JPH0561489B2 - - Google Patents

Info

Publication number
JPH0561489B2
JPH0561489B2 JP58180792A JP18079283A JPH0561489B2 JP H0561489 B2 JPH0561489 B2 JP H0561489B2 JP 58180792 A JP58180792 A JP 58180792A JP 18079283 A JP18079283 A JP 18079283A JP H0561489 B2 JPH0561489 B2 JP H0561489B2
Authority
JP
Japan
Prior art keywords
wheel
unbalance
vehicle
radial load
wheels
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP58180792A
Other languages
Japanese (ja)
Other versions
JPS6076401A (en
Inventor
Fumio Minamitani
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Isuzu Motors Ltd
Original Assignee
Isuzu Motors Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Isuzu Motors Ltd filed Critical Isuzu Motors Ltd
Priority to JP58180792A priority Critical patent/JPS6076401A/en
Publication of JPS6076401A publication Critical patent/JPS6076401A/en
Publication of JPH0561489B2 publication Critical patent/JPH0561489B2/ja
Granted legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16FSPRINGS; SHOCK-ABSORBERS; MEANS FOR DAMPING VIBRATION
    • F16F15/00Suppression of vibrations in systems; Means or arrangements for avoiding or reducing out-of-balance forces, e.g. due to motion
    • F16F15/32Correcting- or balancing-weights or equivalent means for balancing rotating bodies, e.g. vehicle wheels
    • F16F15/324Correcting- or balancing-weights or equivalent means for balancing rotating bodies, e.g. vehicle wheels the rotating body being a vehicle wheel

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Acoustics & Sound (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Testing Of Balance (AREA)

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、車両振動の低減方法に係り、特にタ
イヤとホイールとを組み付けた車両の不均一およ
び不つりあいに起因して発生し車体、ステアリン
グ等へ入力される車輪の振動を、車体、ステアリ
ング等の共振周波数に等しい回転数において低減
するようにした車両振動の低減方法に関する。
[Detailed Description of the Invention] [Industrial Application Field] The present invention relates to a method for reducing vehicle vibration, particularly vibrations caused by unevenness and unbalance of a vehicle in which tires and wheels are assembled. The present invention relates to a method for reducing vehicle vibration, in which wheel vibration input to a vehicle, etc., is reduced at a rotational speed equal to the resonance frequency of the vehicle body, steering, etc.

〔従来の技術〕[Conventional technology]

車両走行時、車両、即ち、タイヤとホイールの
組立体から入力して起生する車両の共振には、一
般的に車両共振とステアリング共振があり、車輪
から入力する振動数と車両側の共振周波数が一致
すると増幅されて不快な共振として感じられるよ
うになる。前期車輪の振動発生原因には、車輪周
方向に沿つた質量分布の不均一、剛性分布の不均
一および車輪半径分布の不均一などがある。
When the vehicle is running, vehicle resonances that occur due to input from the vehicle, that is, the assembly of tires and wheels, generally include vehicle resonance and steering resonance, and the vibration frequency input from the wheels and the resonance frequency of the vehicle side When they match, it is amplified and becomes felt as an unpleasant resonance. The causes of vibrations in the front wheels include non-uniform mass distribution along the wheel circumferential direction, non-uniform stiffness distribution, and non-uniform wheel radius distribution.

質量分布の不均一ないし偏りは、不つりあいと
呼ばれ、第1図の如く、車輪1の回転軸心から距
離rに不つりあい質量(アンバランスマス)mが
あるとき、不つりあいの大きさはmrとなる。こ
の車輪1が角速度ωで回転するとmrω2の遠心力
が発生し、その正弦成分mrω2・sinθ(第2図参
照)が車体側への上下方向の振動入力となる。不
つりあいの位置と大きさは、回転時の不つりあい
による振動あるいは遠心力からバランシングマシ
ンにより測定される。
Uneven or biased mass distribution is called unbalance, and as shown in Figure 1, when there is an unbalanced mass m at a distance r from the rotation axis of the wheel 1, the magnitude of the unbalance is Becomes an mr. When this wheel 1 rotates at an angular velocity ω, a centrifugal force of mrω 2 is generated, and its sine component mrω 2 ·sin θ (see FIG. 2) becomes a vertical vibration input to the vehicle body. The position and magnitude of unbalance are measured by a balancing machine from vibrations or centrifugal force caused by unbalance during rotation.

一方、剛性分布の不均一は、多成分からなるタ
イヤの不均一などによつて起こり、車輪半径分布
の不均一は、ホイールの凹凸、ホイールの取付け
ボルト穴のピツチサークルの偏心などにより生じ
る。剛性分布および車輪半径分布の不均一は、車
両と回転ドラムをそれら軸心距離を一定に保ちつ
つ押し付けて回転させた時に回転ドラムが受ける
半径方向荷重変動(RFV)をユニフオミテイマ
シンにより測定することにより得られる。回転ド
ラムが受ける半径方向荷重は第3図のように変動
する。
On the other hand, non-uniform stiffness distribution is caused by non-uniform tires made of multiple components, and non-uniform wheel radius distribution is caused by unevenness of the wheel, eccentricity of the pitch circle of the wheel mounting bolt hole, etc. Non-uniformity in rigidity distribution and wheel radius distribution is determined by using a uniformity machine to measure the radial load variation (RFV) that the rotating drum receives when the vehicle and the rotating drum are rotated while keeping the distance between their axes constant. It can be obtained by The radial load applied to the rotating drum varies as shown in FIG.

ところで、従来にあつては、上記不つりあい、
剛性不均一および半径不均一による車輪振動の低
減には、次のような方法が採用されている。ま
ず、不つりあいの修正には、バランスウエイトを
取り付ける方法がある。半径不均一には、特殊グ
ラインダでタイヤを削つて修正したり、タイヤと
ホイールの半径分布をそれぞれ測定しておき、タ
イヤの最大半径位置とホイールの最小半径位置と
を一致させて組み付ける方法がある。また、剛性
および半径不均一の修正としては、タイヤの半径
方向荷重の変動曲線のピーク位置(第3図のA
点)とホイールの最低半径位置とを一致させて組
み付ける方法など種々の対策が取られている。
By the way, in the past, the above imbalance,
The following methods are used to reduce wheel vibration due to non-uniform rigidity and non-uniform radius. First, there is a way to correct imbalance by installing balance weights. To correct the uneven radius, there are two methods: grinding the tire with a special grinder to correct it, or measuring the radius distribution of each tire and wheel, and then assembling the tires by matching the maximum radius position of the tire with the minimum radius position of the wheel. . In addition, as a correction for stiffness and radial non-uniformity, the peak position of the tire radial load variation curve (A in Figure 3)
Various measures have been taken, such as assembling the wheel by aligning the wheel's minimum radius position with the wheel's lowest radius position.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

しかしながら、従来の車輪振動の低減対策は、
上述のように、不つりあいの修正と、剛性ないし
半径不均一の修正とがそれぞれ別個になされたも
のであり、このため不つりあいによる荷重と剛性
ないし半径不均一いよる半径方向荷重変動との位
相差がランダムとなり、不つりあい荷重と半径方
向荷重変動とが互いに強め合うように重なつて車
体側への加振力が過大なものが存在した。
However, conventional measures to reduce wheel vibration are
As mentioned above, the correction of unbalance and the correction of stiffness or radial non-uniformity are made separately, so the difference between the load due to unbalance and the radial load fluctuation due to stiffness or radial non-uniformity is In some cases, the phase difference was random, and the unbalanced load and the radial load fluctuation overlapped so as to reinforce each other, resulting in an excessive excitation force toward the vehicle body.

本発明は以上の従来の問題点に鑑み、それを有
効に解決すべく創安されたものである。
The present invention has been created in view of the above-mentioned conventional problems and to effectively solve them.

本発明の目的は、車輪から車体側への振動入力
を特に車体、ステアリング等の共振車速、即ち車
輪の角速度において相殺することにより低減し、
車体、ステアリング等の振動を抑え車両の快適性
おおよび安全性を向上し得る車両振動の低減方法
を提供することにある。
The object of the present invention is to reduce vibration input from the wheels to the vehicle body by canceling it out at the resonance vehicle speed of the vehicle body, steering, etc., that is, the angular velocity of the wheels;
It is an object of the present invention to provide a method for reducing vehicle vibration, which can suppress vibrations of the vehicle body, steering, etc., and improve vehicle comfort and safety.

〔課題を解決するための手段〕[Means to solve the problem]

上記目的を達成するために、本発明の車両振動
の低減方法は、タイヤとホイールとを組み付けた
車両の不均一に基づく半径方向荷重変動曲線のフ
ーリエ1次成分のピーク位置及び半径方向荷重変
動量、並びに車輪の不つりあいの位置及び大きさ
を求め、車両の共振が発生する車両走行速度に対
応する車輪の回転速度において、不均一に基づく
半径方向荷重変動のフーリエ1次成分と、不つり
あいに基づく遠心力とを互いに相殺するようにバ
ランスの位置及び質量とを調整したことを特徴と
する。
In order to achieve the above object, the method for reducing vehicle vibration of the present invention provides the peak position of the Fourier first-order component of the radial load fluctuation curve and the amount of radial load fluctuation based on the non-uniformity of the vehicle in which tires and wheels are assembled. , as well as the position and size of wheel unbalance, and calculate the Fourier first component of the radial load fluctuation due to nonuniformity and the unbalance at the wheel rotation speed corresponding to the vehicle running speed at which vehicle resonance occurs. The position and mass of the balance are adjusted so that the centrifugal force and the centrifugal force caused by the balance are adjusted to cancel each other out.

〔発明の実施例〕[Embodiments of the invention]

以下に本発明の方法を添付図面に従つて詳述す
る。まず、第1図に示すように、タイヤ2とホイ
ール3とを組み付けた組立体たる車輪1に空気を
充填した後、車輪1の半径方向荷重変動をユニフ
オミテイマシンにより測定する。この荷重変動は
車輪1と回転ドラムとをそれら軸心間の距離を一
定に保ちつつ押し付けながら回転させた時に回転
ドラムが受ける半径方向荷重を測定することによ
り得られる。なお、車輪1を回転ドラムに一定の
荷重で押し付けながら回転させたときの車輪1の
有効半径(車輪の軸心から回転ドラムと車輪の接
触部までの最短距離)の変動より半径方向荷重変
動を算出してもよい。
The method of the present invention will be explained in detail below with reference to the accompanying drawings. First, as shown in FIG. 1, a wheel 1, which is an assembly of a tire 2 and a wheel 3, is filled with air, and then the radial load fluctuation of the wheel 1 is measured using a uniformity machine. This load variation can be obtained by measuring the radial load applied to the rotary drum when the wheel 1 and the rotary drum are rotated while being pressed against each other while keeping the distance between their axes constant. In addition, the radial load fluctuation can be calculated from the change in the effective radius of the wheel 1 (the shortest distance from the axis of the wheel to the contact point between the rotating drum and the wheel) when the wheel 1 is rotated while being pressed against the rotating drum with a constant load. It may be calculated.

第3図に半径方向荷重変動曲線の一例を示す。
この曲線4は、上述したように、車輪1の剛性の
不均一、半径の不均一などに基づき変動し、車輪
1の1回転を周期として変化する。曲線4の最大
値と最小値との差が半径方向荷重変動RFVの値
Dであり、この値Dは剛性および半径の不均一を
示す尺度となつている。第4図は、第3図の曲線
4のフーリエ1次成分5を示し、この1次成分5
より半径方向荷重変動のピーク位置Bとボトム位
置Cを決定する。第3図の曲線4では、ピーク位
置とボトム位置が対称位置になるとは限らないの
で、曲線5のフーリエ1次成分からこれらの位置
を定めるのが妥当である。また、半径方向荷重変
動RFVの値としては、1次成分5のRFVの値d
を用いる。ピーク位置Bが、第5図に示すように
路面6側にあるときに半径方向荷重変動RFVの
反力として、車輪1から車体等を突き上げ加振力
f1が最大となり、逆にボトム位置Cが路面6側に
あるときに加振力f1は最小となる。
FIG. 3 shows an example of a radial load variation curve.
As described above, this curve 4 fluctuates based on non-uniform rigidity and non-uniform radius of the wheel 1, and changes every rotation of the wheel 1. The difference between the maximum value and the minimum value of curve 4 is the value D of the radial load variation RFV, and this value D is a measure of stiffness and radius non-uniformity. FIG. 4 shows the Fourier first-order component 5 of the curve 4 in FIG.
From this, the peak position B and bottom position C of the radial load fluctuation are determined. In curve 4 in FIG. 3, the peak position and bottom position are not necessarily symmetrical, so it is appropriate to determine these positions from the Fourier first-order component of curve 5. In addition, as the value of the radial load fluctuation RFV, the value of RFV of the first-order component 5 is d
Use. When the peak position B is on the road surface 6 side as shown in FIG.
The excitation force f 1 is the maximum, and conversely, the excitation force f 1 is the minimum when the bottom position C is on the road surface 6 side.

次いで、車輪1の不つりあいの位置および大き
さを、バランシングマシンにより測定する。バラ
ンシングマシンでは、車輪1を回転させたときに
不つりあいがあるために生じる振動あるいは遠心
力を測定し、これにより不つりあいの位置と大き
さmrとが第1図の如く求まる。大きさmrの不つ
りあいを有する車輪1が角速度ωで回転すると
mrω2・sinθが車体等に上下に加振する加振力と
なり、この加振力は第2図のように変動する。こ
の加振力ないし不つりあい荷重によるRFV換算
の値は、ピーク位置Hとボトム位置Gとの差であ
るから、2mrω2となる。また、第6図のようにア
ンバランスマスmが、即ちピーク位置Hが路面6
側にあるときに車輪1が車体、ステアリング等を
路面6側に引き下げる加振力f2が最大となり、逆
にボトム位置Gが路面6側にくると、車輪1が車
体等を持ち上げる加振力が最大となる。
Next, the position and magnitude of the unbalance of the wheel 1 are measured using a balancing machine. The balancing machine measures the vibration or centrifugal force caused by unbalance when the wheel 1 is rotated, and thereby determines the position and magnitude mr of the unbalance as shown in FIG. When wheel 1 with an unbalance of magnitude mr rotates at an angular velocity ω,
mrω 2 ·sinθ becomes the excitation force that vibrates the vehicle body etc. up and down, and this excitation force fluctuates as shown in Fig. 2. The value of RFV conversion due to this excitation force or unbalanced load is the difference between the peak position H and the bottom position G, so it is 2mrω 2 . Moreover, as shown in FIG. 6, the unbalance mass m, that is, the peak position H is at the road surface
When the wheels 1 are on the side, the excitation force f 2 that pulls down the vehicle body, steering, etc. toward the road surface 6 is maximum, and conversely, when the bottom position G is on the road surface 6 side, the excitation force f 2 from the wheels 1 that lifts the vehicle body, etc. is the maximum.

第7図は、車輪から車体側に与えられる上記二
つの振動入力ないし加振力と車速との関係が示さ
れている。図中、イ,ロは車輪の剛性・半径不均
一に基づく半径方向荷重変動RFVによる加振力
であり、aは不つりあい荷重による加振力であ
る。剛性や半径の不均一に基づくRFVは、車輪
の静的状態により決まつてしまうので車輪の角速
度ω、速ち車速には依存せず加振力イ,ロは図示
の如く一定である。一方、不つりあい荷重による
加振力aは、遠心力に基づくものであるため、車
速の2乗に比例して増大する。
FIG. 7 shows the relationship between the two vibration inputs or excitation forces applied from the wheels to the vehicle body and the vehicle speed. In the figure, a and b are excitation forces due to radial load fluctuations RFV based on wheel rigidity and radial non-uniformity, and a is excitation force due to unbalanced loads. RFV, which is based on non-uniformity of rigidity and radius, is determined by the static state of the wheel, so it does not depend on the wheel's angular velocity ω, speed, or vehicle speed, and the excitation forces A and B are constant as shown. On the other hand, since the excitation force a due to the unbalanced load is based on centrifugal force, it increases in proportion to the square of the vehicle speed.

加振力イは不つりあいによる加振力aと同位相
の場合であり、この場合、加振力aとイとが重な
つて強め合い、大きな加振力bが車体側に加わる
こととなる。この場合を第8図により更に説明す
ると、不均一に基づくRFVのピーク位置Bと、
不つりあいに基づくRFVのピーク位置H(不つり
あいの質量の位置)とが同図のように車輪1の中
心に関してJ度、反対側に配置したときにあた
る。このような配置にあると不均一に基づく
RFVによる加振力f1と不つりあいりよる加振力f2
と同一方向となつて強め合い大きな加振力が車体
側に加わる。
Excitation force a is in the same phase as excitation force a due to unbalance. In this case, excitation force a and a overlap and strengthen each other, and a large excitation force b is applied to the vehicle body side. . To further explain this case using FIG. 8, the peak position B of RFV based on non-uniformity,
The peak position H of the RFV based on the unbalance (the position of the unbalanced mass) corresponds to when the wheel 1 is placed on the opposite side by J degrees with respect to the center of the wheel 1 as shown in the figure. With this arrangement, it is based on non-uniformity.
Excitation force f 1 due to RFV and excitation force f 2 due to unbalance
A large excitation force is applied to the vehicle body side in the same direction and strengthens each other.

一方、加振力ロは、不つりあいによる加振力a
とは逆位相の場合であり、加振力aとロとは互い
に打ち消し弱め合い、車体側に加わる全加振力は
cとなる。この場合を第9図により更に説明する
と、不均一に基づくRFVのピーク位置Bと、不
つりあい荷重のRFVのピーク位置Hとが車輪1
上の同一位相に並んだときにあたり不均一による
加振力f1と不つりあいによる加振力f2とが互いに
反対方向となつて打ち消し合い、車体側への入力
は小さいものとなる。
On the other hand, the excitation force b is the excitation force a due to unbalance.
In this case, the excitation forces a and b cancel each other out and weaken each other, and the total excitation force applied to the vehicle body side becomes c. To further explain this case with reference to FIG. 9, the peak position B of RFV due to non-uniformity and the peak position H of RFV due to unbalanced load are
When they are arranged in the same phase above, the excitation force f 1 due to non-uniform contact and the excitation force f 2 due to unbalance are in opposite directions and cancel each other out, resulting in a small input to the vehicle body.

従来にあつては、不均一に基づく半径方向荷重
変動と不つりあいによる荷重との位相差は全く考
慮されず、不均一に基づくRFVのピーク位置B
と不つりあい荷重のRFVのピーク位置Hとは車
輪それぞれで全くランダムな配置となつている。
従つて、車輪より車体側に加わる全加振力は、第
7図のb〜cまでの間にばらついていた。前記の
如く車体、ステアリング等はそれぞれ定まつた固
有振動数ないし共振周波数を有し、共振周波数の
振動入力があつた時に激しく振動する。それゆ
え、この共振周波数に等しい車輪回転数のときの
車速度(共振車速)Xにおいて、従来では最大I
の振動入力がある車輪が存在した。
Conventionally, the phase difference between the radial load fluctuation due to non-uniformity and the load due to unbalance is not considered at all, and the peak position B of RFV due to non-uniformity is
The peak position H of the unbalanced load RFV is completely random for each wheel.
Therefore, the total excitation force applied to the vehicle body side from the wheels varied between b to c in FIG. 7. As described above, the vehicle body, steering wheel, etc. each have a fixed natural frequency or resonant frequency, and vibrate violently when a vibration input at the resonant frequency is applied. Therefore, at the vehicle speed (resonant vehicle speed) X when the wheel rotation speed is equal to this resonance frequency, the maximum I
There was a wheel with vibration input of .

本発明は、車輪から車体側への振動入力の2つ
の要素、即ち不均一に基づくRFVと不つりあい
に基づく遠心力によるRFVとを互いに位相を逆
にし、特に車輪が装着され車両の共振を発生する
車速に対応する車輪回転速度において、不均一に
基づくRFVと等しい大きさの不つりあい荷重に
よるRFVを逆方向に作用させて相殺させるよう
にしたものであり、車体側への振動入力は第7図
のcの如くなる。このことを、第10図により説
明する。
The present invention reverses the phases of two elements of vibration input from the wheels to the vehicle body, namely RFV due to nonuniformity and RFV due to centrifugal force due to unbalance, and generates resonance in the vehicle especially when the wheels are mounted. At the wheel rotation speed corresponding to the vehicle speed, the RFV due to the unbalanced load of the same magnitude as the RFV due to non-uniformity is applied in the opposite direction to cancel it out, and the vibration input to the vehicle body is It will look like c in the figure. This will be explained with reference to FIG.

第10図に示す如く、タイヤとホイールを組み
付けた車輪1の不つりあい位置(不つりあい荷重
のRFVのピーク位置)Hと、不均一に基づく
RFVのピーク位置Bとは一般に一致しない。不
つりあいを修正するのには、車輪1の中心に関し
て不つりあい位置Hとは反対側に大きさが等しい
バランスマスM1を取り付ければよい。例えば、
第11図の如く、車輪1の中心Oから半径方向距
離r1、幅方向距離11の所にアンバランスマスm1
があつたときには、このアンバランスマスm1
よる静的アンバランス量(遠心力)F1=m1r1ω2
と動的アンバランス量(アンバランスモーメン
ト)P1=F1l1とを、中心Oとアンバランスマス
m1を含む平面内において中心Oから半径方向距
離r1、幅方向距離1にバランスマスm2,m3を左
右対称に図示の如く設置すればよい。m2、m3
大きさは、静的アンバランス量及び動的アンバラ
ンス量の釣合いから算出される。即ち、m1r1
r(m2+m3)とm1r1l1=(m2−m3)rlの2式から
決定される。なお、バランスマスm2、m3は第1
2図のように、板ばね7と鉛のウエイト8からな
り、第13図の如く、リムホイール9の耳部など
に取り付けられる。しかしながら、第10図にお
いて、不つりあい位置Hとは反対側にバランスマ
スM1を取り付けても、車輪1の不均一に基づく
RFVが残つてしまう。そこで、本発明では、不
均一に基づくRFVをも打ち消すべく、車体また
はステアリング等の共振周波数に対応する共振車
速において、不均一に基づくRFVと等しい大き
さの不つりあい荷重が逆方向に加わるようにピー
ク位置BにバランスマスM2を設ける。
As shown in Fig. 10, the unbalanced position (the peak position of RFV of the unbalanced load) H of the wheel 1 with the tire and wheel assembled, and the
It generally does not coincide with the peak position B of RFV. In order to correct the unbalance, it is sufficient to attach a balance mass M1 of equal size to the opposite side of the unbalance position H with respect to the center of the wheel 1. for example,
As shown in FIG. 11, an unbalanced mass m 1 is located at a distance r 1 in the radial direction and a distance 1 1 in the width direction from the center O of the wheel 1.
When there is a static unbalance amount (centrifugal force) F 1 = m 1 r 1 ω 2 due to this unbalanced mass m 1
and the dynamic unbalance amount (unbalance moment) P 1 = F 1 l 1 , and the center O and the unbalance mass
Balance masses m 2 and m 3 may be placed symmetrically as shown in the figure at a distance r 1 in the radial direction and a distance 1 in the width direction from the center O in a plane including m 1 . The sizes of m 2 and m 3 are calculated from the balance between the static unbalance amount and the dynamic unbalance amount. That is, m 1 r 1 =
It is determined from two equations: r(m 2 +m 3 ) and m 1 r 1 l 1 =(m 2 −m 3 )rl. Note that the balance masses m 2 and m 3 are the first
As shown in Fig. 2, it consists of a leaf spring 7 and a lead weight 8, and is attached to the ear of a rim wheel 9, etc., as shown in Fig. 13. However, in FIG. 10, even if the balance mass M 1 is installed on the opposite side from the unbalance position H, the
RFV will remain. Therefore, in the present invention, in order to cancel out the RFV caused by non-uniformity, an unbalanced load of the same magnitude as the RFV caused by non-uniformity is applied in the opposite direction at a resonant vehicle speed corresponding to the resonance frequency of the vehicle body or steering. A balance mass M2 is provided at the peak position B.

上述のように、バランスマスM1、M2を2箇所
の設ける方式であると、車輪1の表裏に第11図
に示すようにそれぞれ2個ずつ必要だから計4個
のバランスマスを取り付けることとなる。しか
し、バランスマスM1、M2間の所定位置にこれら
を合成したバランスマスM0を設ければ、1個所
設置となり計2個のランスマスの取り付けで足り
る。たとえば、バランスマスM0の位置及び大き
さは、図示の如く、バランスマスM1の遠心力の
ベクトルV1とバランスマスM2の遠心力のベクト
ルV2との合成ベクトルV0から求める。即ち、こ
の、合成ベクトルV0の延長線上の車輪1周縁部
V0の位置に、大きさM0のバランスマスを設け
る。
As mentioned above, if the balance masses M 1 and M 2 are installed in two locations, two balance masses are required each on the front and back sides of the wheel 1 as shown in Figure 11, so a total of four balance masses can be installed. Become. However, if a balance mass M 0 which is a combination of these balance masses M 0 is provided at a predetermined position between balance masses M 1 and M 2 , it is necessary to install two balance masses in one place. For example, the position and size of the balance mass M 0 are determined from the composite vector V 0 of the vector V 1 of the centrifugal force of the balance mass M 1 and the vector V 2 of the centrifugal force of the balance mass M 2 , as shown in the figure . That is, the peripheral edge of wheel 1 on the extension line of this resultant vector V 0
A balance mass of size M 0 is provided at the position of V 0 .

上述したように、本発明ではバランスマスによ
り共振車速度における不つりあい荷重と不均一に
基づく半径方向荷重変動とを相殺するようにした
ので、車輪から車体側への振動入力は微弱なもの
となり、車体、ステアリングなどにおける共振の
発生を抑えることができる。このため、車両の乗
心地が良くなり、また操縦性能が良好となり安全
性をより向上できる。なお、車体、ステアリング
等の共振周波数に相当する共振車速から車両速度
がずれると、第7図のcから車体側への振動入力
が次第に増加するが、共振車速からずれているの
で、車体等の振動はほとんど問題とならない。
As described above, in the present invention, the unbalanced load at the resonant vehicle speed and the radial load fluctuation due to non-uniformity are offset by the balance mass, so the vibration input from the wheels to the vehicle body becomes weak. It is possible to suppress the occurrence of resonance in the vehicle body, steering, etc. Therefore, the ride comfort of the vehicle is improved, the handling performance is improved, and safety can be further improved. Note that when the vehicle speed deviates from the resonant vehicle speed that corresponds to the resonance frequency of the vehicle body, steering, etc., the vibration input to the vehicle body gradually increases from c in Figure 7, but since it deviates from the resonant vehicle speed, the Vibration is hardly a problem.

また、本発明では、半径方向荷重変動及び不つ
りあいを、タイヤ車体やホイールを組み付けた車
輪全体で行う方式なので、測定回数が少なくて済
み、また半径方向荷重変動と不つりあいを同一測
定装置で測定するようにすれば、1回の車輪の取
り付け、取り外しで測定ができる。更に、RFV
のピーク位置や不つりあい位置などを車輪にマー
キングするようにしてもよいが、これらの量を記
憶しバランスマスの位置と大きさを演算できるコ
ンピユータを備えた装置によれば容易にバランス
マスの取り付けが行える。
In addition, in the present invention, the radial load fluctuation and unbalance are measured on the whole wheel including the tire body and the wheel, so the number of measurements can be reduced, and the radial load fluctuation and unbalance are measured with the same measuring device. If you do this, you can measure by just installing and removing the wheel once. Furthermore, RFV
It is also possible to mark the peak position and unbalance position on the wheels, but a device equipped with a computer that memorizes these values and can calculate the position and size of the balance mass makes it easier to install the balance mass. can be done.

〔発明の効果〕〔Effect of the invention〕

以上のように、本発明の車両振動の低減方法
は、タイヤとホイールとを組み付けた車輪の不均
一に基づく半径方向荷重変動曲線のフーリエ1次
成分のピーク位置及び半径方向荷重変動量、並び
に車輪の不つりあいの位置及び大きさを求め、車
両の共振が発生する車両走行速度に対応する車輪
の回転速度において、不均一に基づく半径方向荷
重変動のフーリエ1次成分と、不つりあいに基づ
く遠心力とを互いに相殺するようにバランスの位
置及び質量とを調整したことを特徴とするので、
車輪から車体側への振動入力を特に車体、ステア
リング等の共振車速において大幅に低減でき、車
体、ステアリング等における共振の発生を抑え車
両の快適性および操縦性を向上でき、しかも簡易
にかつ安価に実施し得る等の優れた効果を発揮す
ることができる。
As described above, the method for reducing vehicle vibration of the present invention is based on the peak position of the Fourier first-order component of the radial load fluctuation curve, the amount of radial load fluctuation, and the wheel Find the position and magnitude of the unbalance, and calculate the Fourier first-order component of the radial load fluctuation due to nonuniformity and the centrifugal force due to the unbalance at the wheel rotation speed corresponding to the vehicle running speed at which vehicle resonance occurs. The balance position and mass are adjusted so as to cancel each other out.
Vibration input from the wheels to the vehicle body side can be significantly reduced, especially at vehicle speeds where the vehicle body, steering, etc. resonate, suppressing resonance in the vehicle body, steering, etc., improving vehicle comfort and maneuverability, and easily and inexpensively. It is possible to achieve excellent effects such as practical implementation.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は、車輪の不つりあいを説明するための
正面図、第2図は不つりあいによる上下方向の振
動入力を示すグラフ、第3図は車輪の半径方向荷
重変動曲線を示すグラフ、第4図は同半径方向荷
重変動曲線のフーリエ1次成分を示すグラフ、第
5図は車輪の不均一による加振力を説明する正面
図、第6図は車輪の不つりあいによる加振力を説
明する正面図、第7図は車輪振動による加振力と
車速との関係を示すグラフ、第8図、第9図は車
輪の不つりあいによる振動入力の不均一による振
動入力とが同位相の場合と逆位相の場合をそれぞ
れ示す正面図、第10図は車輪に本発明の方法を
適用した一実施例を示す正面図、第11図はバラ
ンス修正を示す側断面図、第12図はバランスウ
エイトの一例を示す側面図、第13図は同バラン
スウエイトをホイールに取り付けた状態を示す側
断面図である。 図中、1は車輪、2はタイヤ、3はホイール、
4は半径方向荷重変動曲線、5は半径方向荷重変
動曲線のフーリエ1次成分、6は路面、7は板ば
ね、8はウエイト、Bはフーリエ1次成分のピー
ク位置、aは不つりあいによる加振力、イ,ロは
不均一による加振力、bはaとイとの合成加振
力、cはaとロの合成加振力、Xは共振車速であ
る。
Fig. 1 is a front view for explaining wheel unbalance, Fig. 2 is a graph showing vertical vibration input due to unbalance, Fig. 3 is a graph showing the radial load fluctuation curve of the wheel, and Fig. 4 is a graph showing the vibration input in the vertical direction due to unbalance. The figure is a graph showing the Fourier first-order component of the same radial load variation curve, Figure 5 is a front view illustrating the excitation force due to uneven wheels, and Figure 6 is a front view illustrating the excitation force due to unbalanced wheels. The front view, Figure 7 is a graph showing the relationship between the excitation force due to wheel vibration and vehicle speed, and Figures 8 and 9 are graphs showing the case where the vibration input due to uneven vibration input due to wheel imbalance is in the same phase. FIG. 10 is a front view showing an embodiment in which the method of the present invention is applied to a wheel, FIG. 11 is a side sectional view showing balance correction, and FIG. 12 is a diagram showing the balance weight. A side view showing an example, and FIG. 13 is a side sectional view showing a state in which the balance weight is attached to a wheel. In the figure, 1 is a wheel, 2 is a tire, 3 is a wheel,
4 is the radial load variation curve, 5 is the Fourier first-order component of the radial load variation curve, 6 is the road surface, 7 is the leaf spring, 8 is the weight, B is the peak position of the Fourier first-order component, and a is the addition due to unbalance. Vibration forces A and B are excitation forces due to non-uniformity, b is the combined excitation force of a and b, c is the combined excitation force of a and b, and X is the resonant vehicle speed.

Claims (1)

【特許請求の範囲】[Claims] 1 タイヤとホイールとを組み付けた車輪の不均
一に基づく半径方向荷重変動曲線のフーリエ1次
成分のピーク位置及び半径方向荷重変動量、並び
に車輪の不つりあいの位置及び大きさを求め、車
両の共振が発生する車両走行速度に対応する車輪
の回転速度において、不均一に基づく半径方向荷
重変動のフーリエ1次成分と、不つりあいに基づ
く遠心力とを互いに相殺するようにバランスの位
置及び質量とを調整したことを特徴とする車両振
動の低減方法。
1. Determine the peak position and amount of radial load fluctuation of the Fourier first-order component of the radial load fluctuation curve based on the unevenness of the wheels assembled with tires and wheels, as well as the position and size of the unbalanced wheels, and calculate the resonance of the vehicle. The balance position and mass are adjusted so that the Fourier first-order component of the radial load fluctuation due to non-uniformity and the centrifugal force due to unbalance cancel each other out at the wheel rotation speed corresponding to the vehicle running speed at which A method for reducing vehicle vibration characterized by adjusting the vibration.
JP58180792A 1983-09-30 1983-09-30 Method for reducing vibration of wheel Granted JPS6076401A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58180792A JPS6076401A (en) 1983-09-30 1983-09-30 Method for reducing vibration of wheel

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58180792A JPS6076401A (en) 1983-09-30 1983-09-30 Method for reducing vibration of wheel

Publications (2)

Publication Number Publication Date
JPS6076401A JPS6076401A (en) 1985-04-30
JPH0561489B2 true JPH0561489B2 (en) 1993-09-06

Family

ID=16089408

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58180792A Granted JPS6076401A (en) 1983-09-30 1983-09-30 Method for reducing vibration of wheel

Country Status (1)

Country Link
JP (1) JPS6076401A (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5120113A (en) * 1990-04-22 1992-06-09 Bridgestone Corporation Rim-fitted tire and method of correctin31eight imbalance
US5237505A (en) * 1991-05-03 1993-08-17 Illinois Toll Works Inc. Method and apparatus utilizing static imbalance to reduce vibration caused by tire/wheel assemblies and tire/wheel assembly made using same
JP2744531B2 (en) * 1991-04-18 1998-04-28 株式会社ブリヂストン How to correct weight imbalance of rim-mounted tires
JP3146533B2 (en) * 1991-07-06 2001-03-19 株式会社ブリヂストン Rim-assembled tire body and method for correcting weight imbalance thereof
JP3286406B2 (en) * 1993-07-27 2002-05-27 株式会社ブリヂストン How to correct weight imbalance of rim-mounted tires

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS496601A (en) * 1972-05-10 1974-01-21

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS496601A (en) * 1972-05-10 1974-01-21

Also Published As

Publication number Publication date
JPS6076401A (en) 1985-04-30

Similar Documents

Publication Publication Date Title
US20030061719A1 (en) Vehicle service equipment utilizing wheel lateral force measurements
JP2744531B2 (en) How to correct weight imbalance of rim-mounted tires
US6606902B2 (en) Method of improving steering performance robustness utilizing stiffness non-uniformity in tire/wheel
KR890700466A (en) Grinder / Equalizer Composite
JPH0561489B2 (en)
JP3286406B2 (en) How to correct weight imbalance of rim-mounted tires
US6347547B1 (en) Method of modifying uniformity of a tire
US6672148B2 (en) Method of improving steering performance robustness utilizing mass non-uniformity in tire/wheel
US5120113A (en) Rim-fitted tire and method of correctin31eight imbalance
JP4076860B2 (en) Wheel balance adjusting device and wheel balance adjusting method
JP3146533B2 (en) Rim-assembled tire body and method for correcting weight imbalance thereof
JP3322352B2 (en) Rim assembly tire body
JP3557600B2 (en) Correction and assembling method of imbalance of tire wheel assembly
JPH11254921A (en) Tire, wheel, and assembly of tire and wheel
JP3802880B2 (en) Tire and wheel assembly method
JPS63142228A (en) Method of balancing pneumatic tire for passenger car
JP3802827B2 (en) How to correct weight imbalance of tires with wheels
JPH11258096A (en) Unbalance correcting method for tire-wheel combination body
JPH08210936A (en) Method for correcting weight unbalance of rim-assembled tire
JP2002168723A (en) Tire unbalance correcting method and rim-fitted tire
JP3025956B2 (en) Method and apparatus for assembling tire and wheel
JP2989762B2 (en) How to correct tire imbalance
EP1505713B1 (en) A method of balancing a rotor and a balancing machine
JP2002274130A (en) Phase matching assembly method of tire and wheel
JPS62203037A (en) Method for balancing tire