B2 publication Critical patent/JPH0561792B2/ja
Granted legal-status Critical Current

Links

Description

【発明の詳細な説明】[Detailed description of the invention]

産業上の利用分野 本発明は接着剤層の無い2層構造で、しかも金
属導電層とプラスチツクフイルム基板との付着力
が強靭なフレキシブルプリント回路用基板の製造
方法に関するものである。 従来の技術 近年エレクトロニクス分野でのフレキシブルプ
リント回路用基板の需要が増大しており、特に従
来よりも薄く柔軟性に優れ、線幅が100μm以下
の高密度配線を必要とするTABや液晶関連等で
使用可能な「接着剤層の無い2層構造」が注目さ
れている。この2層構造を作る方法は「銅箔にポ
リイミドワニスを塗布する」と「ポリイミドフイ
ルムに銅薄膜を形成する」とに大別される。 発明が解決しようとする課題 前者の「銅箔にポリイミドワニスを塗布する」
方法では、下記の理由から薄物の実用化が遅れて
いる。 (1) 屈曲性に優れた圧延銅箔の中で10μm以下の
薄物は高価で、しかもイミドワニス塗布時に皺
が発生し易い。 (2) 付着力、線膨張係数等の改善目的でポリイミ
ドワニスを変性する為、ポリイミド本来の特性
が低下する。 後者の「ポリイミドフイルムに銅薄膜を形成す
る」方法には湿式法と乾式法とがあり、湿式法は
プラスチツクフイルム基板上に無電解メツキを施
してからその導電性を利用して電解メツキするも
ので、10μm以下の薄い導電層を形成するのは容
易であるが、導電層とプラスチツクフイルム基板
との付着力が劣つており実用化されていなかつ
た。一方、乾式法ではスパツタ又はスパツタ+電
解メツキで導電層を形成することが一部行われて
いるが、スパツタの成膜速度が0.001μm/秒前後
と非常に遅いために生産コストが高く、民生用と
して使用できるものではなかつた。また、スパツ
タの代わりに成膜速度の速い真空蒸着法を用いる
ことも可能であるが、真空蒸着法だけでは3μm
以上の膜厚は得られないし、膜厚不足分を湿式処
理の電解メツキで補おうとすれば、真空蒸着膜と
プラスチツクフイルム基板との付着力が低下し
て、使用に耐えられなかつた。 本発明は上記問題点に鑑み、接着剤層の無い2
層構造で、しかも導電層とプラスチツクフイルム
基板との付着力が強靭なフレキシブルプリント回
路用基板の製造方法を提供するものである。 課題を解決するための手段 上記課題を解決するために本発明は真空蒸着法
を用いてプラスチツクフイルム基板上に成膜速度
が0.01〜1.0μm/秒で第1導電層を形成した後、
その導電層上に電解メツキ法により第2の導電層
を形成することを特徴とするものである。 作 用 本発明者はプラスチツクフイルム基板と金属薄
膜との付着力を向上させるために鋭意検討の結
果、真空蒸着時の基板温度、基板との界面を形成
する金属薄膜の構造及び膜厚が湿式処理後の付着
力に影響することを見出した。即ち、具体的には
蒸着初期に入射角30゜以上の高入射成分を遮断す
ることにより、蒸発量の多い低入射成分が基板に
最初に当たり、その多量な潜熱や蒸発源からの輻
射熱によつて基板温度がより高くなり、更に、基
板との界面を形成する金属薄膜の構造が緻密なも
のになるようにしたものである。 本発明においては、第1の導電層を形成する真
空蒸着法の成膜速度は0.01〜1.0μm/秒の範囲内
であることが好ましく、0.01μm/秒未満では生
産性が低くスパツタに対するコスト・メリツトが
失われ、一方、1.0μm/秒を越える速い成膜速度
では、欠陥の多い蒸着膜が形成されたり、莫大な
潜熱や蒸発源からの輻射熱によつてプラスチツク
フイルム基板が熱劣化を起こしたりして、蒸着膜
の付着力が低下してくる。 又本発明においては、第1の導電層である真空
蒸着膜の膜厚は0.2〜1.0μmの範囲内が好ましく、
0.2μm未満では電解メツキ法で第2の導電層を効
率良く形成するのが困難であり、一方、1.0μmを
越えると、成膜速度の速い真空蒸着法の場合、蒸
着膜の内部残留応力が増大したり、莫大な潜熱や
蒸発源からの輻射熱によつてプラスチツクフイル
ム基板が熱劣化を起こしたりして、蒸着膜の付着
力が低下してくる。 本発明に使用されるプラスチツクフイルムの種
類は特に限定されるものではないが、ポリイミド
又はその共重合体のように耐熱性の高いものが好
ましい。これは蒸着初期に蒸発量の多い低入射成
分が基板に当たるため、その多量な潜熱や蒸発源
からの輻射熱によつて基板表面温度が高くなり、
ポリエチレンテレフタレート(PET)のような、
あまり耐熱性の高くないプラスチツクプイルムで
は、熱劣化を起こしたり、オリゴマーを析出して
蒸着膜の付着力が低下する。 尚、プラスチツクフイルム基板上に真空蒸着法
で第1の導電層を形成する際には、予めプラスチ
ツクフイルム基板をヒーターなどで加熱して脱ガ
スしたり、プラズマ処理などで表面処理すれば、
蒸着膜の付着力を更に向上させることができる。 また、本発明において第2の導電層を電解メツ
キ法で形成する方法には、全面メツキして膜厚を
増す方法と、回路として使用する部分のみをメツ
キする方法(セミ・アデイテイブ法)とが考えら
れるが、本発明でこれらは限定されるものではな
い。しかし、本発明をより効果的にするものは後
者の場合である。 実施例 以下本発明の一実施例について図面を参照しな
がら具体的に説明する。 第1図は本発明の実施例における巻取り式真空
蒸着装置の概略構成図である。図中1は巻出しロ
ール、2はプラスチツクフイルム、3はキヤンロ
ール、4は巻取りロール、5は遮断板、6は蒸発
源、7は真空ポンプ、8は蒸発源加熱装置であ
る。巻出しロール1から送り出されたプラスチツ
クフイルム2は中央のキヤンロール3に沿つて移
動し、巻取りロール4に巻取られる。この途中
で、プラスチツクフイルム2の表面には蒸発源6
からの蒸気流のうち遮断板5により遮断されてい
ない蒸気流により、金属薄膜が形成される。 遮断板5を巻取りロール4側に置いて、蒸着後
期の入射角を制限しても良いが、蒸着の付着効率
を低下させるだけで本発明の効果は得られない。 プラスチツクフイルム2に直角な線と蒸発源6
からの蒸気流とからなる角度(第1図中θで示さ
れる角度)を入射角とし、遮断板5又は蒸発源6
を第1図上で左右に動かすことによつてその入射
角を調整した。 速い成膜速度を得る為に、蒸発源6にはルツボ
を使用し、蒸発源加熱装置8には電子ビーム装置
を用いた。 実施例 1 厚さ25μmのポリイミドフイルム(宇部興産
製、商品名:ユーピレツクス25S)を第1図に示
す装置内にプラスチツクフイルム2としてセツト
し、又、遮断板5を蒸着初期の最大入射角がθ=
30゜となるように設置して、真空度:1×
10-4Torr、電子ビーム出力:52KW、フイルム速
度:20m/分の条件下で銅を真空蒸着し、0.8μm
厚の銅薄膜を形成した。この時の成膜速度は0.4μ
m/秒であつた。 実施例 2 フイルム速度を80、40、16m/分に変更した以
外は実施例1と全く同様にして、それぞれ0.2、
0.4、1.0μm厚の銅薄膜を形成した。 実施例 3 遮断板を蒸着初期の最大入射角が0゜となるよう
に設置し、電子ビーム出力を58KWに強めた以外
は実施例1と同様に銅薄膜を形成した。この時膜
厚は0.5μm、成膜速度は0.3μm/秒であつた。 比較例 1 蒸発源をプラスチツクフイルム基板に近づけ、
遮断板を蒸着初期の最大入射角が30゜となるよう
に設置し、真空度:1×10-4Torr、電子ビーム
出力:80KW、フイルム速度:60m/分の条件下
で銅を真空蒸着し実施例1と同様に銅薄膜を形成
した。この時膜厚は0.8μm、成膜速度は1.2μm/
秒であつた。 比較例 2 フイルム速度を13m/分にした以外は実施例1
と同様に銅薄膜を形成した。この時膜厚は1.2μ
m、成膜速度は0.4μm/秒であつた。 比較例 3 遮断板を蒸着初期の最大入射角が60゜となるよ
うに設置し、電子ビーム出力を42KWに弱めた以
外は実施例1と同様に銅薄膜を形成した。この時
膜厚は0.7μm、成膜速度は0.3μm/秒であつた。 比較例 4 遮断板を取り除き、電子ビーム出力を40KWに
弱めた以外は実施例1と同様に銅薄膜を形成し
た。この時膜厚は0.8μm、成膜速度は0.3μm/秒
であつた。 比較例 5 ポリイミドフイルムの代わりにPETフイルム
を使用した以外は実施例1と同様に、0.8μm厚の
銅薄膜を形成した。 前記実施例、比較例で得られた銅蒸着フイルム
について、煮沸テスト、銅電解メツキ及びメツキ
後のピール強度測定を行い、その結果を第1表に
示す。また、メツキ後のピール強度と蒸着膜厚、
蒸着入射角との関係をそれぞれ第2図、第3図に
示した。 煮沸テストとは、銅蒸着フイルムを沸騰水中で
30分間煮て蒸着膜の剥離を調べ、剥離していない
ものについては16〜24時間室温で自然乾燥させた
後、テープ剥離テスト(日本電工製粘着テープNo.
315使用)を行つて蒸着膜の剥離を調べた。 銅電解メツキは硫酸銅浴を使用した。 ピール強度測定は、銅蒸着膜の上へ銅電解メツ
キを行つて銅の全厚を35μmとした後、JPCA規
格(JPCA−FCO1)に準じて行つた。
INDUSTRIAL APPLICATION FIELD The present invention relates to a method for manufacturing a flexible printed circuit board having a two-layer structure without an adhesive layer and having strong adhesion between a metal conductive layer and a plastic film substrate. Conventional technology Demand for flexible printed circuit boards has been increasing in the electronics field in recent years, especially for TABs and liquid crystals that require high-density wiring that is thinner and more flexible than conventional circuit boards and has a line width of 100 μm or less. A usable "two-layer structure without an adhesive layer" is attracting attention. Methods for creating this two-layer structure can be broadly divided into ``coating a copper foil with polyimide varnish'' and ``forming a thin copper film on a polyimide film.'' Problem to be solved by the invention The former is “applying polyimide varnish to copper foil”
With this method, the practical application of thin products has been delayed for the following reasons. (1) Among rolled copper foils with excellent flexibility, thin ones of 10 μm or less are expensive, and moreover, they tend to wrinkle when applied with imide varnish. (2) Since polyimide varnish is modified for the purpose of improving adhesion, linear expansion coefficient, etc., the original properties of polyimide deteriorate. The latter method of ``forming a thin copper film on polyimide film'' includes a wet method and a dry method.The wet method involves electroless plating on a plastic film substrate and then electroplating using its conductivity. Although it is easy to form a thin conductive layer with a thickness of 10 μm or less, the adhesion between the conductive layer and the plastic film substrate is poor and has not been put to practical use. On the other hand, in some dry methods, conductive layers are formed by sputtering or sputtering + electrolytic plating, but since the sputtering film formation speed is very slow at around 0.001 μm/sec, the production cost is high and it is not suitable for consumer use. It was not something that could be used for any purpose. It is also possible to use vacuum evaporation, which has a faster film formation rate, instead of sputtering, but vacuum evaporation alone can only produce a film with a thickness of 3 μm.
It is not possible to obtain a film thicker than this, and if an attempt was made to make up for the lack of film thickness by wet-processing electrolytic plating, the adhesion between the vacuum-deposited film and the plastic film substrate would decrease, making it unusable. In view of the above-mentioned problems, the present invention has developed two
To provide a method for manufacturing a flexible printed circuit board which has a layered structure and has strong adhesion between a conductive layer and a plastic film substrate. Means for Solving the Problems In order to solve the above problems, the present invention uses a vacuum evaporation method to form a first conductive layer on a plastic film substrate at a deposition rate of 0.01 to 1.0 μm/sec, and then:
It is characterized in that a second conductive layer is formed on the conductive layer by electrolytic plating. Effect The present inventor has conducted intensive studies to improve the adhesion between a plastic film substrate and a thin metal film, and has found that the temperature of the substrate during vacuum evaporation, the structure and thickness of the thin metal film that forms the interface with the substrate can be improved by wet treatment. It was found that this affects the subsequent adhesion. Specifically, by blocking high-incidence components with an incident angle of 30° or more in the early stages of vapor deposition, the low-incidence components with a large amount of evaporation hit the substrate first, and their large amount of latent heat and radiant heat from the evaporation source The substrate temperature is higher, and the metal thin film forming the interface with the substrate has a denser structure. In the present invention, the film formation rate of the vacuum evaporation method for forming the first conductive layer is preferably within the range of 0.01 to 1.0 μm/sec, and if it is less than 0.01 μm/sec, the productivity is low and the cost of sputtering is low. On the other hand, at a high deposition rate exceeding 1.0 μm/sec, a deposited film with many defects may be formed, and the plastic film substrate may undergo thermal deterioration due to enormous latent heat or radiant heat from the evaporation source. As a result, the adhesion of the deposited film decreases. Further, in the present invention, the thickness of the vacuum-deposited film as the first conductive layer is preferably within the range of 0.2 to 1.0 μm,
If the thickness is less than 0.2 μm, it is difficult to form the second conductive layer efficiently using the electrolytic plating method, while if the thickness exceeds 1.0 μm, internal residual stress in the deposited film may increase when using the vacuum deposition method, which has a high film formation rate. The adhesion of the deposited film decreases as the plastic film substrate is thermally degraded due to the enormous amount of latent heat and radiant heat from the evaporation source. The type of plastic film used in the present invention is not particularly limited, but one with high heat resistance such as polyimide or a copolymer thereof is preferred. This is because a low-incidence component with a large amount of evaporation hits the substrate in the early stage of evaporation, and the surface temperature of the substrate increases due to a large amount of latent heat and radiant heat from the evaporation source.
such as polyethylene terephthalate (PET),
Plastic films that do not have very high heat resistance may undergo thermal deterioration or precipitate oligomers, reducing the adhesion of the deposited film. In addition, when forming the first conductive layer on a plastic film substrate by vacuum evaporation, if the plastic film substrate is heated in advance to degas it with a heater or the like, or the surface is treated with plasma treatment, etc.
The adhesion of the deposited film can be further improved. In addition, in the present invention, there are two methods for forming the second conductive layer by electrolytic plating: a method of plating the entire surface to increase the film thickness, and a method of plating only the portion used as a circuit (semi-additive method). However, the present invention is not limited to these. However, it is the latter case that makes the invention more effective. Embodiment An embodiment of the present invention will be specifically described below with reference to the drawings. FIG. 1 is a schematic diagram of a winding type vacuum evaporation apparatus in an embodiment of the present invention. In the figure, 1 is an unwinding roll, 2 is a plastic film, 3 is a can roll, 4 is a take-up roll, 5 is a shielding plate, 6 is an evaporation source, 7 is a vacuum pump, and 8 is an evaporation source heating device. A plastic film 2 fed out from an unwinding roll 1 moves along a central can roll 3 and is wound onto a winding roll 4. During this process, an evaporation source 6 is placed on the surface of the plastic film 2.
A thin metal film is formed by the vapor flow that is not blocked by the blocking plate 5. Although the shielding plate 5 may be placed on the take-up roll 4 side to limit the incident angle in the latter stage of vapor deposition, this only reduces the adhesion efficiency of vapor deposition and does not provide the effect of the present invention. Line perpendicular to plastic film 2 and evaporation source 6
The angle formed by the vapor flow from
The angle of incidence was adjusted by moving left and right on Figure 1. In order to obtain a high film formation rate, a crucible was used as the evaporation source 6, and an electron beam device was used as the evaporation source heating device 8. Example 1 A polyimide film (manufactured by Ube Industries, Ltd., trade name: Upilex 25S) with a thickness of 25 μm was set as the plastic film 2 in the apparatus shown in FIG. =
Install it so that the angle is 30°, vacuum degree: 1×
Copper was vacuum deposited under the conditions of 10 -4 Torr, electron beam power: 52KW, film speed: 20m/min, and the thickness was 0.8μm.
A thick copper thin film was formed. The film formation rate at this time was 0.4μ
m/sec. Example 2 The film speed was exactly the same as Example 1 except that the film speed was changed to 80, 40, and 16 m/min, respectively.
Copper thin films with a thickness of 0.4 and 1.0 μm were formed. Example 3 A copper thin film was formed in the same manner as in Example 1, except that the blocking plate was installed so that the maximum incident angle at the initial stage of vapor deposition was 0°, and the electron beam output was increased to 58 KW. At this time, the film thickness was 0.5 μm and the film forming rate was 0.3 μm/sec. Comparative example 1 The evaporation source was brought close to the plastic film substrate,
A shield plate was installed so that the maximum incident angle at the initial stage of evaporation was 30°, and copper was vacuum evaporated under conditions of vacuum degree: 1 × 10 -4 Torr, electron beam output: 80 KW, and film speed: 60 m/min. A copper thin film was formed in the same manner as in Example 1. At this time, the film thickness was 0.8 μm, and the deposition rate was 1.2 μm/
It was hot in seconds. Comparative Example 2 Example 1 except that the film speed was 13 m/min.
A copper thin film was formed in the same manner as above. At this time, the film thickness is 1.2μ
m, and the film-forming speed was 0.4 μm/sec. Comparative Example 3 A copper thin film was formed in the same manner as in Example 1, except that the blocking plate was installed so that the maximum incident angle at the initial stage of vapor deposition was 60°, and the electron beam output was weakened to 42 KW. At this time, the film thickness was 0.7 μm and the film formation rate was 0.3 μm/sec. Comparative Example 4 A copper thin film was formed in the same manner as in Example 1, except that the blocking plate was removed and the electron beam output was weakened to 40 KW. At this time, the film thickness was 0.8 μm and the film forming rate was 0.3 μm/sec. Comparative Example 5 A 0.8 μm thick copper thin film was formed in the same manner as in Example 1 except that a PET film was used instead of the polyimide film. The copper vapor-deposited films obtained in the Examples and Comparative Examples were subjected to a boiling test, copper electrolytic plating, and peel strength measurement after plating, and the results are shown in Table 1. In addition, the peel strength after plating and the deposited film thickness,
The relationship with the deposition incident angle is shown in FIGS. 2 and 3, respectively. The boiling test is a test in which copper-deposited film is placed in boiling water.
Boil for 30 minutes and check for peeling of the deposited film, and if it has not peeled off, let it air dry at room temperature for 16 to 24 hours, then perform a tape peeling test (Nippon Denko adhesive tape No.
315) was used to examine the peeling of the deposited film. Copper electrolytic plating used a copper sulfate bath. The peel strength measurement was performed in accordance with the JPCA standard (JPCA-FCO 1 ) after performing copper electrolytic plating on the copper vapor deposited film to make the total copper thickness 35 μm.

【表】【table】

【表】 第1表、第2図、第3図から明らかなように本
実施例によれば、プラスチツクフイルム基板上に
成膜速度の速い真空蒸着法で第1の導電層を形成
する際に、膜厚を0.2〜1.0μmに設定し、蒸着初
期に入射角30゜以上の高入射成分を遮断すること
により、その蒸着膜上に湿式処理の電解メツキを
行つても強い付着力を維持することができる。
又、ポリイミドフイルムを使用した本実施例は
PETフイルムを使用した比較例5に比べて、強
い付着力が得られる。 尚、各実施例において、銅蒸着膜を形成するた
めの銅は、銅合金であつても良い。 発明の効果 以上のように本発明は、湿式処理の電解メツキ
にも耐えられる金属薄膜の形成を生産性の高い真
空蒸着法で可能としたもので、接着剤層の無い2
層構造でしかも導電層とプラスチツクフイルム基
板との付着力が強靭なフレキシブルプリント回路
用基板を安価に提供することができる。
[Table] As is clear from Table 1, FIG. 2, and FIG. By setting the film thickness to 0.2 to 1.0 μm and blocking high-incidence components with an incident angle of 30° or more in the early stage of vapor deposition, strong adhesion is maintained even when wet electrolytic plating is performed on the vapor-deposited film. be able to.
In addition, this example using polyimide film
Stronger adhesion can be obtained compared to Comparative Example 5 using PET film. In addition, in each example, the copper for forming the copper vapor deposition film may be a copper alloy. Effects of the Invention As described above, the present invention makes it possible to form a metal thin film that can withstand wet electrolytic plating using a highly productive vacuum evaporation method.
A flexible printed circuit board having a layered structure and strong adhesion between a conductive layer and a plastic film substrate can be provided at low cost.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の一実施例における巻取り式真
空蒸着装置の概略構成図、第2図はメツキ後のピ
ール強度と蒸着膜厚との相関図、第3図はメツキ
後のピール強度と蒸着入射角との相関図である。 1……巻出しロール、2……プラスチツクフイ
ルム、3……キヤンロール、4……巻取りロー
ル、5……遮断板、6……蒸発源、7……真空ポ
ンプ、8……蒸発源加熱装置。
Fig. 1 is a schematic configuration diagram of a winding type vacuum evaporation apparatus in an embodiment of the present invention, Fig. 2 is a correlation diagram between peel strength after plating and deposited film thickness, and Fig. 3 is a correlation diagram between peel strength after plating and deposited film thickness. It is a correlation diagram with the vapor deposition incident angle. DESCRIPTION OF SYMBOLS 1... Unwinding roll, 2... Plastic film, 3... Can roll, 4... Winding roll, 5... Shield plate, 6... Evaporation source, 7... Vacuum pump, 8... Evaporation source heating device .

Claims (1)

【特許請求の範囲】 1 プラスチツクフイルム基板上に成膜速度が
0.01〜1.0μm/秒である真空蒸着法により第1の
導電層を形成した後、その導電層上に電解メツキ
法により第2の導電層を形成したことを特徴とす
るフレキシブルプリント回路用基板の製造方法。 2 第1の導電層の厚さが0.2〜1.0μmであるこ
とを特徴とする請求項1記載のフレキシブルプリ
ント回路用基板の製造方法。 3 第1の導電層を真空蒸着法により形成するに
あたり、蒸発源からの金属蒸気流の向きとプラス
チツクフイルムの移動する向きとが対向する側で
の金属蒸気流の入射角が30゜以上の高入射成分を
遮断することを特徴とする請求項1記載のフレキ
シブルプリント回路用基板の製造方法。
[Claims] 1. A film formation rate on a plastic film substrate is
A flexible printed circuit board characterized in that a first conductive layer is formed by a vacuum deposition method at a rate of 0.01 to 1.0 μm/sec, and then a second conductive layer is formed on the conductive layer by an electrolytic plating method. Production method. 2. The method for manufacturing a flexible printed circuit board according to claim 1, wherein the first conductive layer has a thickness of 0.2 to 1.0 μm. 3 When forming the first conductive layer by vacuum evaporation, the angle of incidence of the metal vapor flow on the side where the direction of the metal vapor flow from the evaporation source and the direction of movement of the plastic film are opposite to each other is 30° or more. 2. The method of manufacturing a flexible printed circuit board according to claim 1, further comprising blocking an incident component.
JP3053789A 1989-02-09 1989-02-09 Manufacture of flexible printed circuit board Granted JPH02209797A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3053789A JPH02209797A (en) 1989-02-09 1989-02-09 Manufacture of flexible printed circuit board

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3053789A JPH02209797A (en) 1989-02-09 1989-02-09 Manufacture of flexible printed circuit board

Publications (2)

Publication Number Publication Date
JPH02209797A JPH02209797A (en) 1990-08-21
JPH0561792B2 true JPH0561792B2 (en) 1993-09-07

Family

ID=12306548

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3053789A Granted JPH02209797A (en) 1989-02-09 1989-02-09 Manufacture of flexible printed circuit board

Country Status (1)

Country Link
JP (1) JPH02209797A (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9648751B2 (en) * 2012-01-13 2017-05-09 Arjo Wiggins Fine Papers Limited Method for producing a sheet

Also Published As

Publication number Publication date
JPH02209797A (en) 1990-08-21

Similar Documents

Publication Publication Date Title
JP6060854B2 (en) Surface treatment method for resin film and method for producing copper clad laminate including the same
US4364792A (en) Process for the production of adhesive metal layers on non-conductors especially synthetic resins
CA2195788A1 (en) Flexible printed wiring board
JPH0382750A (en) Alteration of at least one facet of polyimide base
JPH1075053A (en) Method for manufacturing flexible metal foil laminated board
US4802967A (en) Surface treatment of polymers
JP6069749B2 (en) Copper foil with release film
US4913762A (en) Surface treatment of polymers for bonding by applying a carbon layer with sputtering
JPH05259596A (en) Board for flexible printed wiring
JPH05102630A (en) Manufacture of copper foil with carrier and copper laminated plate using same
JPH0561792B2 (en)
JP6880810B2 (en) A surface treatment method for a resin film and a method for manufacturing a copper-clad laminated substrate having the same.
JP6060836B2 (en) Surface treatment method for resin film and method for producing copper clad laminate including the same
CN112930421A (en) Apparatus and method for manufacturing resin film with metal film
JP3265027B2 (en) Polyimide film with metal film
JPH0561793B2 (en)
KR100641341B1 (en) Flexible copper clad laminate using coducting polymer and the method for producing the same
JPH05299820A (en) Flexible printed wiring board
JPH0740636B2 (en) Manufacturing method of copper plating film
JPH10235784A (en) Manufacture of polyimide flexible printing circuit and cover lay film
KR20210106811A (en) Method manufacturing structure for flexible printed circuit board and device thereof
JPH01214096A (en) Manufacture of flexible printed circuit board
JP7172335B2 (en) Apparatus and method for manufacturing resin film substrate with metal film provided with ion beam processing means
JP2018176565A (en) Method for producing metallized film
JP2017177651A (en) Copper foil with release film

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees