JPH06306519A - Aluminum alloy fin material for vacuum brazing and its production - Google Patents

Aluminum alloy fin material for vacuum brazing and its production

Info

Publication number
JPH06306519A
JPH06306519A JP11900993A JP11900993A JPH06306519A JP H06306519 A JPH06306519 A JP H06306519A JP 11900993 A JP11900993 A JP 11900993A JP 11900993 A JP11900993 A JP 11900993A JP H06306519 A JPH06306519 A JP H06306519A
Authority
JP
Japan
Prior art keywords
less
fin material
aluminum alloy
vacuum brazing
brazing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP11900993A
Other languages
Japanese (ja)
Inventor
Hiroshi Kano
浩 鹿野
Yoshito Inabayashi
芳人 稲林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Furukawa Aluminum Co Ltd
Original Assignee
Furukawa Aluminum Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Furukawa Aluminum Co Ltd filed Critical Furukawa Aluminum Co Ltd
Priority to JP11900993A priority Critical patent/JPH06306519A/en
Publication of JPH06306519A publication Critical patent/JPH06306519A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To provide an aliminum alloy fin material for vacuum brazing having an excellent sacrificial anodic effect and excellent in high temp. buckling resistance and to provide its producing method. CONSTITUTION:This fin material contains, by weight, 0.3 to 2.0% Mn, 0.5 to 3.0% Zn, 0.01 to 0.3% Ca, 0.005 to 0.1% In, 0.05 to 0.6 Cu, 0.1 to 1.2% Si, 0.1 to 1.0% Mg, 0.05 to 0.3% Cr, 0.05 to 0.3% Zr, 0.005 to 0.2% Ti and >=0.3% Fe and furthermore contains, at need, one more or >=two kinds among <=3.0% Ni, <=1.0% Vm <=0.5% Co, <=0.5% Hf and <=0.5% W, and the balance Al.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、優れた犠牲陽極効果を
有し且つ耐高温座屈性に優れたアルミニウム合金フィン
材およびその製造方法に関するものであり、特に真空ろ
う付け法によって製造される自動車用の熱交換器のラジ
エーター、ヒーター、コンデンサー等のフィンとして使
用されるものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an aluminum alloy fin material having an excellent sacrificial anode effect and excellent in high temperature buckling resistance, and a method for manufacturing the same, and particularly manufactured by a vacuum brazing method. It is used as a fin for radiators, heaters, condensers, etc. of heat exchangers for automobiles.

【0002】[0002]

【従来の技術およびその課題】自動車用熱交換器の多く
はAlおよびAl合金が使用されておりろう付け法によ
り製造されている。通常、ろう付け法はAl−Si系の
ろう材が用いられ、そのためろう付けは 600℃程度の高
温で行われる。ラジエーター等の熱交換器は例えば図1
に示すように複数本の偏平チューブ1の間にコルゲート
状に加工した薄肉フィン2を一体に形成し、該偏平チュ
ーブ1の両端はヘッダー3とタンク4とで構成される空
間にそれぞれ開口しており、一方のタンク側の空間から
偏平チューブ1内を通して高温冷媒を他方のタンク4側
の空間に送り、偏平チューブ1および薄肉フィン2の部
分で熱交換して低温になった冷媒を再び循環させるもの
である。
2. Description of the Related Art Most heat exchangers for automobiles use Al and Al alloys and are manufactured by a brazing method. Usually, the brazing method uses an Al—Si based brazing material, and therefore brazing is performed at a high temperature of about 600 ° C. For example, a heat exchanger such as a radiator is shown in FIG.
As shown in FIG. 1, a plurality of flat tubes 1 are integrally formed with thin fins 2 processed into a corrugated shape, and both ends of the flat tubes 1 are opened in a space formed by a header 3 and a tank 4, respectively. The high-temperature refrigerant is sent from the space on the one tank side through the flat tube 1 to the space on the other tank 4 side, and the low-temperature refrigerant is circulated again by exchanging heat between the flat tube 1 and the thin fins 2. It is a thing.

【0003】ところで、近年フィン材にZnを添加し、
犠牲陽極フィンの効果を与え、偏平チューブを防食する
ことが行われているが、真空ろう付け法では材料中のZ
nが蒸発し、フィン材中のZn残留量が少なくなり、犠
牲陽極効果が不十分となる問題がある。この問題を解決
するためにCaを添加することによりZnの蒸発を防止
する方法が提案されている。しかし、熱交換器は小型、
軽量化の方向にあり、材料の薄肉化が望まれていること
から、従来の材料で薄肉化を行った場合、真空ろう付け
の条件によってはZnの蒸発防止効果が小さくなり、犠
牲陽極効果の劣化、ろう付け加熱中におけるフィンの座
屈、加熱後の強度不足が問題となっている。
By the way, in recent years, Zn has been added to fin materials,
Although the effect of a sacrificial anode fin is given to prevent corrosion of the flat tube, the vacuum brazing method is used to remove Z in the material.
There is a problem that n is evaporated, the amount of Zn remaining in the fin material is reduced, and the sacrificial anode effect becomes insufficient. In order to solve this problem, a method of preventing evaporation of Zn by adding Ca has been proposed. But the heat exchanger is small,
Since it is in the direction of weight reduction and thinning of the material is desired, when the conventional material is thinned, the evaporation prevention effect of Zn becomes small depending on the conditions of vacuum brazing, and the sacrificial anode effect is reduced. Deterioration, buckling of fins during brazing heating, and insufficient strength after heating are problems.

【0004】[0004]

【課題を解決するための手段】本発明はこれに鑑み、真
空ろう付けの条件に左右されず優れた犠牲陽極効果を有
し且つ耐高温座屈性に優れた真空ろう付け用アルミニウ
ム合金フィン材およびその製造方法を開発したものであ
る。即ち、請求項1記載の発明はMn 0.3〜2.0 wt%、
Zn 0.5〜3.0 wt%、Ca0.01〜0.3 wt%、In 0.005
〜0.1 wt%、Cu0.05〜0.6 wt%、Si 0.1〜1.2wt
%、Mg0.1 〜1.0 wt%、Cr0.05〜0.3 wt%、Zr0.
05〜0.3 wt%、Ti 0.005〜0.2 wt%、Fe 0.3wt%以
下を含有し、残部がAlからなることを特徴とする真空
ろう付け用アルミニウム合金フィン材である。請求項2
記載の発明はMn 0.3〜2.0 wt%、Zn 0.5〜3.0 wt
%、Ca0.01〜0.3 wt%、In 0.005〜0.1 wt%、Cu
0.05〜0.6 wt%、Si 0.1〜1.2 wt%、Mg0.1 〜1.0
wt%、Cr0.05〜0.3 wt%、Zr0.05〜0.3 wt%、Ti
0.005〜0.2 wt%、Fe 0.3wt%以下を含有し、さらに
Ni 3.0wt%以下、V 1.0wt%以下、Co 0.5wt%以
下、Hf 0.5wt%以下、W 0.5wt%以下のうち1種また
は2種以上を含有し、残部がAlからなることを特徴と
する真空ろう付け用アルミニウム合金フィン材である。
また請求項3記載の発明はMn 0.3〜2.0 wt%、Zn
0.5〜3.0 wt%、Ca0.01〜0.3 wt%、In 0.005〜0.1
wt%、Cu0.05〜0.6 wt%、Si 0.1〜1.2 wt%、M
g0.1 〜1.0 wt%、Cr0.05〜0.3 wt%、Zr0.05〜0.
3 wt%、Ti 0.005〜0.2 wt%、Fe 0.3wt%以下を含
有し、残部がAlからなるアルミニウム合金鋳塊を 420
〜560 ℃で 1〜24時間均質化処理した後、熱間圧延を行
い、その後冷間圧延を行うにあたり、 380〜450 ℃の温
度で0.5 〜6 時間の中間焼鈍を1回以上行い、最後の中
間焼鈍後に冷間圧延率20〜40%の冷間圧延を施すことを
特徴とする真空ろう付け用アルミニウム合金フィン材の
製造方法である。請求項4記載の発明はMn 0.3〜2.0
wt%、Zn 0.5〜3.0 wt%、Ca0.01〜0.3 wt%、In
0.005〜0.1 wt%、Cu0.05〜0.6 wt%、Si 0.1〜1.
2 wt%、Mg0.1 〜1.0 wt%、Cr0.05〜0.3 wt%、Z
r0.05〜0.3 wt%、Ti 0.005〜0.2 wt%、Fe 0.3wt
%以下を含有し、さらにNi 3.0wt%以下、V 1.0wt%
以下、Co 0.5wt%以下、Hf 0.5wt%以下、W 0.5wt
%以下のうち1種または2種以上を含有し、残部がAl
からなるアルミニウム合金鋳塊を 420〜560 ℃で 1〜24
時間均質化処理した後、熱間圧延を行い、その後冷間圧
延を行うにあたり、380〜450 ℃の温度で0.5 〜6 時間
の中間焼鈍を1回以上行い、最後の中間焼鈍後に冷間圧
延率20〜40%の冷間圧延を施すことを特徴とする真空ろ
う付け用アルミニウム合金フィン材の製造方法である。
In view of this, the present invention has an aluminum alloy fin material for vacuum brazing which has an excellent sacrificial anode effect and is excellent in high temperature buckling resistance regardless of vacuum brazing conditions. And a method of manufacturing the same. That is, the invention according to claim 1 has Mn of 0.3 to 2.0 wt%,
Zn 0.5-3.0 wt%, Ca 0.01-0.3 wt%, In 0.005
~ 0.1 wt%, Cu 0.05 ~ 0.6 wt%, Si 0.1 ~ 1.2 wt%
%, Mg0.1-1.0 wt%, Cr0.05-0.3 wt%, Zr0.
The aluminum alloy fin material for vacuum brazing is characterized by containing 05 to 0.3 wt%, Ti 0.005 to 0.2 wt%, Fe 0.3 wt% or less, and the balance being Al. Claim 2
The described invention is Mn 0.3 to 2.0 wt%, Zn 0.5 to 3.0 wt%
%, Ca 0.01 to 0.3 wt%, In 0.005 to 0.1 wt%, Cu
0.05 to 0.6 wt%, Si 0.1 to 1.2 wt%, Mg 0.1 to 1.0
wt%, Cr0.05-0.3 wt%, Zr0.05-0.3 wt%, Ti
0.005 to 0.2 wt%, Fe 0.3 wt% or less, and further one of Ni 3.0 wt% or less, V 1.0 wt% or less, Co 0.5 wt% or less, Hf 0.5 wt% or less, W 0.5 wt% or less, or It is an aluminum alloy fin material for vacuum brazing, characterized in that it contains two or more kinds and the balance is made of Al.
The invention according to claim 3 is such that Mn 0.3 to 2.0 wt% and Zn
0.5 to 3.0 wt%, Ca 0.01 to 0.3 wt%, In 0.005 to 0.1
wt%, Cu 0.05 to 0.6 wt%, Si 0.1 to 1.2 wt%, M
g 0.1-1.0 wt%, Cr 0.05-0.3 wt%, Zr 0.05-0.
An aluminum alloy ingot containing 3 wt%, Ti 0.005 to 0.2 wt%, Fe 0.3 wt% or less, and the balance being Al
After homogenizing at ~ 560 ℃ for 1 ~ 24 hours, hot rolling and then cold rolling, at least one intermediate annealing at 380 ~ 450 ℃ for 0.5 ~ 6 hours is performed. A method for producing an aluminum alloy fin material for vacuum brazing, which comprises performing cold rolling at a cold rolling rate of 20 to 40% after intermediate annealing. The invention according to claim 4 has an Mn of 0.3 to 2.0.
wt%, Zn 0.5-3.0 wt%, Ca 0.01-0.3 wt%, In
0.005-0.1 wt%, Cu 0.05-0.6 wt%, Si 0.1-1.
2 wt%, Mg0.1-1.0 wt%, Cr0.05-0.3 wt%, Z
r 0.05 to 0.3 wt%, Ti 0.005 to 0.2 wt%, Fe 0.3 wt
% Or less, Ni 3.0 wt% or less, V 1.0 wt%
Below, Co 0.5wt% or less, Hf 0.5wt% or less, W 0.5wt
% Or less, one or more kinds are contained, and the balance is Al
Aluminum alloy ingot consisting of 1 to 24 at 420 to 560 ℃
After homogenizing for a period of time, hot rolling is performed, and then cold rolling is performed by performing one or more intermediate annealings at a temperature of 380 to 450 ° C for 0.5 to 6 hours, and then performing a cold rolling reduction after the final intermediate annealing. A method for producing an aluminum alloy fin material for vacuum brazing, which comprises performing cold rolling at 20 to 40%.

【0005】[0005]

【作用】本発明において合金組成を上記の如く限定した
のは次の理由によるものである。Mnは合金の強度を向
上させる働きがある。その含有量を 0.3〜2.0 wt%と限
定したのは、 0.3wt%未満では十分な強度が得られず、
2.0 wt%を越えるとAl−Mn−FeまたはAl−Mn
−Fe−Si系の晶出物の量が増え、ろう付け加熱時に
再結晶粒が微細化し、耐高温座屈性を劣化させるためで
ある。
The reason for limiting the alloy composition as described above in the present invention is as follows. Mn has the function of improving the strength of the alloy. The content is limited to 0.3 to 2.0 wt% because if it is less than 0.3 wt%, sufficient strength cannot be obtained.
If it exceeds 2.0 wt%, Al-Mn-Fe or Al-Mn
This is because the amount of —Fe—Si-based crystallized substances increases, recrystallized grains become finer during brazing heating, and high temperature buckling resistance deteriorates.

【0006】Znはフィン材に犠牲陽極効果を持たせる
ために添加するもので、その含有量を 0.5〜3.0 wt%と
したのは、 0.5wt%未満では効果が不十分であり、3.0
wt%を越えるとZnが真空ろう付け中に蒸発し、炉を汚
すことから操業上好ましくないためである。
Zn is added in order to impart a sacrificial anode effect to the fin material. The content of Zn is set to 0.5 to 3.0 wt%. If the content is less than 0.5 wt%, the effect is insufficient.
This is because if the content exceeds wt%, Zn evaporates during vacuum brazing and pollutes the furnace, which is not preferable in operation.

【0007】Caは真空ろう付け中にZnが蒸発するの
を防止するために添加するもので、その含有量を0.01〜
0.3 wt%と限定したのは、0.01未満ではその効果が十分
でなく、0.3 wt%を越えると圧延性が悪くなり、フィン
の製造が困難となるためである。
Ca is added in order to prevent Zn from evaporating during vacuum brazing, and its content is 0.01-.
The reason why the content is limited to 0.3 wt% is that if it is less than 0.01, the effect is not sufficient, and if it exceeds 0.3 wt%, the rolling property is deteriorated and the fin manufacturing becomes difficult.

【0008】Inはフィン材に犠牲陽極効果を持たせる
ために添加するもので、その含有量を 0.005〜0.1 wt%
としたのは、0.005wt %未満では効果が不十分であり、
0.1wt%を越えると効果が飽和するばかりか、導電率を
低下するためである。
In is added to give the fin material a sacrificial anode effect, and its content is 0.005 to 0.1 wt%.
Is less than 0.005 wt%, the effect is insufficient,
This is because if it exceeds 0.1 wt%, not only the effect is saturated, but also the conductivity is lowered.

【0009】Cuは合金の強度を向上させる働きがあ
る。その含有量を0.05〜0.6 wt%と限定したのは、0.05
wt%未満ではその効果が得られず、0.6 wt%を越えると
電位が貴化し、Znの添加あるいはInの添加により電
位を卑化する働きが不十分となり、犠牲陽極効果が得ら
れなくなるためである。
Cu has the function of improving the strength of the alloy. The content was limited to 0.05-0.6 wt% because it was 0.05
If it is less than wt%, the effect cannot be obtained, and if it exceeds 0.6 wt%, the potential becomes noble, and the effect of making the potential base by the addition of Zn or In becomes insufficient and the sacrificial anode effect cannot be obtained. is there.

【0010】Siは合金の強度を向上させるとともにA
l−Mn−Si系の微細な析出物を生じ、再結晶粒を粗
大化させ、ろう付け時の耐高温座屈性を向上させる働き
を持つ。その含有量を0.1 〜1.2 wt%と限定したのは、
0.1 wt%未満ではその効果が小さく、1.2 wt%を越える
とAl−Mn−Fe−Si系の晶出物の量が増え、ろう
付け加熱時に再結晶粒が微細化し、耐高温座屈性を劣化
させてしまう。
Si improves the strength of the alloy and A
1-Mn-Si-based fine precipitates are produced, the recrystallized grains are coarsened, and the high temperature buckling resistance during brazing is improved. The reason for limiting the content to 0.1-1.2 wt% is
If it is less than 0.1 wt%, the effect is small, and if it exceeds 1.2 wt%, the amount of Al-Mn-Fe-Si-based crystallized substances increases, and the recrystallized grains become fine during brazing and the high temperature buckling resistance is improved. It deteriorates.

【0011】Mgは合金の強度を向上させる働きがあ
る。その含有量を0.1 〜1.0 wt%としたのは、0.1 wt%
未満では十分な効果が得られず、上限を1.0 wt%とした
のは、Mgが真空ろう付け中に蒸発し、炉を汚すことか
ら操業上好ましくないためである。
Mg has the function of improving the strength of the alloy. The content of 0.1-1.0 wt% is 0.1 wt%
If the amount is less than the above, a sufficient effect cannot be obtained, and the upper limit is set to 1.0 wt% because Mg evaporates during vacuum brazing and pollutes the furnace, which is not preferable in operation.

【0012】Zrは強度を高めるとともに再結晶粒を粗
大化させ、ろう付け加熱中の高温座屈性の低下を防止す
る働きがある。その含有量を0.05〜0.3 wt%と限定した
のは、0.05wt%未満ではその効果が不十分であり、0.3
wt%を越えると鋳造時に割れが発生するためである。
Zr has the function of increasing the strength and coarsening the recrystallized grains to prevent the high-temperature buckling property from decreasing during brazing and heating. The content is limited to 0.05 to 0.3 wt% because the effect is insufficient if it is less than 0.05 wt%.
This is because if it exceeds wt%, cracking will occur during casting.

【0013】Crは強度を向上させる働きがある。その
含有量を0.05〜0.3 wt%と限定したのは、0.05wt%未満
では十分な効果が得られず、0.3 wt%を越えると塑性加
工性を低下させるためである。
Cr has a function of improving strength. The content is limited to 0.05 to 0.3 wt% because if it is less than 0.05 wt%, a sufficient effect cannot be obtained, and if it exceeds 0.3 wt%, the plastic workability is deteriorated.

【0014】Tiは鋳造時の結晶粒を微細化し、鋳造時
の割れを防止する効果がある。その含有量を 0.005〜0.
2 wt%と限定したのは、 0.005wt%未満では十分な効果
が得られず、0.2 wt%を越えるとフィン材の塑性加工性
が低下するためである。
Ti has the effect of refining crystal grains during casting and preventing cracks during casting. Its content is 0.005 to 0.
The reason why the content is limited to 2 wt% is that if it is less than 0.005 wt%, a sufficient effect cannot be obtained, and if it exceeds 0.2 wt%, the plastic workability of the fin material deteriorates.

【0015】Feは強度を向上させる働きがある。その
含有量を0.3 wt%以下と規定したのは、0.3 wt%を越え
るとAl−Mn−Fe系またはAl−Mn−Fe−Si
系の晶出物の量が増え、ろう付け加熱時に再結晶粒が微
細化し、耐高温座屈性を劣化させてしまうためである。
Fe has a function of improving strength. The content is specified to be 0.3 wt% or less because the content of Al-Mn-Fe or Al-Mn-Fe-Si exceeds 0.3 wt%.
This is because the amount of crystallized substances in the system increases, the recrystallized grains become fine during heating for brazing, and the high temperature buckling resistance deteriorates.

【0016】Ni、V、Co、Hf、Wは犠牲陽極効果
を損なわずに強度を向上させる働きがある。各々その含
有量の上限を規定したのは、その上限を越えるとフィン
の塑性加工性が著しく低下するためである。
Ni, V, Co, Hf and W have the function of improving the strength without impairing the sacrificial anode effect. The upper limits of the respective contents are defined because the plastic workability of the fins is significantly reduced when the upper limits are exceeded.

【0017】次に本発明のアルミニウム合金フィン材の
製造方法について説明する。先ずアルミニウム合金鋳塊
を 420〜560 ℃で1 〜24時間均質化処理するとしたの
は、鋳造時に固溶しているMn、Siを微細な金属間化
合物として析出させるためであり、フィン材のマトリッ
クスに析出したAl−Mn−Si系粒子は耐高温座屈性
を向上させる。しかし、均質化処理温度が 420℃未満で
は鋳造時の偏析の均質化が不十分であり、560 ℃を越え
ると析出物が粗大化するため、耐高温座屈性の向上効果
が得られない。均質化処理の保持時間を1 〜24時間とし
たのは、1 時間未満では微細な析出物が十分に形成され
ず、耐高温座屈性の向上効果が不十分である。24時間を
越えると保持中に析出物が粗大化してしまうため、耐高
温座屈性の向上効果が得られない。
Next, a method for manufacturing the aluminum alloy fin material of the present invention will be described. First, the reason why the aluminum alloy ingot is homogenized at 420 to 560 ° C for 1 to 24 hours is to precipitate Mn and Si, which are in solid solution during casting, as fine intermetallic compounds. The Al-Mn-Si-based particles that have been deposited on the surface improve the high temperature buckling resistance. However, if the homogenization temperature is lower than 420 ° C, the homogenization of segregation during casting is insufficient, and if it exceeds 560 ° C, the precipitates become coarse, and the effect of improving the high temperature buckling resistance cannot be obtained. The holding time of the homogenization treatment is set to 1 to 24 hours, because if it is less than 1 hour, fine precipitates are not sufficiently formed and the effect of improving the high temperature buckling resistance is insufficient. If it exceeds 24 hours, the precipitates become coarse during the holding, and the effect of improving the high temperature buckling resistance cannot be obtained.

【0018】中間焼鈍温度を 380〜450 ℃としたのは、
380℃未満では焼鈍中に非常に微細な析出物が生じ、そ
のピン止め効果により、ろう付け加熱時の再結晶が遅滞
し、耐高温座屈性が低下し、450 ℃を越えると逆に析出
物が粗大化し、耐高温座屈性が低下するためである。中
間焼鈍の保持時間を0.5 〜6 時間としたのは、上記と同
様な理由により0.5時間未満でも6 時間を越えても耐高
温座屈性が低下するためである。
The reason why the intermediate annealing temperature is 380 to 450 ° C. is that
If the temperature is lower than 380 ° C, extremely fine precipitates will be generated during annealing. Due to the pinning effect, recrystallization during brazing will be delayed and the high temperature buckling resistance will decrease. This is because the material becomes coarse and the high temperature buckling resistance is reduced. The holding time of the intermediate annealing is set to 0.5 to 6 hours because the high temperature buckling resistance is lowered even if it is less than 0.5 hours or more than 6 hours for the same reason as above.

【0019】最後の中間焼鈍後、所望の仕上がり板厚と
するまでの最終冷間圧延率を20〜40%にするとしたの
は、適度な強度を与え、コルゲート性、コア組み時の座
屈を防止するとともに、ろう付け加熱時の耐高温座屈性
を向上するためである。20%未満ではろう付け加熱時に
フィン材の再結晶が完了せず、耐高温座屈性が劣化す
る。40%を越えるとろう付け時の再結晶粒が微細とな
り、耐高温座屈性が不十分となる。
After the final intermediate annealing, the final cold rolling rate until the desired finished plate thickness is set to 20 to 40% is to provide appropriate strength, corrugation property, and buckling during core assembly. This is to prevent it and improve the high temperature buckling resistance during brazing heating. If it is less than 20%, the recrystallization of the fin material is not completed during brazing and heating, and the high temperature buckling resistance deteriorates. If it exceeds 40%, the recrystallized grains during brazing become fine and the high temperature buckling resistance becomes insufficient.

【0020】[0020]

【実施例】次に本発明を実施例により更に詳細に説明す
る。表1〜3に示す合金組成のアルミニウム合金鋳塊を
水冷鋳造により作製し、表4〜6に示す均質化処理を施
した後、熱間圧延を行って板厚3.5mm の板とした。これ
に冷間圧延と表4〜6に示す中間焼鈍を施して最終板厚
0.06mmのフィン材に仕上げた。このようにして得られた
フィン材について耐高温座屈性および耐食性を測定し
た。その結果を表4〜6に併記した。耐高温座屈性は上
記真空ろう付け用アルミニウム合金フィン材から幅22m
m、長さ60mmの試料を切り出し、図2 (イ)、 (ロ) に
示すように試料6を台7上に固定具8を用いて台7より
50mm突出するようにかたもちで保持し、真空炉中で605
℃の温度で10分間加熱し、図2 (ハ) に示すように加熱
後の垂下量を測定した。この評価法において垂下量が15
mm以下であれば、実際のラジエーターを組み立てて真空
ろう付けを行っても問題ないことを確認した。耐食性は
図3に示すようにフィン材をコルゲート加工した後、両
側に厚さ0.5mm のJIS BAS131のブレージングシートを取
り付け、真空ろう付け法によりろう付けし、この試験片
に塩水噴霧をJISZ 2371 に準じて6000時間を行い、ブレ
ージングシートに生じた孔食深さを測定した。
EXAMPLES The present invention will now be described in more detail with reference to Examples. Aluminum alloy ingots having the alloy compositions shown in Tables 1 to 3 were produced by water cooling casting, subjected to the homogenization treatment shown in Tables 4 to 6, and then hot rolled to obtain a plate having a plate thickness of 3.5 mm. This is subjected to cold rolling and intermediate annealing shown in Tables 4 to 6 to obtain the final plate thickness.
Finished to 0.06mm fin material. The high temperature buckling resistance and corrosion resistance of the fin material thus obtained were measured. The results are also shown in Tables 4-6. The high temperature buckling resistance is 22m wide from the aluminum alloy fin material for vacuum brazing
A sample of m and 60 mm in length is cut out, and the sample 6 is mounted on the table 7 using the fixture 8 as shown in FIGS. 2 (a) and 2 (b).
Hold it with a stick so that it protrudes 50 mm, and hold it in a vacuum furnace for 605
The sample was heated at a temperature of ° C for 10 minutes, and the drooping amount after heating was measured as shown in Fig. 2 (c). In this evaluation method, the amount of droop is 15
It was confirmed that there is no problem if the actual radiator is assembled and vacuum brazed if it is less than mm. As for corrosion resistance, as shown in Fig. 3, after corrugating the fin material, 0.5 mm thick JIS BAS131 brazing sheets were attached to both sides and brazed by vacuum brazing. The pitting corrosion depth generated in the brazing sheet was measured by performing 6000 hours accordingly.

【0021】[0021]

【表1】 [Table 1]

【0022】[0022]

【表2】 [Table 2]

【0023】[0023]

【表3】 [Table 3]

【0024】[0024]

【表4】 [Table 4]

【0025】[0025]

【表5】 [Table 5]

【0026】[0026]

【表6】 [Table 6]

【0027】表4〜6から明らかなように、本発明例N
o.1〜28はいずれも孔食深さが浅く、垂下量も小さく、
従来例 No.44に比較して優れることが判る。これに対し
て合金組成が本発明の範囲から外れる比較例 No.29〜39
は孔食深、垂下量のうちいずれかが、本発明例に比較し
て劣ることが判る。また、製造方法が本発明の範囲から
外れる比較例 No.40〜43はいずれも孔食さは浅いもの
の、垂下量が大きく、本発明例に比較して劣ることが判
る。ここで、表3で示した比較合金No. 33、39、42、43
はいずれも塑性加工性が劣り、0.06mmのフィン材を得ら
れなかったため、耐高温座屈性試験および耐食性試験を
行うことが出来なかった。
As is clear from Tables 4 to 6, the invention sample N
o.1 to 28 have shallow pitting depth and small drooping amount,
It turns out that it is superior to the conventional example No.44. On the other hand, Comparative Examples No. 29 to 39 in which the alloy composition is out of the range of the present invention
It is understood that either of the pitting depth and the drooping amount is inferior to the inventive examples. Further, it can be seen that Comparative Examples Nos. 40 to 43 whose manufacturing methods are out of the scope of the present invention have a small pitting corrosion, but have a large drooping amount and are inferior to the inventive examples. Here, comparative alloys No. 33, 39, 42, 43 shown in Table 3
In both cases, the plastic workability was inferior and a fin material of 0.06 mm could not be obtained, so the high temperature buckling resistance test and the corrosion resistance test could not be performed.

【0028】[0028]

【発明の効果】このように本発明によれば、真空ろう付
け時にZnの蒸発が少なく、優れた犠牲陽極効果を示し、
且つ耐高温座屈性に優れた真空ろう付け用アルミニウム
合金フィン材の製造が可能になる等顕著な効果を奏する
ものである。
As described above, according to the present invention, evaporation of Zn during vacuum brazing is small, and an excellent sacrificial anode effect is exhibited.
In addition, the aluminum alloy fin material for vacuum brazing, which is excellent in high temperature buckling resistance, can be produced, which is a remarkable effect.

【図面の簡単な説明】[Brief description of drawings]

【図1】ラジエーターの一部を切欠して示す斜視図。FIG. 1 is a perspective view showing a radiator with a part cut away.

【図2】フィン材の耐高温座屈性の試験方法の説明図。 (イ)試料の取付状態を示す側面図。 (ロ)同平面図。 (ハ)試料の垂下状態を示す側面図。FIG. 2 is an explanatory diagram of a test method for high temperature buckling resistance of fin materials. (A) A side view showing a mounting state of the sample. (B) The same plan view. (C) A side view showing the hanging state of the sample.

【図3】耐孔食試験用の試験片を示す側面図。FIG. 3 is a side view showing a test piece for a pitting corrosion test.

【符号の説明】[Explanation of symbols]

1.偏平チュ─ブ 2.薄肉フィン 3.ヘッダー 4.タンク 5.パッキング 6.試料 7.台 8.固定具 9.フィン材 10.ブレージングシート 1. Flat tube 2. Thin fin 3. Header 4. Tank 5. Packing 6. Sample 7. Stand 8. Fixture 9. Fin material 10. Brazing sheet

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 Mn 0.3〜2.0 wt%、Zn 0.5〜3.0 wt
%、Ca0.01〜0.3wt%、In 0.005〜0.1 wt%、Cu
0.05〜0.6 wt%、Si 0.1〜1.2 wt%、Mg0.1 〜1.0
wt%、Cr0.05〜0.3 wt%、Zr0.05〜0.3 wt%、Ti
0.005〜0.2wt%、Fe 0.3wt%以下を含有し、残部が
Alからなることを特徴とする真空ろう付け用アルミニ
ウム合金フィン材。
1. Mn 0.3-2.0 wt%, Zn 0.5-3.0 wt
%, Ca 0.01 to 0.3 wt%, In 0.005 to 0.1 wt%, Cu
0.05 to 0.6 wt%, Si 0.1 to 1.2 wt%, Mg 0.1 to 1.0
wt%, Cr0.05-0.3 wt%, Zr0.05-0.3 wt%, Ti
An aluminum alloy fin material for vacuum brazing, containing 0.005 to 0.2 wt% and Fe 0.3 wt% or less, and the balance being Al.
【請求項2】 Mn 0.3〜2.0 wt%、Zn 0.5〜3.0 wt
%、Ca0.01〜0.3wt%、In 0.005〜0.1 wt%、Cu
0.05〜0.6 wt%、Si 0.1〜1.2 wt%、Mg0.1 〜1.0
wt%、Cr0.05〜0.3 wt%、Zr0.05〜0.3 wt%、Ti
0.005〜0.2wt%、Fe 0.3wt%以下を含有し、さらに
Ni 3.0wt%以下、V 1.0wt%以下、Co 0.5wt%以
下、Hf 0.5wt%以下、W 0.5wt%以下のうち1種また
は2種以上を含有し、残部がAlからなることを特徴と
する真空ろう付け用アルミニウム合金フィン材。
2. Mn 0.3-2.0 wt%, Zn 0.5-3.0 wt
%, Ca 0.01 to 0.3 wt%, In 0.005 to 0.1 wt%, Cu
0.05 to 0.6 wt%, Si 0.1 to 1.2 wt%, Mg 0.1 to 1.0
wt%, Cr0.05-0.3 wt%, Zr0.05-0.3 wt%, Ti
0.005 to 0.2 wt%, Fe 0.3 wt% or less, and further one of Ni 3.0 wt% or less, V 1.0 wt% or less, Co 0.5 wt% or less, Hf 0.5 wt% or less, W 0.5 wt% or less, or An aluminum alloy fin material for vacuum brazing, comprising two or more kinds, and the balance being Al.
【請求項3】 Mn 0.3〜2.0 wt%、Zn 0.5〜3.0 wt
%、Ca0.01〜0.3wt%、In 0.005〜0.1 wt%、Cu
0.05〜0.6 wt%、Si 0.1〜1.2 wt%、Mg0.1 〜1.0
wt%、Cr0.05〜0.3 wt%、Zr0.05〜0.3 wt%、Ti
0.005〜0.2wt%、Fe 0.3wt%以下を含有し、残部が
Alからなるアルミニウム合金鋳塊を420〜560 ℃で 1
〜24時間均質化処理した後、熱間圧延を行い、その後冷
間圧延を行うにあたり、 380〜450 ℃の温度で0.5 〜6
時間の中間焼鈍を1回以上行い、最後の中間焼鈍後に冷
間圧延率20〜40%の冷間圧延を施すことを特徴とする真
空ろう付け用アルミニウム合金フィン材の製造方法。
3. Mn 0.3-2.0 wt%, Zn 0.5-3.0 wt
%, Ca 0.01 to 0.3 wt%, In 0.005 to 0.1 wt%, Cu
0.05 to 0.6 wt%, Si 0.1 to 1.2 wt%, Mg 0.1 to 1.0
wt%, Cr0.05-0.3 wt%, Zr0.05-0.3 wt%, Ti
An aluminum alloy ingot containing 0.005 to 0.2 wt% and Fe 0.3 wt% or less and the balance being Al at 420 to 560 ° C.
~ After homogenizing for 24 hours, hot rolling and then cold rolling 0.5 ~ 6 at 380 ~ 450 ℃
A method for producing an aluminum alloy fin material for vacuum brazing, comprising performing intermediate annealing for one time or more, and then performing cold rolling at a cold rolling rate of 20 to 40% after the final intermediate annealing.
【請求項4】 Mn 0.3〜2.0 wt%、Zn 0.5〜3.0 wt
%、Ca0.01〜0.3wt%、In 0.005〜0.1 wt%、Cu
0.05〜0.6 wt%、Si 0.1〜1.2 wt%、Mg0.1 〜1.0
wt%、Cr0.05〜0.3 wt%、Zr0.05〜0.3 wt%、Ti
0.005〜0.2wt%、Fe 0.3wt%以下を含有し、さらに
Ni 3.0wt%以下、V 1.0wt%以下、Co 0.5wt%以
下、Hf 0.5wt%以下、W 0.5wt%以下のうち1種また
は2種以上を含有し、残部がAlからなるアルミニウム
合金鋳塊を 420〜560 ℃で 1〜24時間均質化処理した
後、熱間圧延を行い、その後冷間圧延を行うにあたり、
380〜450 ℃の温度で0.5 〜6 時間の中間焼鈍を1回以
上行い、最後の中間焼鈍後に冷間圧延率20〜40%の冷間
圧延を施すことを特徴とする真空ろう付け用アルミニウ
ム合金フィン材の製造方法。
4. Mn 0.3-2.0 wt%, Zn 0.5-3.0 wt
%, Ca 0.01 to 0.3 wt%, In 0.005 to 0.1 wt%, Cu
0.05 to 0.6 wt%, Si 0.1 to 1.2 wt%, Mg 0.1 to 1.0
wt%, Cr0.05-0.3 wt%, Zr0.05-0.3 wt%, Ti
0.005 to 0.2 wt%, Fe 0.3 wt% or less, and further one of Ni 3.0 wt% or less, V 1.0 wt% or less, Co 0.5 wt% or less, Hf 0.5 wt% or less, W 0.5 wt% or less, or Upon homogenizing an aluminum alloy ingot containing two or more kinds and the balance being Al at 420 to 560 ° C. for 1 to 24 hours, hot rolling and then cold rolling are performed.
Aluminum alloy for vacuum brazing, characterized by performing intermediate annealing at a temperature of 380 to 450 ° C for 0.5 to 6 hours at least once, and performing cold rolling at a cold rolling rate of 20 to 40% after the final intermediate annealing. Fin material manufacturing method.
JP11900993A 1993-04-22 1993-04-22 Aluminum alloy fin material for vacuum brazing and its production Pending JPH06306519A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11900993A JPH06306519A (en) 1993-04-22 1993-04-22 Aluminum alloy fin material for vacuum brazing and its production

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11900993A JPH06306519A (en) 1993-04-22 1993-04-22 Aluminum alloy fin material for vacuum brazing and its production

Publications (1)

Publication Number Publication Date
JPH06306519A true JPH06306519A (en) 1994-11-01

Family

ID=14750736

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11900993A Pending JPH06306519A (en) 1993-04-22 1993-04-22 Aluminum alloy fin material for vacuum brazing and its production

Country Status (1)

Country Link
JP (1) JPH06306519A (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09268338A (en) * 1996-04-02 1997-10-14 Shinko Alcoa Yuso Kizai Kk Aluminum alloy brazing sheet for brazed heat exchanger
WO2001036697A3 (en) * 1999-11-17 2001-11-29 Corus Aluminium Walzprod Gmbh Aluminium brazing alloy
JP2002256403A (en) * 2001-02-28 2002-09-11 Mitsubishi Alum Co Ltd Method of producing fin material for use in heat exchanger
US6610247B2 (en) 1999-11-17 2003-08-26 Corus Aluminium Walzprodukte Gmbh Aluminum brazing alloy
US6800244B2 (en) 1999-11-17 2004-10-05 Corus L.P. Aluminum brazing alloy
JP2012126950A (en) * 2010-12-14 2012-07-05 Mitsubishi Alum Co Ltd Aluminum alloy fin material for heat exchanger and heat exchanger using the fin material
CN107099705A (en) * 2017-04-28 2017-08-29 浙江大侠铝业有限公司 High-strength corrosion-resisting aluminium alloy and preparation method thereof
CN110300812A (en) * 2017-02-09 2019-10-01 布雷斯威公司 Aluminium alloy, the extruded tube and heat exchanger formed by aluminium alloy
WO2020051129A1 (en) * 2018-09-06 2020-03-12 Novelis Inc. Aluminum alloy for heat exchanger fins
US20230052639A1 (en) * 2020-01-21 2023-02-16 Novelis Inc. Aluminum alloys and coated aluminum alloys with high corrosion resistance and methods of making the same

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09268338A (en) * 1996-04-02 1997-10-14 Shinko Alcoa Yuso Kizai Kk Aluminum alloy brazing sheet for brazed heat exchanger
WO2001036697A3 (en) * 1999-11-17 2001-11-29 Corus Aluminium Walzprod Gmbh Aluminium brazing alloy
EP1323839A1 (en) * 1999-11-17 2003-07-02 Corus Aluminium Walzprodukte GmbH Aluminium brazing alloy
US6610247B2 (en) 1999-11-17 2003-08-26 Corus Aluminium Walzprodukte Gmbh Aluminum brazing alloy
US6800244B2 (en) 1999-11-17 2004-10-05 Corus L.P. Aluminum brazing alloy
JP2002256403A (en) * 2001-02-28 2002-09-11 Mitsubishi Alum Co Ltd Method of producing fin material for use in heat exchanger
JP2012126950A (en) * 2010-12-14 2012-07-05 Mitsubishi Alum Co Ltd Aluminum alloy fin material for heat exchanger and heat exchanger using the fin material
CN110300812A (en) * 2017-02-09 2019-10-01 布雷斯威公司 Aluminium alloy, the extruded tube and heat exchanger formed by aluminium alloy
CN107099705A (en) * 2017-04-28 2017-08-29 浙江大侠铝业有限公司 High-strength corrosion-resisting aluminium alloy and preparation method thereof
WO2020051129A1 (en) * 2018-09-06 2020-03-12 Novelis Inc. Aluminum alloy for heat exchanger fins
US20230052639A1 (en) * 2020-01-21 2023-02-16 Novelis Inc. Aluminum alloys and coated aluminum alloys with high corrosion resistance and methods of making the same
US11932925B2 (en) * 2020-01-21 2024-03-19 Novelis Inc. Aluminum alloys and coated aluminum alloys with high corrosion resistance and methods of making the same

Similar Documents

Publication Publication Date Title
JPH06306519A (en) Aluminum alloy fin material for vacuum brazing and its production
JP2628672B2 (en) Manufacturing method of Al alloy fin material for heat exchanger
JP3384835B2 (en) Method for producing aluminum alloy fin material for heat exchanger
JP3222577B2 (en) Aluminum alloy fin material for heat exchanger
JP3256907B2 (en) Manufacturing method of aluminum alloy fin material for heat exchanger
JPH08104934A (en) Aluminum alloy fin material
JPH03197652A (en) Production of aluminum alloy fin material for brazing
JP3253823B2 (en) Method for producing high strength and high heat resistant fin material made of aluminum alloy for heat exchanger
JP2555187B2 (en) Method for manufacturing aluminum fin material for heat exchanger
JPS6323260B2 (en)
JPH0371495B2 (en)
JP3256909B2 (en) Aluminum alloy fin material
JP2786641B2 (en) Method for producing aluminum alloy sheet for brazing having excellent droop resistance and sacrificial anode effect
JPH0931614A (en) Production of aluminum alloy fin material with high strength and high heat resistance for heat exchanger
JP3256910B2 (en) Aluminum alloy fin material for heat exchanger
JP2846544B2 (en) Aluminum alloy high thermal conductive fin material
JPH08218142A (en) High strength aluminum alloy fin material for heat exchanger excellent in cathode corrosion inhibition effect and heat conductivity
JPH10298687A (en) Aluminum alloy high thermal conductivity fin material
JPS641544B2 (en)
JPH0471637B2 (en)
JPH11269591A (en) Aluminum alloy fin material
JPH01198453A (en) Manufacture of high electric conductive aluminum alloy fin material
JPH06136492A (en) Production of aluminum alloy fin material for heat exchanger
JPH0543999A (en) Production of high strength aluminum alloy fin material
JP3913333B2 (en) Aluminum alloy fin material for heat exchanger having excellent fatigue strength and thermal conductivity and method for producing the same