JPH0561348B2 - - Google Patents
Info
- Publication number
- JPH0561348B2 JPH0561348B2 JP61297597A JP29759786A JPH0561348B2 JP H0561348 B2 JPH0561348 B2 JP H0561348B2 JP 61297597 A JP61297597 A JP 61297597A JP 29759786 A JP29759786 A JP 29759786A JP H0561348 B2 JPH0561348 B2 JP H0561348B2
- Authority
- JP
- Japan
- Prior art keywords
- cold rolling
- temperature
- intermediate annealing
- less
- final
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
- 239000000463 material Substances 0.000 claims description 31
- 238000000137 annealing Methods 0.000 claims description 30
- 238000005097 cold rolling Methods 0.000 claims description 22
- 238000005219 brazing Methods 0.000 claims description 13
- 238000010438 heat treatment Methods 0.000 claims description 13
- 239000011162 core material Substances 0.000 claims description 10
- 238000005098 hot rolling Methods 0.000 claims description 10
- 238000000034 method Methods 0.000 claims description 10
- 229910000838 Al alloy Inorganic materials 0.000 claims description 8
- 238000004519 manufacturing process Methods 0.000 claims description 8
- 238000000265 homogenisation Methods 0.000 claims description 7
- 229910018566 Al—Si—Mg Inorganic materials 0.000 claims description 5
- 229910018125 Al-Si Inorganic materials 0.000 claims description 4
- 229910018520 Al—Si Inorganic materials 0.000 claims description 4
- 229910052782 aluminium Inorganic materials 0.000 claims description 3
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 claims description 2
- 229910052802 copper Inorganic materials 0.000 claims description 2
- 230000000694 effects Effects 0.000 description 9
- 239000002244 precipitate Substances 0.000 description 9
- 238000005253 cladding Methods 0.000 description 8
- 238000001953 recrystallisation Methods 0.000 description 8
- 229910045601 alloy Inorganic materials 0.000 description 6
- 239000000956 alloy Substances 0.000 description 6
- 229910052748 manganese Inorganic materials 0.000 description 6
- 229910052710 silicon Inorganic materials 0.000 description 6
- 238000012360 testing method Methods 0.000 description 5
- 238000005260 corrosion Methods 0.000 description 4
- 230000007797 corrosion Effects 0.000 description 4
- 239000000945 filler Substances 0.000 description 4
- 229910052751 metal Inorganic materials 0.000 description 4
- 239000002184 metal Substances 0.000 description 4
- 239000000203 mixture Substances 0.000 description 4
- 238000003672 processing method Methods 0.000 description 4
- 238000010586 diagram Methods 0.000 description 3
- 229910052742 iron Inorganic materials 0.000 description 3
- 229910052749 magnesium Inorganic materials 0.000 description 3
- 238000011160 research Methods 0.000 description 3
- 238000005096 rolling process Methods 0.000 description 3
- 239000006104 solid solution Substances 0.000 description 3
- 239000000126 substance Substances 0.000 description 3
- 229910018473 Al—Mn—Si Inorganic materials 0.000 description 2
- 229910002549 Fe–Cu Inorganic materials 0.000 description 2
- 230000007423 decrease Effects 0.000 description 2
- 230000004907 flux Effects 0.000 description 2
- 239000011159 matrix material Substances 0.000 description 2
- 230000008018 melting Effects 0.000 description 2
- 238000002844 melting Methods 0.000 description 2
- 230000009972 noncorrosive effect Effects 0.000 description 2
- 229910052725 zinc Inorganic materials 0.000 description 2
- 229910021364 Al-Si alloy Inorganic materials 0.000 description 1
- 229910017566 Cu-Mn Inorganic materials 0.000 description 1
- 229910017871 Cu—Mn Inorganic materials 0.000 description 1
- 229910052791 calcium Inorganic materials 0.000 description 1
- 239000003990 capacitor Substances 0.000 description 1
- 239000012159 carrier gas Substances 0.000 description 1
- 238000005266 casting Methods 0.000 description 1
- 229910052804 chromium Inorganic materials 0.000 description 1
- 239000013078 crystal Substances 0.000 description 1
- 230000003111 delayed effect Effects 0.000 description 1
- 238000009792 diffusion process Methods 0.000 description 1
- 230000008034 disappearance Effects 0.000 description 1
- 238000011156 evaluation Methods 0.000 description 1
- 230000008020 evaporation Effects 0.000 description 1
- 238000001704 evaporation Methods 0.000 description 1
- 238000001125 extrusion Methods 0.000 description 1
- 229910052744 lithium Inorganic materials 0.000 description 1
- 239000000155 melt Substances 0.000 description 1
- 150000002739 metals Chemical class 0.000 description 1
- 238000003801 milling Methods 0.000 description 1
- 230000001376 precipitating effect Effects 0.000 description 1
- 238000012545 processing Methods 0.000 description 1
- 230000001105 regulatory effect Effects 0.000 description 1
- 238000003303 reheating Methods 0.000 description 1
- 150000003839 salts Chemical class 0.000 description 1
- 229910000679 solder Inorganic materials 0.000 description 1
- 239000007921 spray Substances 0.000 description 1
- 238000010998 test method Methods 0.000 description 1
- 229910052719 titanium Inorganic materials 0.000 description 1
- 230000010415 tropism Effects 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 1
- 229910052726 zirconium Inorganic materials 0.000 description 1
Landscapes
- Metal Rolling (AREA)
- Pressure Welding/Diffusion-Bonding (AREA)
Description
〔産業上の利用分野〕
本発明は、耐高温座屈性に優れたアルミニウム
合金合せ材(ブレージングシート)の製造方法に
関するものである。
〔従来の技術〕
従来、自動車クーラー用コンデンサー、エバポ
レーターなどのアルミニウム合金からなる熱交換
器は、押出多穴チユーブとコルゲートフインから
構成されている。
一般にこのような押出多穴チユーブには
JISA1050〔99.5wt%以上のAl(以下wt%を単に%
と略記する)〕やA3003(Al−0.15%Cu−1.1%
Mn)合金が用いられ、コルゲートフインには
A3003あるいはA3203(Al−1.1%Mn)合金を芯
材とし、これの両面にAl−Si系合金、例えば
A4343(Al−7.5%Si)やA4004(Al−10% Si−
1.5%Mg)がクラツドされた、いわゆるブレージ
ングシートが用いられている。
ろう材のクラツド率は片面につき5〜13%が標
準で、全板厚は0.16mmが最も一般的に用いられて
いる。
これらの熱交換器の製造は、一般に、590〜620
℃の温度に数分過熱して接合する、いわゆるブレ
ージング法で行われるが、この場合、ろう材表面
の酸化皮膜を破壊し、ろうの流動を促進させるた
め、フラツクスを用いるフアーネスブレージング
法や、ろう材中のMg蒸発効果(ゲツター作用)
を利用する真空ブレージング法が主として実用化
されている。
ところで、上記熱交換器の製造コストを安くす
る1つの手段として、素材の軽薄短小化、すなわ
ちこの場合にはチユーブ肉厚の薄肉化と、フイン
の薄肉化が考えられる。前者については当初1〜
1.2mm程度の肉厚のものが使用されていたが、そ
の後の研究の成果で、現在では0.5〜0.6mm程度ま
で薄肉化されたチユーブが実用化されるようにな
つてきた。
(発明が解決しようとする問題点)
しかしフインの薄肉化は旧態依然のまま0.16mm
〜0.2mmであり、最小0.16mmから変化していない。
これは前述したように熱交換器を製造するに当
り、590〜620℃の温度で加熱するので、フインの
表面にクラツドされているろうが溶融し、それが
芯材の方まで拡散することによつて、フインの高
温強度が低下し、その結果フインがつぶれる現
象、いわゆる座屈が起りやすいからである。すな
わち従来のブルージングシートはこのような薄肉
化の点では満足しうるものでなかつた。
本発明はかかる従来の欠点に鑑み種々研究を行
つた結果、高温度のブルージングによりフインの
潰れが生じ難い耐高温座屈性に優れたアルミニウ
ム合金薄板の製造方法を見い出したものである。
(問題点を解決するための手段)
本発明者らは上記問題点を解決するため種々検
討を重ねた結果、Mn,Cuを所定量含有しFe,Si
の量を規制したアルミニウム合金を芯材とし、
Al−Si系あるいはAl−Si−Mg系ろう材を皮材と
して被覆した合せ材を加工する場合、熱間圧延終
了後、直ちに、あるいは冷間圧延を行つた後に焼
鈍を行うが、耐高温座屈性を向上させるために
は、少なくとも2回以上の中間焼鈍が必要である
こと、さらに、それらの焼鈍のうち最終2回の中
間焼鈍につていては冷間圧延率も重要であること
を知見し、詳細な検討を行つた。その結果、合金
組成によつて冷間圧延、焼鈍工程に関して圧延率
をある条件で制御することが必要なことを見出し
た。本発明はこの知見に基づきなされるに至つた
ものである。
すなわち本発明はMn0.6〜2.0%,Fe0.3%以
下、Si0.6%以下、Cu0.05%を越え0.2%以下を含
有し、残部Al(以上wt%)よりなるアルミニウム
合金を芯材とし、Al−Si系もしくはAl−Si−Mg
系ろう材を皮材とした合せ材の製造において、
(イ) 加熱処理もしくは均質化処理を施した合せ材
を熱間圧延し、
(ロ) 熱間圧延以降の工程で少なくとも2回以上の
中間焼鈍を行い、
(ハ) 最後から2番目の中間焼鈍から最終中間焼鈍
までの冷間圧延率R1(%)と最終の中間焼鈍か
ら最終板厚までの冷間圧延率R2(%)が、
40<R1≦90,10≦R2≦60
およびR1−R2≦50
の関係を満足するよう冷間圧延を行うことを特
徴とするブルージング用アルミニウム薄板の製
造方法である。
次に本発明のフイン材の芯材に用いられるアル
ミニウム合金組成における各成分の作用を説明す
る。
Mnは合金の強度を向上させるとともに、Al−
Mn−FeあるいはAl−Mn−Si系の微細な析出物
を生じ、再結晶粒を粗大化させ、ブルージング時
の高温加熱の際の耐高温座屈性を向上させる働き
を持つ。その量が0.6%未満では、その効果が小
さく、2.0%を越えて添加した場合は巨大晶出物
が生じやすく、フイン材としての成形性が悪くな
る。
Feは、Al,Mnとの共存によつてAl−Mn−Fe
系の析出物を生じ、再結晶粒を粗大化させブルー
ジング時の高温加熱の際の耐高温座屈性を向上さ
せるが、0.3%を越えると晶出物の量が増え、再
結晶の核サイトとして働くため、再結晶粒が触細
化し、逆に耐高温座屈性を悪化させる。
Siは、Al−Mn−Si系の微細な析出物を生じ、
再結晶粒を粗大化させ、ブルージング時の高温加
熱の際の耐高温座屈性を向上させる働きを持つ
が、0.6%を越えると晶出物の量が増え再結晶粒
が微細化し、耐高温座屈性を悪化させる。
Cuはフインの押出チユーブに対する電位を貴
にするため従来は添加は好ましくない元素と考え
られていた。しかし本発明者らがさまざまな検討
を行つた結果、Feの添加量を0.3%以下に制限し
た場合、Cuの添加は耐高温座屈性を向上させる
のに有効な働きを示すことを見出した。そして、
例えば特開昭60−211056号に示されているCu添
加を行つていない合金と比べ、その耐高温座屈の
挙動は異なつており、それゆえ最後から2番目の
中間焼鈍から最終中間焼鈍までの冷間圧延率およ
び最終冷間圧延率の範囲や、中間焼鈍の回数の設
定が異なつたものとなる。これは、Fe添加量の
少ない場合、鋳造時にCuはAl−Fe−Cu系の晶出
物となる量が少なく、その多くはマトリツクス中
に固溶しており、これが後の熱処理の工程でAl
−Cu−Mn系の析出物として析出するため固溶
Mn量を減らし、高温加熱の際の再結晶をすみや
かに進行させ耐高温座屈性を向上させるためであ
る。
このような効果は0.05%以下のCu添加では小さ
く、0.2%を越えるとフインの電位が貴となり押
出チユーブ材に対する犠牲陽極効果が低下する。
なおその他の元素(Mg,Zn,Cr,Ti,Zr,
Ca,Li等)は0.05%以下であれば本発明の効果に
影響を与えない。
本発明方法においては、まず合せ材に均質化処
理を施す。この均質化処理は上記の組成を持つた
芯材を均質化処理した後にAl−Si系、Al−Si−
Mg系の皮材をクラツドするか、あるいは皮材を
クラツドした後に均質化処理して行われる。均質
化処理の温度が580℃を越えるとブルージング時
の再結晶粒度が微細化し、耐高温座屈性が悪化す
るため、580℃以下で行うのが望ましい。なお、
皮材をクラツドした後均質化処理を行う場合は、
皮材の融点(Al−Si系では577℃、Al−Si−Mg
系では555℃)以下の温度でなければならない。
また、本発明においては均質化処理をすることな
く、芯材に皮材をクラツドして、熱間圧延温度ま
で加熱するだけでも十分要求特性を満足すること
ができる。
次に、皮材の融点以下の温度に加熱し、熱間圧
延を行うが、この条件については特に規定する必
要はない。また、皮材をクラツドした後に均質化
処理を行う場合は、この均質化処理後、直ちに熱
間圧延を行つてもよい。
熱間圧延終了後は、直ちに、あるいは冷間圧延
を行つた後に中間焼鈍を行うが、耐高温座屈性を
向上させるためには、少なくとも2回以上の中間
焼鈍が必要である。
さらに、それらの焼鈍のうち最後から2番目の
焼鈍以降については冷延率も重要であり、以下の
条件で冷間圧延を行う。R1を最後から2番目の
焼鈍から最終焼鈍までの冷間圧延率(%)とし、
R2を最終焼鈍から最終板厚までの冷間圧延率
(%)としたとき、40<R1≦90かつ10≦R2≦60か
つR1−R2≦50の条件を満たすように冷間圧延を
行う。このR1,R2で規制される冷間圧延率の範
囲を第1図に実線、破線で示す。(ただし、破線
上は含まない)。
中間焼鈍の温度、時間等は特に制限はないが通
常300〜400℃で0.5〜6時間である。
一般に、アルミニウム合金フイン材の高温座屈
の原因としては、溶融した皮材が芯材の粒界ある
いは、サブバウンダリーを経路として拡散するこ
とが考えられ、したがつて、拡散を防ぐためには
ブレージングの高温加熱の際、すみやかに再結晶
し(サブバウンダリーを消す)、しかも、再結晶
粒が粗大である(粒界の面積を小にする)ことが
必要である。
本発明者らの研究によればブレージングの高温
加熱時に、再結晶が遅れる最大の原因は、加熱昇
温時に、Mn,Si等の固溶元素が析出し、再結晶
と競合することであり、それを防ぐためには、熱
間圧延終了後に冷間圧延、中間焼鈍をくり返し、
析出物をあらかじめ十分マトリクス中に析出させ
ることによつて固溶Mn,Si量を減らすことが有
効であることが判明した。高温加熱以前に存在す
るこれらの微細析出物は、再結晶をやや遅らせる
が通常は、問題となることはなく、むしろ、粒度
を粗大化する働きがあり、耐高温座屈性を向上さ
せる。このような効果を得るには、中間焼鈍は2
回未満では不十分で、少なくとも2回以上の中間
焼鈍が必要である。
さらに最後から2番目の中間焼鈍から最終中間
焼鈍までの冷間圧延率(R1)が40%以下では、
最終焼鈍時に再結晶が生じない場合や部分再結晶
組織となる場合があり、強度等の特性にばらつき
を生じやすくなる。また、90%を越えると最終焼
鈍時の再結晶が極めて早く、析出物のサイズも極
めて微細化するため、ブルージング時のサブバウ
ンダリーの消滅を妨害し、耐高温座屈性を悪化さ
せる。
また、最終冷間圧延率(R2)が10%未満では
加工度が小さく、フレージング時の再結晶が遅
れ、サブバウンダリーが残存し、耐高温座屈性が
悪化する。逆に、R2が60%を越えると再結晶粒
度が微細化し、耐高温座屈性が悪化するととも
に、フイン材としての成形性が悪化する。
そこで、40<R1≦90,10≦R2≦60の条件が必
要となる。さらに、10≦R2≦40の領域において
は、40<R1≦90でも耐高温座屈性が悪化する場
合があり、R1−R2≦50の条件も加える必要があ
る。
本発明において用いられる皮材としてのAl−
Si系あるいはAl−Si−Mg系ろう材の具体例とし
てはA4343(Al−7.5%Si)とこれにZnを1%程度
加えたもの及びA4004(Al−10%Si−1.5%Mg)
があるが、これに限定されるものではない。
本発明により得られるフイン材の最終板厚は通
常0.10〜0.20mmである。
(実施例)
次に本発明を実施例に基づきさらに詳細に説明
する。
実施例
下記第1表に示すA〜Eの組成を持つ鋳塊
〔304t×700w×1600l〕を均質化処理した後、面削
し(一部は均質化処理せずに面削のみ)、A4343
相当のAl−7.5%Siの皮材をクラツド率片面12%
で両面にクラツドした。その後、第2表に示すよ
うに再加熱、熱間圧延、冷間圧延、焼鈍を行い、
0.12mmのフイン用ブルージングシートを作製し
た。詳細な加工方法を第2表に示す。またこの加
工方法No.1〜12を第1図にプロツトした。図中数
字は加工方法No.を示し、線で囲つた範囲が本発明
の条件の範囲を示す。(ただし破線上は含まな
い)。
上記のようにして得られたフイン材の耐高温座
屈性及び耐食性を試験した。この結果を第3表に
示した。
(1) 耐高温座屈性試験
合金A〜Eを芯材とした加工方法1〜12により
加工して得たフイン用ブルージングシートから幅
22mm、長さ60mmの試料21を作成し、これを第2
図イ,ロのように台22上に固定具23を用いて
t×22w×50lを片持ちで保持し、610℃、10分間
大気中で加熱する。第2図ハに示す加熱後の垂下
量の大小で耐高温座屈性を評価する。この評価方
において、垂下量が15mm以下であれば実際のコン
デンサーを組立て、ブルージングをした際に問題
がないことを確認した。
したがつて、垂下量15mm以下を合格と判定す
る。2フイン材によるチユーブの耐孔食性試験第
3図に示すようにフイン材31をコルゲート加工
した後、両側に0.8tt×20w×100lのA3003板〔チ
ユーブを想定〕32を非腐食性フラツクスブルー
ジング法でろう付けした。
この試片を塩水噴霧(JISZ2371に準じる)
4000hrのテストを行いA3003板に生じた孔食を調
べた。
[Industrial Application Field] The present invention relates to a method for producing an aluminum alloy laminate (brazing sheet) having excellent high-temperature buckling resistance. [Prior Art] Conventionally, heat exchangers made of aluminum alloy, such as condensers for automobile coolers and evaporators, are composed of extruded multi-hole tubes and corrugated fins. Generally, such extruded multi-hole tubes have
JISA1050 [99.5wt% or more Al (hereinafter wt% is simply %
)] and A3003 (Al-0.15%Cu-1.1%
Mn) alloy is used for corrugated fins.
A3003 or A3203 (Al-1.1%Mn) alloy is used as the core material, and both sides are covered with Al-Si alloy, e.g.
A4343 (Al-7.5%Si) and A4004 (Al-10%Si-
A so-called brazing sheet clad with 1.5% Mg) is used. The standard cladding ratio of brazing filler metal is 5 to 13% per side, and the most commonly used total plate thickness is 0.16 mm. The manufacture of these heat exchangers generally ranges from 590 to 620
This is done using the so-called brazing method, which involves heating the solder material to a temperature of °C for several minutes and bonding. Mg evaporation effect in brazing filler metal (Getter action)
Vacuum brazing methods that utilize By the way, one possible means of reducing the manufacturing cost of the heat exchanger is to make the material lighter, thinner, shorter, and smaller, that is, in this case, to reduce the thickness of the tube and the thickness of the fins. Regarding the former, initially 1~
Tubes with a wall thickness of about 1.2 mm were used, but as a result of subsequent research, tubes with walls as thin as 0.5 to 0.6 mm are now in practical use. (Problem to be solved by the invention) However, the thinning of the fin remains at 0.16 mm.
~0.2mm, unchanged from the minimum of 0.16mm.
This is because, as mentioned above, when manufacturing a heat exchanger, it is heated at a temperature of 590 to 620 degrees Celsius, so the wax cladding on the surface of the fins melts and spreads to the core material. Therefore, the high-temperature strength of the fins decreases, and as a result, a phenomenon in which the fins collapse, that is, so-called buckling, tends to occur. In other words, conventional bluing sheets are not satisfactory in terms of such thinning. The present invention has been made in view of these conventional drawbacks, and as a result of conducting various researches, we have discovered a method for producing an aluminum alloy thin plate with excellent high-temperature buckling resistance, in which the fins are less likely to collapse due to high-temperature bluing. (Means for Solving the Problems) As a result of various studies in order to solve the above problems, the present inventors have developed a method that contains Fe, Si and Mn in predetermined amounts.
The core material is an aluminum alloy with a controlled amount of
When processing a laminate coated with Al-Si or Al-Si-Mg brazing material as a skin material, annealing is performed immediately after hot rolling or after cold rolling. In order to improve the tropism, at least two or more intermediate annealings are necessary, and the cold rolling rate is also important for the final two intermediate annealings. and conducted a detailed study. As a result, it was found that it is necessary to control the rolling rate under certain conditions in the cold rolling and annealing steps depending on the alloy composition. The present invention has been made based on this knowledge. That is, the present invention uses an aluminum alloy as a core material containing 0.6 to 2.0% Mn, 0.3% or less Fe, 0.6% or less Si, more than 0.05% Cu and 0.2% or less, and the balance Al (wt% or more). and Al-Si system or Al-Si-Mg
In the production of laminates using brazing filler metal as the skin material, (a) hot-rolling the laminate that has been subjected to heat treatment or homogenization treatment, and (b) rolling the laminate at least twice in the process after hot rolling. (c) The cold rolling ratio R 1 (%) from the penultimate intermediate annealing to the final intermediate annealing and the cold rolling ratio R 2 (%) from the last intermediate annealing to the final plate thickness are , 40<R 1 ≦90, 10≦R 2 ≦60 and R 1 −R 2 ≦50. Next, the effects of each component in the aluminum alloy composition used for the core material of the fin material of the present invention will be explained. Mn improves the strength of the alloy and also
It produces fine Mn-Fe or Al-Mn-Si precipitates, coarsens recrystallized grains, and improves high-temperature buckling resistance during high-temperature heating during bluing. When the amount is less than 0.6%, the effect is small, and when it is added in excess of 2.0%, giant crystallized substances are likely to occur, resulting in poor moldability as a fin material. By coexisting with Al and Mn, Fe becomes Al−Mn−Fe
This produces system precipitates, coarsens recrystallized grains, and improves high-temperature buckling resistance during high-temperature heating during bluing, but if it exceeds 0.3%, the amount of crystallized substances increases and recrystallization nuclei occur. Since it acts as a site, the recrystallized grains become finer, which conversely worsens high-temperature buckling resistance. Si produces fine Al-Mn-Si precipitates,
It has the function of coarsening recrystallized grains and improving high-temperature buckling resistance during high-temperature heating during bluing, but if it exceeds 0.6%, the amount of crystallized substances increases, making recrystallized grains finer, and improving resistance. Deteriorates high temperature buckling properties. Cu was previously thought to be an undesirable element to add because it increases the potential of the fin to the extrusion tube. However, as a result of various studies, the present inventors found that when the amount of Fe added is limited to 0.3% or less, the addition of Cu shows an effective effect in improving high-temperature buckling resistance. . and,
For example, compared to the alloy without Cu addition shown in JP-A-60-211056, its high-temperature buckling resistance behavior is different, and therefore from the penultimate intermediate annealing to the final intermediate annealing. The range of the cold rolling rate and the final cold rolling rate and the number of intermediate annealing operations are different. This is because when the amount of Fe added is small, the amount of Cu that becomes Al-Fe-Cu crystallized during casting is small, and most of it is dissolved in the matrix, and this is converted into Al-Fe-Cu crystals during the subsequent heat treatment process.
- Solid solution because it precipitates as a Cu-Mn-based precipitate.
This is to reduce the amount of Mn, promote prompt recrystallization during high-temperature heating, and improve high-temperature buckling resistance. Such an effect is small when Cu is added below 0.05%, and when it exceeds 0.2%, the potential of the fin becomes noble and the sacrificial anode effect on the extruded tube material decreases. In addition, other elements (Mg, Zn, Cr, Ti, Zr,
Ca, Li, etc.) does not affect the effect of the present invention if it is 0.05% or less. In the method of the present invention, the laminate is first subjected to a homogenization treatment. This homogenization treatment is performed after homogenizing the core material with the above composition, and then
This is done by cladding Mg-based skin material or by homogenizing the skin material after cladding. If the temperature of the homogenization treatment exceeds 580°C, the recrystallized grain size during bluing becomes fine and high-temperature buckling resistance deteriorates, so it is preferable to perform the homogenization treatment at a temperature of 580°C or lower. In addition,
When homogenizing the skin material after cladding,
Melting point of skin material (577℃ for Al-Si type, Al-Si-Mg
The temperature must be below 555°C.
Further, in the present invention, the required properties can be sufficiently satisfied by simply cladding the core material with the skin material and heating it to the hot rolling temperature without performing homogenization treatment. Next, the material is heated to a temperature below the melting point of the skin material and hot rolled, but there is no need to specify these conditions. Further, when homogenizing treatment is performed after cladding the skin material, hot rolling may be performed immediately after the homogenizing treatment. After completion of hot rolling, intermediate annealing is performed immediately or after cold rolling, but intermediate annealing is required at least twice in order to improve high temperature buckling resistance. Furthermore, the cold rolling rate is also important for the second to last annealing among these annealings, and the cold rolling is performed under the following conditions. Let R 1 be the cold rolling ratio (%) from the second to last annealing to the final annealing,
When R 2 is the cold rolling ratio (%) from final annealing to final plate thickness, cold rolling should be performed to satisfy the following conditions: 40<R 1 ≦90, 10≦R 2 ≦60, and R 1 −R 2 ≦50. Inter-rolling is performed. The range of cold rolling reduction regulated by R 1 and R 2 is shown in FIG. 1 by solid lines and broken lines. (However, areas on the broken line are not included). The temperature, time, etc. of intermediate annealing are not particularly limited, but are usually 300 to 400°C for 0.5 to 6 hours. Generally, the cause of high-temperature buckling of aluminum alloy fin materials is thought to be that the molten skin material diffuses through the grain boundaries or subboundaries of the core material. Therefore, brazing is necessary to prevent diffusion. When heated at high temperatures, it is necessary to recrystallize quickly (to eliminate sub-boundaries) and to have coarse recrystallized grains (to reduce the area of grain boundaries). According to the research conducted by the present inventors, the main reason for the delay in recrystallization during high-temperature heating during brazing is that solid solution elements such as Mn and Si precipitate during heating and compete with recrystallization. To prevent this, repeat cold rolling and intermediate annealing after hot rolling.
It was found that it is effective to reduce the amount of solid solution Mn and Si by precipitating the precipitates sufficiently into the matrix. These fine precipitates that exist before high-temperature heating slightly retard recrystallization, but usually do not pose a problem; rather, they serve to coarsen the grain size and improve high-temperature buckling resistance. To obtain such an effect, intermediate annealing is performed at 2
Less than two times is insufficient, and at least two or more intermediate annealing steps are required. Furthermore, if the cold rolling ratio (R 1 ) from the second to last intermediate annealing to the final intermediate annealing is 40% or less,
During final annealing, recrystallization may not occur or a partially recrystallized structure may occur, which tends to cause variations in properties such as strength. Moreover, if it exceeds 90%, recrystallization during final annealing is extremely rapid and the size of precipitates becomes extremely fine, which impedes the disappearance of sub-boundaries during bluing and deteriorates high-temperature buckling resistance. Further, if the final cold rolling reduction (R 2 ) is less than 10%, the degree of workability is small, recrystallization during phrasing is delayed, sub-boundaries remain, and high-temperature buckling resistance deteriorates. On the other hand, if R 2 exceeds 60%, the recrystallized grain size becomes fine, the high temperature buckling resistance deteriorates, and the formability as a fin material deteriorates. Therefore, the conditions of 40<R 1 ≦90 and 10≦R 2 ≦60 are required. Furthermore, in the region of 10≦R 2 ≦40, the high temperature buckling resistance may deteriorate even when 40<R 1 ≦90, so it is necessary to add the condition of R 1 −R 2 ≦50. Al- as the skin material used in the present invention
Specific examples of Si-based or Al-Si-Mg-based brazing filler metals include A4343 (Al-7.5%Si) with approximately 1% Zn added to it, and A4004 (Al-10%Si-1.5%Mg).
However, it is not limited to this. The final thickness of the fin material obtained by the present invention is usually 0.10 to 0.20 mm. (Examples) Next, the present invention will be described in more detail based on Examples. Example: After homogenizing an ingot [304 t × 700 w × 1600 l ] having compositions A to E shown in Table 1 below, it was subjected to face milling (some parts were only face milled without homogenizing treatment). ), A4343
The equivalent Al-7.5%Si skin material has a cladding ratio of 12% on one side.
It was clad on both sides. Then, as shown in Table 2, reheating, hot rolling, cold rolling, and annealing are performed.
A bluing sheet for 0.12mm fins was produced. The detailed processing method is shown in Table 2. Further, these processing methods Nos. 1 to 12 are plotted in FIG. The numbers in the figure indicate processing method numbers, and the range surrounded by lines indicates the range of conditions of the present invention. (However, areas on the dashed line are not included). The fin material obtained as described above was tested for high temperature buckling resistance and corrosion resistance. The results are shown in Table 3. (1) High-temperature buckling resistance test Width from bluing sheets for fins obtained by processing methods 1 to 12 using alloys A to E as core materials.
A sample 21 of 22 mm and 60 mm in length was prepared, and this was used as the second sample.
As shown in Figures A and B, a t x 22 w x 50 l is held cantilevered on a table 22 using a fixture 23 and heated at 610°C for 10 minutes in the air. High-temperature buckling resistance is evaluated based on the amount of droop after heating as shown in FIG. 2C. Using this evaluation method, we confirmed that if the amount of droop is 15 mm or less, there will be no problem when assembling an actual capacitor and performing bluing. Therefore, a drooping amount of 15 mm or less is judged to be acceptable. Pitting corrosion resistance test of a tube using two fin materials After corrugating the fin material 31 as shown in Figure 3, a non-corrosive A3003 plate (assuming a tube) 32 of 0.8 t t x 20 w x 100 l was placed on both sides. Brazed by flux bluing method. Spray this specimen with salt water (according to JISZ2371)
A 4000hr test was conducted to investigate the pitting corrosion that occurred on the A3003 board.
【表】【table】
【表】【table】
【表】【table】
【表】
(発明の効果)
本発明によつて、従来より一段と耐高温座屈性
を向上させることができ、よりフイン材の薄肉化
が可能となる。
したがつて本発明方法によれば非腐食性フラツ
クスブルージングおよびキヤリアーガスブルージ
ングに適するフイン用アルミニウム薄板を製造す
ることができる。[Table] (Effects of the Invention) According to the present invention, the high-temperature buckling resistance can be further improved than before, and the fin material can be made thinner. Therefore, according to the method of the present invention, a thin aluminum plate for fins suitable for non-corrosive flux bluing and carrier gas bluing can be manufactured.
第1図は本発明方法においてとられる冷間圧延
率の範囲の説明図であり、第2図イ,ロ,ハはフ
イン材の耐高温座屈性の試験方法の説明図、第3
図はフイン材の耐孔食性試験の説明図である。
21……耐高温座屈性試験片、31……フイン
材、32……チユーブを想定したA3003板。
Figure 1 is an explanatory diagram of the range of cold rolling reduction taken in the method of the present invention, Figure 2 A, B, and C are explanatory diagrams of the test method for high temperature buckling resistance of fin material,
The figure is an explanatory diagram of the pitting corrosion resistance test of the fin material. 21... High temperature buckling resistance test piece, 31... Fin material, 32... A3003 plate assuming tube.
Claims (1)
Cu0.05%を越え0.2%以下を含有し、残部Al(以上
wt%)よりなるアルミニウム合金を芯材とし、
Al−Si系もしくはAl−Si−Mg系ろう材を皮材と
した合せ材の製造において、 (イ) 加熱処理もしくは均質化処理を施した合せ材
を熱間圧延し、 (ロ) 熱間圧延以降の工程で少なくとも2回以上の
中間焼鈍を行い、 (ハ) 最後から2番目の中間焼鈍から最終の中間焼
鈍までの冷間圧延率R1(%)と最終の中間焼鈍
から最終板厚までの冷間圧延率R2(%)が、 40<R1≦90,10≦R2≦60 およびR1−R2≦50 の関係を満足するよう冷間圧延を行うことを特徴
とするブレージング用アルミニウム薄板の製造方
法。[Claims] 1 Mn0.6 to 2.0%, Fe0.3% or less, Si0.6% or less,
Contains more than 0.05% Cu and less than 0.2%, with the balance Al (more than
The core material is an aluminum alloy consisting of
In the production of laminates using Al-Si-based or Al-Si-Mg-based brazing materials as skin materials, (a) hot rolling of laminates that have been subjected to heat treatment or homogenization treatment, and (b) hot rolling. Intermediate annealing is performed at least twice in subsequent processes, and (c) cold rolling ratio R 1 (%) from the penultimate intermediate annealing to the final intermediate annealing and from the final intermediate annealing to the final plate thickness. Brazing characterized in that cold rolling is performed so that the cold rolling ratio R 2 (%) of 40<R 1 ≦90, 10≦R 2 ≦60 and R 1 −R 2 ≦50 is satisfied. Method for producing thin aluminum sheets for use in
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP29759786A JPS63153249A (en) | 1986-12-16 | 1986-12-16 | Manufacture of thin aluminum sheet for brazing |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP29759786A JPS63153249A (en) | 1986-12-16 | 1986-12-16 | Manufacture of thin aluminum sheet for brazing |
Related Child Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP21200189A Division JPH02104643A (en) | 1989-08-17 | 1989-08-17 | Production of aluminum sheet for brazing |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS63153249A JPS63153249A (en) | 1988-06-25 |
JPH0561348B2 true JPH0561348B2 (en) | 1993-09-06 |
Family
ID=17848618
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP29759786A Granted JPS63153249A (en) | 1986-12-16 | 1986-12-16 | Manufacture of thin aluminum sheet for brazing |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS63153249A (en) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5476725A (en) * | 1991-03-18 | 1995-12-19 | Aluminum Company Of America | Clad metallurgical products and methods of manufacture |
Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS60211056A (en) * | 1984-04-05 | 1985-10-23 | Furukawa Alum Co Ltd | Production of aluminium thin sheet for brazing |
-
1986
- 1986-12-16 JP JP29759786A patent/JPS63153249A/en active Granted
Patent Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS60211056A (en) * | 1984-04-05 | 1985-10-23 | Furukawa Alum Co Ltd | Production of aluminium thin sheet for brazing |
Also Published As
Publication number | Publication date |
---|---|
JPS63153249A (en) | 1988-06-25 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5326123B2 (en) | Aluminum alloy brazing sheet manufacturing method and aluminum alloy brazing sheet | |
KR920006554B1 (en) | Composite aluminum thin plates for brazing and method for preparing same | |
JPH0332626B2 (en) | ||
JP3801017B2 (en) | Method for producing high-strength aluminum alloy brazing sheet for heat exchangers with excellent brazeability, formability and erosion resistance | |
JPH06306519A (en) | Aluminum alloy fin material for vacuum brazing and its production | |
JPH0133547B2 (en) | ||
JP2640816B2 (en) | Al alloy composite fin material for heat exchanger with excellent brazing and corrosion resistance | |
JP3801016B2 (en) | Method for producing high-strength aluminum alloy brazing sheet for heat exchangers with excellent brazeability, formability and erosion resistance | |
JPH0561348B2 (en) | ||
JPS63153250A (en) | Manufacture of thin aluminum sheet for brazing | |
JPH058087A (en) | Production of high-strength aluminum brazing sheet | |
JPS641544B2 (en) | ||
JPH0448554B2 (en) | ||
JPH0237992A (en) | Production of thin aluminum sheet for brazing | |
JPS63227753A (en) | Manufacture of aluminum sheet metal for brazing | |
JP3253823B2 (en) | Method for producing high strength and high heat resistant fin material made of aluminum alloy for heat exchanger | |
JPH0237991A (en) | Production of thin aluminum sheet for brazing | |
JPH0313550A (en) | Production of high strength aluminum alloy fin material for heat exchanger | |
JP2874764B2 (en) | Method of manufacturing high strength aluminum alloy fin material for heat exchanger | |
JP2000119783A (en) | Fin material made of aluminum alloy for heat exchanger and its production | |
JPS6358217B2 (en) | ||
JPH0371495B2 (en) | ||
JPS6323260B2 (en) | ||
JP5306836B2 (en) | Aluminum alloy brazing sheet with excellent strength and corrosion resistance | |
JPH06145862A (en) | Heat exchanger made of al alloy constituted of high strength fin material |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
LAPS | Cancellation because of no payment of annual fees |