JP5326123B2 - Aluminum alloy brazing sheet manufacturing method and aluminum alloy brazing sheet - Google Patents

Aluminum alloy brazing sheet manufacturing method and aluminum alloy brazing sheet Download PDF

Info

Publication number
JP5326123B2
JP5326123B2 JP2007513822A JP2007513822A JP5326123B2 JP 5326123 B2 JP5326123 B2 JP 5326123B2 JP 2007513822 A JP2007513822 A JP 2007513822A JP 2007513822 A JP2007513822 A JP 2007513822A JP 5326123 B2 JP5326123 B2 JP 5326123B2
Authority
JP
Japan
Prior art keywords
alloy
brazing
sheet
core
lfm
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2007513822A
Other languages
Japanese (ja)
Other versions
JP2008500453A (en
Inventor
スコット、ウィリアム、ハラー
フーフェン ヨブ、アントニウス、ファン、デール
クラウス、ビーレッゲ
アヒム、ビュルガー
サンパト、デシカン
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Novelis Koblenz GmbH
Original Assignee
Aleris Aluminum Koblenz GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=34968764&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=JP5326123(B2) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Aleris Aluminum Koblenz GmbH filed Critical Aleris Aluminum Koblenz GmbH
Publication of JP2008500453A publication Critical patent/JP2008500453A/en
Application granted granted Critical
Publication of JP5326123B2 publication Critical patent/JP5326123B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22FCHANGING THE PHYSICAL STRUCTURE OF NON-FERROUS METALS AND NON-FERROUS ALLOYS
    • C22F1/00Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working
    • C22F1/04Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working of aluminium or alloys based thereon
    • C22F1/053Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working of aluminium or alloys based thereon of alloys with zinc as the next major constituent
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22FCHANGING THE PHYSICAL STRUCTURE OF NON-FERROUS METALS AND NON-FERROUS ALLOYS
    • C22F1/00Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working
    • C22F1/04Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working of aluminium or alloys based thereon
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21BROLLING OF METAL
    • B21B3/00Rolling materials of special alloys so far as the composition of the alloy requires or permits special rolling methods or sequences ; Rolling of aluminium, copper, zinc or other non-ferrous metals
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C21/00Alloys based on aluminium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C21/00Alloys based on aluminium
    • C22C21/10Alloys based on aluminium with zinc as the next major constituent
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C21/00Alloys based on aluminium
    • C22C21/12Alloys based on aluminium with copper as the next major constituent
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C21/00Alloys based on aluminium
    • C22C21/12Alloys based on aluminium with copper as the next major constituent
    • C22C21/14Alloys based on aluminium with copper as the next major constituent with silicon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C21/00Alloys based on aluminium
    • C22C21/12Alloys based on aluminium with copper as the next major constituent
    • C22C21/16Alloys based on aluminium with copper as the next major constituent with magnesium

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Laminated Bodies (AREA)
  • Details Of Heat-Exchange And Heat-Transfer (AREA)
  • Continuous Casting (AREA)

Abstract

The invention relates to a process for producing an Al-Mn alloy sheet with improved liquid film migration resistance when used as core alloy in brazing sheet, comprising the steps of: casting an ingot having a composition comprising (in weight percent): 0.5 < Mn <= 1.7 0.06<Cu<=1.5 Si <= 1.3 Mg <= 0.25 Ti < 0.2 Zn <= 2.0 Fe <= 0.5 at least one element of the group of elements consisting of 0.05 < Zr <=0.25 and 0.05 < Cr<=0.25 other elements < 0.05 each and total <0.20, balance Al. homogenisation and preheat hot rolling . cold rolling (including intermediate anneals whenever required), and wherein the homogenisation temperature is at least 450 °C for a duration of at least 1 hour followed by an air cooling at a rate of at least 20 °C/h and wherein the pre-heat temperature is at least 400 °C for at least 0.5 hour.

Description

発明の分野Field of Invention

本発明は、ろう付けシート材料におけるコア合金として使用した時の液体被膜移行耐性が改良されている、Al−Mn合金シートの製造方法に関する。本発明は、該方法により製造されたAl−Mn合金シートおよび該合金シートの使用に関する。   The present invention relates to a method for producing an Al-Mn alloy sheet having improved liquid film migration resistance when used as a core alloy in a brazing sheet material. The present invention relates to an Al—Mn alloy sheet produced by the method and the use of the alloy sheet.

ろう付け用途では、「液体被膜移行」またはLFMと呼ばれる現象により、ろう付けされた製品、例えば蒸発装置、ラジエータ、ヒーターコア、等の全体的な性能の低下が引き起こされることが知られている。文献中では、用語「LFM」は、「コア熔解」または「コア浸透」または「コア浸食」とも呼ばれている。本明細書では、用語「LFM」は、これら全ての専門用語を指すものとする。LFMを引き起こす正確な機構は、これまで十分には理解されていないが、ろう付けシートのコア合金に、特定量の転位が存在することにより、LFMの深刻さが増すと思われる。ある材料のLFMに対する感度は、完全に焼きなまし(O−焼戻し)およびひずみ硬化、および/または応力除去焼戻し(例えばH14、H24、等)の両方で、同じ材料の軟および弱冷間加工された条件と比較して、相対的に低いことが知られている。用語「弱冷間加工」は、典型的には熱交換機、例えば蒸発装置、の構成部品、またはオイルクーラーコアプレート、折り曲げ管、等、の製造に適用される工業的製法、例えば打ち抜き、ロール成形または張力レベリング、により引き起こされる変形を意味する。コア合金およびAl−Siクラッド合金からなるろう付けシートを変形させて製品を形成し、続いてろう付けサイクルにかける場合、少量の変形が、ろう付けシート中にLFMを誘発するのに十分であると思われる。LFMがコア合金の中に過度に進行すると、ろう付け性、強度および耐食性が低下する。再結晶化を遅延させる合金化元素、例えばクロム、ジルコニウムおよびバナジウム、がLFMに対する感受性を高めることが知られている。マンガン分散質も、再結晶化を遅延させ、従って、LFMに対する感受性を高めることが分かっている。マンガン分散質の量および大きさは、ろう付けシートの加工経路によって異なる。   In brazing applications, it is known that a phenomenon called “liquid film migration” or LFM causes a reduction in the overall performance of brazed products such as evaporators, radiators, heater cores, and the like. In the literature, the term “LFM” is also referred to as “core melting” or “core penetration” or “core erosion”. As used herein, the term “LFM” is intended to refer to all these technical terms. The exact mechanism that causes LFM has not been fully understood so far, but the presence of a certain amount of dislocations in the core alloy of the brazed sheet may increase the severity of LFM. The sensitivity of a material to LFM is the same for both soft and weakly cold-worked conditions of the same material, both fully annealed (O-tempering) and strain hardening, and / or stress-relieved tempered (eg, H14, H24, etc.). Is known to be relatively low. The term “weak cold work” typically refers to industrial processes applied to the manufacture of components of heat exchangers, such as evaporators, or oil cooler core plates, bent tubes, etc., such as stamping, roll forming. Or the deformation caused by tension leveling. When deforming a brazing sheet consisting of a core alloy and an Al-Si clad alloy to form a product, followed by a brazing cycle, a small amount of deformation is sufficient to induce LFM in the brazing sheet. I think that the. If the LFM progresses excessively into the core alloy, the brazeability, strength and corrosion resistance are reduced. Alloying elements that delay recrystallization, such as chromium, zirconium and vanadium, are known to increase sensitivity to LFM. Manganese dispersoids have also been found to delay recrystallization and thus increase sensitivity to LFM. The amount and size of the manganese dispersoid varies depending on the processing route of the brazing sheet.

ろう付け用途には、ろう付けシート製品のコア合金は、強度と成型性の良好な組合せを必要とする。明らかに、LFMに対する感受性は、十分な耐食性およびろう付け性を確保するために、十分に低い必要がある。高い強度は、ケイ素、マンガン、クロム、ジルコニウムまたはバナジウムのような元素と合金化することにより、得ることができる。しかし、これらの合金化元素は、LFMに対する感受性も高くする。非O−焼戻し、例えばH14焼戻しまたはH24−焼戻しも、LFMに対する感受性を下げるのに提案されている。しかし、これらの焼戻しは、LFMを効果的に下げるが、ろう付けシート製品の成型性を犠牲にすることが多い。他の代替処理、例えば軽度の冷間変形、例えば張力レベリング、または非再結晶化された表面層の使用、は、大量生産で制御するのが困難であり、従って、再現性および/または成型性を損なうことがある。   For brazing applications, the core alloy of the brazed sheet product requires a good combination of strength and formability. Obviously, the sensitivity to LFM needs to be low enough to ensure sufficient corrosion resistance and brazeability. High strength can be obtained by alloying with elements such as silicon, manganese, chromium, zirconium or vanadium. However, these alloying elements also increase the sensitivity to LFM. Non-O-tempering, such as H14 tempering or H24-tempering, has also been proposed to reduce sensitivity to LFM. However, these tempers effectively lower the LFM, but often sacrifice the moldability of the brazed sheet product. Other alternative processes, such as mild cold deformation, such as tension leveling, or the use of non-recrystallized surface layers, are difficult to control in mass production and are therefore reproducible and / or formable. May be damaged.

本発明の目的は、ろう付けシートにおけるコア合金として使用した時の液体被膜移行耐性が改良されており、合金の良好な強度/成型性の組合せが、LFMに対する十分に低い感受性および十分な耐食性と組み合わされている、Al−Mn合金シートを提供することである。   The object of the present invention is to improve the liquid film migration resistance when used as a core alloy in a brazing sheet, and the good strength / formability combination of the alloy results in sufficiently low sensitivity to LFM and sufficient corrosion resistance. It is to provide a combined Al-Mn alloy sheet.

制御し易く、再現性のある製品が得られる該Al−Mn合金シートを提供することも本発明の目的である。   It is also an object of the present invention to provide the Al—Mn alloy sheet that is easy to control and provides a reproducible product.

折り曲げ管、蒸発装置またはオイルクーラーコアプレート、フィン材料、等、における液体被膜移行耐性が改良されており、合金の良好な強度/成型性の組合せが、LFMに対する十分に低い感受性、良好なろう付け性および十分な耐食性と組み合わされている、Al−Mn合金シートを提供することも本発明の目的である。   Improved liquid film migration resistance in bent tubes, evaporators or oil cooler core plates, fin materials, etc., and good strength / formability combination of the alloy, low enough sensitivity to LFM, good brazing It is also an object of the present invention to provide an Al-Mn alloy sheet, which is combined with the properties and sufficient corrosion resistance.

本発明により、これらの目的の一つ以上は、ろう付けシートにおけるコア合金として使用した時の液体被膜移行耐性が改良されているAl−Mn合金シートの製造方法であって、
・(重量%で)
0.5<Mn≦1.7、好ましくは0.6〜1.7、
0.06<Cu≦1.5、好ましくは0.2〜1.5、
Si≦1.3、好ましくはSi≦0.8、より好ましくはSi≦0.3、
Mg≦0.25、
Ti<0.2、
Zn≦2.0、
Fe≦0.5、
0.05<Zr≦0.25および0.05<Cr≦0.25からなる元素群の少なくとも一種の元素
他の元素それぞれ<0.05および合計<0.20
を含んでなり、残りがAlである組成物を鋳造する工程、
・均質化および予備加熱する工程、
・熱間圧延する工程、
・冷間圧延(必要な場合、中間の焼きなましを包含する)する工程
を含んでなり、該均質化を、少なくとも450℃の温度で、少なくとも1時間行い、続いて少なくとも20℃/hの速度で空気冷却し、該予備加熱を、少なくとも400℃の温度で、少なくとも0.5時間行う、方法により達成される。
According to the present invention, one or more of these objects is a method for producing an Al-Mn alloy sheet with improved liquid film migration resistance when used as a core alloy in a brazing sheet,
・ (By weight)
0.5 <Mn ≦ 1.7, preferably 0.6 to 1.7,
0.06 <Cu ≦ 1.5, preferably 0.2 to 1.5,
Si ≦ 1.3, preferably Si ≦ 0.8, more preferably Si ≦ 0.3,
Mg ≦ 0.25,
Ti <0.2,
Zn ≦ 2.0,
Fe ≦ 0.5,
At least one element of the element group consisting of 0.05 <Zr ≦ 0.25 and 0.05 <Cr ≦ 0.25 Other elements <0.05 and total <0.20
Casting a composition comprising the remainder of Al,
・ Homogenization and preheating process,
・ Hot rolling process,
-Cold rolling (including intermediate annealing if necessary), the homogenization being carried out at a temperature of at least 450 ° C for at least 1 hour, followed by a rate of at least 20 ° C / h Air-cooled and the preheating is accomplished by a method of performing at a temperature of at least 400 ° C. for at least 0.5 hours.

鋳造は、通常の製造技術、例えばDC鋳造または連続鋳造、を使用して行う。   Casting is performed using conventional manufacturing techniques such as DC casting or continuous casting.

本発明の方法により、ろう付けシートにおけるコア合金として使用した時に、良好な強度/成型性の組合せを、LFMに対する十分に低い感受性および十分な耐食性と組み合わせた、Al−Mn合金を製造することができる。本発明者らは、驚くべきことに、クロムは、クロムの、合金の再結晶を遅延させる効果のために、LFMに対する感受性に悪影響を及ぼすとされているが、本合金の化学組成および処理パラメータ、特に均質化および予備加熱工程、の組合せにより、LFMに対する十分に低い感受性を備え、従って、十分な耐食性を有する製品が得られることを見出した。組成と処理条件の組合せにより合金中に形成されるCr含有および/またはZr含有析出物が、LFMに対する感受性を下げるのである。また、クロムが合金を強化し、合金の再結晶化が、十分な成型性をもたらす。本発明者らは、Vと合金化することにより、あるいはVとCrおよび/またはZrの組合せと合金化しても、同様の結果が得られることを見出した。   The method of the present invention can produce an Al-Mn alloy that combines a good strength / formability combination with a sufficiently low sensitivity to LFM and sufficient corrosion resistance when used as a core alloy in a brazed sheet. it can. The inventors have surprisingly found that chromium adversely affects the sensitivity of LFM to LFM due to its effect of retarding the recrystallization of the alloy, but the chemical composition and processing parameters of the alloy. It has been found that, in particular, a combination of homogenization and preheating steps gives a product with a sufficiently low sensitivity to LFM and thus with a sufficient corrosion resistance. Cr-containing and / or Zr-containing precipitates formed in the alloy by a combination of composition and processing conditions reduce the sensitivity to LFM. Chromium strengthens the alloy and recrystallization of the alloy provides sufficient formability. The present inventors have found that similar results can be obtained by alloying with V or by alloying with a combination of V and Cr and / or Zr.

本発明の一実施態様では、Crおよび/またはZr含有量は少なくとも0.08%である。本発明者らは、少なくとも0.08%のクロム含有量あるいは少なくとも0.08%のジルコニウム含有量またはそれらの組合せを、上記の処理条件と組み合わせた場合、より高い強度を、十分なLFM耐性との組合せで得られることを見出した。   In one embodiment of the invention, the Cr and / or Zr content is at least 0.08%. The inventors have found that when a chromium content of at least 0.08% or a zirconium content of at least 0.08% or a combination thereof is combined with the above processing conditions, a higher strength is achieved with sufficient LFM resistance. It was found that a combination of

本発明の一実施態様では、マグネシウムの最大含有量は0.1%、好ましくはマグネシウムの最大含有量は0.05%である。マグネシウム含有量は、制御された雰囲気におけるろう付けの際に使用するフラックスに対するマグネシウムの有害な影響を回避するために、できるだけ低くすべきである。本発明の一実施態様では、銅含有量は0.7〜1.2%である。   In one embodiment of the invention, the maximum magnesium content is 0.1%, preferably the maximum magnesium content is 0.05%. The magnesium content should be as low as possible to avoid the deleterious effects of magnesium on the flux used during brazing in a controlled atmosphere. In one embodiment of the invention, the copper content is 0.7-1.2%.

本発明の一実施態様では、マンガン含有量は0.7〜1.4%である。マンガン含有量が1.4%を超えると、加工がより困難になり、0.7%未満では、合金の強度が不十分になる。本発明の一実施態様では、亜鉛の最大含有量は、ある種の用途でコア合金が過度に陽極性になるのを阻止するために、好ましくは0.4%である。本発明の一実施態様では、鉄含有量は、工業的鋳造作業の際に好ましくない大きな鉄含有金属間化合物の形成を阻止するために、好ましくは0.35%未満である。   In one embodiment of the invention, the manganese content is 0.7-1.4%. If the manganese content exceeds 1.4%, the processing becomes more difficult, and if it is less than 0.7%, the strength of the alloy becomes insufficient. In one embodiment of the present invention, the maximum zinc content is preferably 0.4% in order to prevent the core alloy from becoming too anodic in certain applications. In one embodiment of the invention, the iron content is preferably less than 0.35% in order to prevent the formation of large iron-containing intermetallic compounds which are not preferred during industrial casting operations.

本発明の一実施態様では、均質化を、温度約530℃〜620℃、好ましくは530〜595℃で、好ましくは1〜25時間、より好ましくは10〜16時間行い、予備加熱を温度約400℃〜530℃、好ましくは420〜510℃で、好ましくは1〜25時間、より好ましくは1〜10時間行う。本発明の合金では、強度、成型性、LFMに対する感受性および耐食性間の最良の折衷点は、均質化の温度と時間、および予備加熱の温度と時間を、特定の限度内で選択した時に得られること、および特に重要な折衷点は、上記の好ましい温度および時間により、合金を処理した時に得られると思われる。   In one embodiment of the invention, the homogenization is carried out at a temperature of about 530 ° C. to 620 ° C., preferably 530 to 595 ° C., preferably 1 to 25 hours, more preferably 10 to 16 hours, and the preheating is carried out at a temperature of about 400 C. to 530.degree. C., preferably 420 to 510.degree. C., preferably 1 to 25 hours, more preferably 1 to 10 hours. In the alloys of the present invention, the best compromise between strength, formability, sensitivity to LFM and corrosion resistance is obtained when the temperature and time of homogenization and the temperature and time of preheating are selected within specified limits. This and particularly important compromise appears to be obtained when the alloy is processed at the preferred temperatures and times described above.

当業者には公知のように、焼きなましの時間および温度は、通常は独立して選択しない。ほとんどの関連する冶金学的過程は熱的に活性化され、高温と短時間の組合せが、低温と長時間の組合せと同じ結果になる。   As is known to those skilled in the art, the annealing time and temperature are usually not independently selected. Most related metallurgical processes are thermally activated, and the combination of high temperature and short time results in the same result as the combination of low temperature and long time.

本発明の処理も、Al−Mn合金の実質的に完全な再結晶化を促進するのに十分な焼きなまし温度−焼きなまし時間の組合せで冷間圧延した後に、再結晶化焼きなましを含んでなる。この条件で、最高の成型性が達成される。   The process of the present invention also comprises recrystallization annealing after cold rolling with a combination of annealing temperature-annealing time sufficient to promote substantially complete recrystallization of the Al-Mn alloy. Under this condition, the best moldability is achieved.

本発明の一実施態様では、Al−Mn合金の最大ケイ素含有量は0.3重量%である。本発明の好ましい実施態様では、Al−Mn合金の最大ケイ素含有量は0.15重量%である。ケイ素は、LFMに対する感受性を増大させることが分かっている。従って、ケイ素含有量は、できるだけ低く選択すべきである。しかし、本発明者らは、0.3%までの、好ましくは0.15%までのケイ素含有量を使用した時に、LFMに対する感受性と強度の十分な組合せが得られることを見出した。   In one embodiment of the invention, the maximum silicon content of the Al—Mn alloy is 0.3% by weight. In a preferred embodiment of the invention, the maximum silicon content of the Al—Mn alloy is 0.15% by weight. Silicon has been found to increase sensitivity to LFM. Therefore, the silicon content should be chosen as low as possible. However, the inventors have found that a sufficient combination of sensitivity and strength to LFM is obtained when using silicon contents up to 0.3%, preferably up to 0.15%.

本発明の一実施態様では、Cr≦0.18%、好ましくは少なくとも0.06%、より好ましくは0.08%<Cr≦0.15%、さらに好ましくは0.08%<Cr≦0.12%である。Crレベルが0.18%を超えると、大きな金属間化合物が形成される結果、Al−Mn合金の鋳造が非常に困難になる。Cr含有量が0.15%未満または0.12未満であるAl−Mn合金の鋳造は問題を引き起こさない。少なくとも0.08%のCrを添加することにより、その、LFMに対する感受性への影響と、上記の処理条件の組合せにより、LFMに対する感受性と強度の十分な組合せが得られる。組成と処理条件の組合せにより合金中に形成される析出物は、LFMに対する感受性を低減させる。本発明の一実施態様で、本方法は、Al−Mn合金を、少なくとも片側で、所望によりZn2.0%までを含んでなるAA−4000シリーズまたはAl−Siろう付け合金でクラッド加工することを含んでなる。クラッド加工は、例えばロールボンディングまたは他のいずれかの、公知の技術、例えばスプレークラッド加工または鋳造クラッド加工、により行うことができる。   In one embodiment of the invention, Cr ≦ 0.18%, preferably at least 0.06%, more preferably 0.08% <Cr ≦ 0.15%, and even more preferably 0.08% <Cr ≦ 0. 12%. When the Cr level exceeds 0.18%, a large intermetallic compound is formed, and as a result, casting of an Al—Mn alloy becomes very difficult. Casting Al-Mn alloys with a Cr content of less than 0.15% or less than 0.12 does not cause problems. By adding at least 0.08% Cr, the combination of its effect on LFM sensitivity and the above treatment conditions provides a sufficient combination of LFM sensitivity and strength. Precipitates formed in the alloy by a combination of composition and processing conditions reduce the sensitivity to LFM. In one embodiment of the present invention, the method comprises cladding an Al-Mn alloy at least on one side with an AA-4000 series or Al-Si brazing alloy optionally comprising up to 2.0% Zn. Comprising. The cladding can be performed by, for example, roll bonding or any other known technique, such as spray cladding or cast cladding.

本発明は、上記の方法で製造された、ろう付け前の伸長が少なくとも18%、好ましくは少なくとも19%、より好ましくは少なくとも21%である、および/またはろう付け前のn−値が少なくとも0.270である、および/またはろう付け後の引張強度が少なくとも140MPa、好ましくは少なくとも150MPaであるシートであって。伸長は、ゲージ長さ80mmにわたって測定し、A80とも呼ばれる。   The present invention provides a process produced by the above method having an elongation before brazing of at least 18%, preferably at least 19%, more preferably at least 21% and / or an n-value of at least 0 before brazing. .270 and / or a sheet having a tensile strength after brazing of at least 140 MPa, preferably at least 150 MPa. Elongation is measured over a gauge length of 80 mm and is also referred to as A80.

本発明の一実施態様では、ろう付け後の試験片をASTM G85A3により試験した時に、孔が開くまでの時間に関して測定し、日数で表す、孔が生じないSWAAT寿命が少なくとも15日間、好ましくは少なくとも20日間である。LFMに対する低い感受性は、ろう付け後に形成された熱交換機部品における改良された耐食性に反映されている。   In one embodiment of the invention, when the specimen after brazing is tested according to ASTM G85A3, the SWAAT lifetime, measured in terms of the time to open the hole and expressed in days, with no holes formed is at least 15 days, preferably at least 20 days. The low sensitivity to LFM is reflected in improved corrosion resistance in heat exchanger components formed after brazing.

本発明の一実施態様では、上記のシートを、折り曲げ管における非ろう付けライナーあるいは水側ライナー合金、例えばZnを0.5〜5.0%、好ましくは0.5〜2.5%の範囲内で含む、AA7072、AA1145またはAA3005またはAl−Mn型合金、を備えた、または備えていないろう付けシートにおけるコアとして、もしくは類似の条件下で使用する用途に使用する。強度、成型性、LFM感受性および耐食性に関する必要条件は、シートの、例えば折り曲げ管を使用する熱交換機用ろう付けシートのコアとしての用途に特に重要である。   In one embodiment of the present invention, the above sheet is made of a non-brazing liner or water side liner alloy in a bent tube, such as Zn in the range of 0.5-5.0%, preferably 0.5-2.5%. Used in, for use as a core in brazing sheets with or without AA7072, AA1145 or AA3005 or Al-Mn type alloys, or for use under similar conditions. The requirements regarding strength, formability, LFM sensitivity and corrosion resistance are particularly important for the application of the sheet, for example as the core of a brazing sheet for heat exchangers using folded tubes.

上記の方法により製造されたシート材料は、管−フィン型熱交換機、例えばラジエータ、ヒーターコアおよびコンデンサー、の部品の製造において、あるいはプレート−フィン型熱交換機、例えば蒸発装置またはオイルクーラーコアプレートまたはラジエータまたはヒーターコアのタンク、の部品の製造において、フィン原材料をろう付けする際の、ろう付けシートのコア合金として使用するのに特に好適である。   The sheet material produced by the above method is used in the manufacture of parts of tube-fin heat exchangers, such as radiators, heater cores and condensers, or in plate-fin heat exchangers, such as evaporators or oil cooler core plates or radiators. It is also particularly suitable for use as a core alloy for brazing sheets when brazing fin raw materials in the manufacture of heater core tank parts.

ここで、本発明の具体的な実施態様を、下記の非限定的な例により説明する。   Specific embodiments of the invention will now be illustrated by the following non-limiting examples.

表1 本発明により製造した合金の例

合金 Cu Fe Si Mn Mg Ti Cr Zr
1(基準) 0.76 0.18 0.10 1.14 0.03 0.13 <0.01 <0.01
2 0.80 0.21 0.09 1.15 0.05 0.13 0.05 0.05
3 0.78 0.21 0.09 1.20 0.03 0.13 0.11 <0.01
4 0.78 0.20 0.08 1.16 0.02 0.12 0.15 <0.01
5 0.72 0.20 0.07 1.21 0.01 0.14 0.08 <0.01
6 0.76 0.15 0.08 1.19 0.01 0.12 0.06 <0.01
標準 0.5- <0.5 <0.3 0.65- <0.02 0.08- - -
0.7 1.0 0.10
他の元素は各<0.05で、合計<0.20、残りがAlである。
Table 1 Examples of alloys produced according to the invention

Alloy CuFeSiMnMgTiCrCrZr
1 (Standard) 0.76 0.18 0.10 1.14 0.03 0.13 <0.01 <0.01
2 0.80 0.21 0.09 1.15 0.05 0.13 0.05 0.05
3 0.78 0.21 0.09 1.20 0.03 0.13 0.11 <0.01
4 0.78 0.20 0.08 1.16 0.02 0.12 0.15 <0.01
5 0.72 0.20 0.07 1.21 0.01 0.14 0.08 <0.01
6 0.76 0.15 0.08 1.19 0.01 0.12 0.06 <0.01
Standard 0.5- <0.5 <0.3 0.65- <0.02 0.08---
0.7 1.0 0.10
The other elements are each <0.05, the total is <0.20, and the rest is Al.

これらの合金(合金1−4)を、様々な温度で様々な時間、均質化処理にかけた。続いて、これらの合金の両側を、AA4045で、各片側で厚さの10%にクラッド加工し、続いて熱間圧延前の予備加熱を様々な温度で様々な時間行い、6.5mmに熱間圧延し、続いて中間焼きなましを350℃で3時間行い、2.3mmに第一冷間圧延し、再度中間焼きなましを350℃で3時間行い、最終ゲージ0.5mmに第二冷間圧延した。合金は、再結晶化焼きなまし処理にかけ、実質的に完全な再結晶化を促進した。LFM挙動を試験するために、材料を2〜10%伸長した。最も深い浸透を示した伸長レベルを、表2のLFMデータに使用した。   These alloys (Alloy 1-4) were subjected to a homogenization treatment at various temperatures for various times. Subsequently, both sides of these alloys are clad with AA4045 to 10% of the thickness on each side, followed by preheating before hot rolling at various temperatures for various times and heat to 6.5 mm. Followed by intermediate annealing at 350 ° C. for 3 hours, first cold rolling to 2.3 mm, intermediate annealing again at 350 ° C. for 3 hours, and second cold rolling to a final gauge of 0.5 mm . The alloy was subjected to a recrystallization annealing process to promote substantially complete recrystallization. In order to test LFM behavior, the material was stretched 2-10%. The extension level that showed the deepest penetration was used for the LFM data in Table 2.

合金5および6の両側を、AA4045で、各片側で厚さの10%にクラッド加工し、続いて熱間圧延前の予備加熱を行い、続いて、中間焼きなましを行わずに、3.5mmに熱間圧延し、0.41mmに冷間圧延した。冷間圧延後、材料を再結晶化焼きなまし処理にかけ、実質的に完全な再結晶化を促進した。LFM挙動を上記のように試験した。結果を表2に示す。「標準」と呼ばれる合金は、LFMが問題となる用途に使用する合金である。表2中、
・「+/−」は、コア合金厚さの50および60%浸透を意味する。
・「+」は、コア合金厚さの30および50%浸透を意味する。
・「++」は、コア合金厚さの<30%浸透を意味する。
Both sides of Alloys 5 and 6 are clad with AA 4045 to 10% of thickness on each side, followed by preheating prior to hot rolling, followed by 3.5 mm without intermediate annealing. Hot rolled and cold rolled to 0.41 mm. After cold rolling, the material was subjected to a recrystallization annealing process to promote substantially complete recrystallization. LFM behavior was tested as described above. The results are shown in Table 2. An alloy called “standard” is an alloy used in applications where LFM is a problem. In Table 2,
“+/−” means 50 and 60% penetration of core alloy thickness.
“+” Means 30 and 50% penetration of the core alloy thickness.
“++” means <30% penetration of core alloy thickness.

伸長は、通常、大きなバラツキを示すので、成型性の別の指針としてn−値を使用することができる。少なくとも0.270のn−値は、少なくとも140MPaの最小強度条件に関して良好な成型性を示唆する。LFMが問題となる用途に使用する標準的な合金と比較して、本発明の合金、例えば表2における合金2−6、は、LFM性能は等しいが、ろう付け後の引張特性が著しく高い。   Elongation usually exhibits large variations, so the n-value can be used as another guide for moldability. An n-value of at least 0.270 suggests good moldability for a minimum strength condition of at least 140 MPa. Compared to standard alloys used in applications where LFM is an issue, the alloys of the present invention, such as Alloy 2-6 in Table 2, have the same LFM performance but significantly higher tensile properties after brazing.

表2 本発明により製造した合金の例(2−4、5)および基準合金(1)(n.d.=測定せず)

合金 均質化 予備加熱 ろう付け前 ろう付け後 SWAAT試験片 LFM
℃/h ℃/h A80 n-値 0.2PS UTS 孔発生まで 耐性
% MPa MPa の日数 *
1 610/8 430/24 17.4 0.264 60 133 26 +/-
2 610/8 430/24 21.2 0.276 69 152 38 +
3 610/8 490/24 19.4 0.296 63 155 >40 +
3 610/8 490/2 19.4 0.286 66 152 >40 +
3 610/24 430/24 21.7 0.285 61 153 >40 +
3 580/12 430/5 19.5 0.300 68 156 37 +
3 580/12 490/2 22.2 0.304 62 152 35 ++
3 550/12 490/24 18.6 0.307 66 157 22 +
3 550/12 490/2 24.5 0.300 65 159 29 ++
4 610/8 430/24 21.1 0.277 70 153 33 ++
5 610/10 430/1 24.0 0.282 61 155 24 ++
6 610/10 430/1 n.d. n.d. n.d. n.d. n.d. ++
標準 n.d. n.d. 50 130 n.d. ++
Table 2 Examples of alloys produced according to the invention (2-4, 5) and reference alloy (1) (nd = not measured)

Alloy Homogenization Preheating Before brazing After brazing SWAAT specimen LFM
℃ / h ℃ / h A80 n-value 0.2PS Resistance to UTS generation
% MPa MPa days *
1 610/8 430/24 17.4 0.264 60 133 26 +/-
2 610/8 430/24 21.2 0.276 69 152 38 +
3 610/8 490/24 19.4 0.296 63 155> 40 +
3 610/8 490/2 19.4 0.286 66 152> 40 +
3 610/24 430/24 21.7 0.285 61 153> 40 +
3 580/12 430/5 19.5 0.300 68 156 37 +
3 580/12 490/2 22.2 0.304 62 152 35 ++
3 550/12 490/24 18.6 0.307 66 157 22 +
3 550/12 490/2 24.5 0.300 65 159 29 ++
4 610/8 430/24 21.1 0.277 70 153 33 ++
5 610/10 430/1 24.0 0.282 61 155 24 ++
6 610/10 430/1 ndndndndnd ++
Standard ndnd 50 130 nd ++

本発明の方法を使用して製造することができるもう一種の特別な合金は、重量%で、下記の組成範囲を有する。
・Si 0.8〜1.0、典型的には約0.9
・Fe 0.25〜0.4、典型的には約0.35
・Cu 0.25〜0.45、典型的には約0.40
・Mn 0.55〜0.9、典型的には約0.85
・Mg 0.1〜0.22、典型的には約0.15
・Zn 0.06〜0.10、典型的には約0.08
・Cr 0.06〜0.10、典型的には約0.08
・Zr 0.06〜0.10、典型的には約0.08
・残りがアルミニウムおよび不可避な不純物
この合金は、とりわけ、チューブプレート、サイドサポートおよびヘッダータングステンに使用できる。
Another special alloy that can be produced using the method of the present invention, in weight percent, has the following compositional range:
Si 0.8-1.0, typically about 0.9
Fe 0.25-0.4, typically about 0.35
Cu 0.25-0.45, typically about 0.40
Mn 0.55-0.9, typically about 0.85
Mg 0.1-0.22, typically about 0.15
Zn 0.06 to 0.10, typically about 0.08
Cr 0.06-0.10, typically about 0.08
Zr 0.06-0.10, typically about 0.08
Aluminum remaining and inevitable impurities This alloy can be used for tube plates, side supports and header tungsten, among others.

無論、本発明は、上記の実施態様および例に限定されるものではなく、説明および請求項の範囲内に入る全ての実施態様を包含する。   Of course, the present invention is not limited to the embodiments and examples described above, but encompasses all embodiments that fall within the scope of the description and claims.

Claims (17)

ろう付けシートにおけるコア合金として使用した時液体被膜移行耐性を有するAl−Mn合金シートの製造方法であって、
・(重量%で)
0.5<Mn≦1.7、
0.7<Cu≦1.2、
Si≦0.15、
Mg≦0.05、
Ti0.12〜0.14
Fe≦0.5、
0.05<Cr≦0.25
他の元素それぞれ<0.05および合計<0.20
を含んでなり、残りがAlである組成物を鋳造し、
・均質化処理し、
・Al−Mn合金の両側をAl−Siろう付け合金でクラッドし、
・予備加熱し、
・熱間圧延し、
・冷間圧延する
工程を含んでなり、前記均質化を、530℃〜620℃の温度で、1〜25時間行い、続いて少なくとも20℃/hの速度で空気冷却し、前記予備加熱を、400℃〜530℃の温度で、1〜25時間行う、方法。
A Al-Mn alloy sheet manufacturing method having the liquid film migration resistance when used as core alloy in brazing sheet,
・ (By weight)
0.5 <Mn ≦ 1.7,
0.7 <Cu ≦ 1.2,
Si ≦ 0.15,
Mg ≦ 0.05,
Ti 0.12-0.14 ,
Fe ≦ 0.5,
0.05 <Cr ≦ 0.25
<0.05 and total <0.20 for each other element
Casting a composition comprising the remainder of Al,
・ Homogenization treatment
・ Clad both sides of Al-Mn alloy with Al-Si brazing alloy,
・ Preheat,
・ Hot rolling
A step of cold rolling, wherein the homogenization is performed at a temperature of 530 ° C. to 620 ° C. for 1 to 25 hours, followed by air cooling at a rate of at least 20 ° C./h, and the preheating, The method of performing at the temperature of 400 to 530 degreeC for 1 to 25 hours.
前記冷間圧延が中間の焼きなましを伴って行われる、請求項1に記載の方法。   The method according to claim 1, wherein the cold rolling is performed with intermediate annealing. Mnが0.7〜1.4%である、請求項1または2に記載の方法。   The method according to claim 1 or 2, wherein Mn is 0.7 to 1.4%. Cr≦0.18である、請求項1〜3のいずれか一項に記載の方法。   The method according to claim 1, wherein Cr ≦ 0.18. 0.08<Cr≦0.15である、請求項1〜4のいずれか一項に記載の方法。   The method according to claim 1, wherein 0.08 <Cr ≦ 0.15. 0.08<Cr≦0.12である、請求項1〜5のいずれか一項に記載の方法。   The method according to claim 1, wherein 0.08 <Cr ≦ 0.12. 前記Al−Mn合金の両側が、Al−Siろう付け合金でクラッドされ、かつ、前記Al−Mn合金が、Znを0.5〜5.0%の範囲内で含む、AA7072、AA1145、AA3005およびAl−Mn型合金からなる群から選択される非ろう付けライナー合金を有する、請求項1〜のいずれか一項に記載の方法。 AA7072, AA1145, AA3005 , wherein both sides of the Al-Mn alloy are clad with an Al-Si brazing alloy, and the Al-Mn alloy contains Zn in a range of 0.5 to 5.0%. that it has a non braze liner alloy selected from the group consisting of al-Mn type alloy, the method according to any one of claims 1-6. 前記Al−Mn合金の両側が、Al−Siろう付け合金でクラッドされ、かつ、前記Al−Mn合金が、Znを0.5〜2.5%の範囲内で含む、AA7072、AA1145、AA3005およびAl−Mn型合金からなる群から選択される非ろう付けライナー合金を有する、請求項1〜のいずれか一項に記載の方法。 AA7072, AA1145, AA3005 , wherein both sides of the Al-Mn alloy are clad with an Al-Si brazing alloy, and the Al-Mn alloy contains Zn in the range of 0.5-2.5%; that it has a non braze liner alloy selected from the group consisting of al-Mn type alloy, the method according to any one of claims 1-6. ろう付け前の伸長が少なくとも18%である、請求項1〜のいずれか一項に記載の方法。 It is before brazing elongation of at least 18% A method according to any one of claims 1-8. ろう付け前の伸長が少なくとも19%である、請求項に記載の方法。 10. A method according to claim 9 , wherein the elongation before brazing is at least 19%. ろう付け後の引張強度が少なくとも140MPaである、請求項に記載の方法。 The method according to claim 9 , wherein the tensile strength after brazing is at least 140 MPa. ろう付け後の引張強度が少なくとも150MPaである、請求項11に記載の方法。 The method of claim 11 , wherein the tensile strength after brazing is at least 150 MPa. ろう付け前のn−値が少なくとも0.270である、請求項9〜12のいずれか一項に記載の方法。 13. A method according to any one of claims 9 to 12 , wherein the n-value prior to brazing is at least 0.270. ろう付け後の試験片をASTM G85A3により試験した時に、孔が生じないSWAAT寿命が少なくとも15日間である、請求項9〜13のいずれか一項に記載の方法。 14. A method according to any one of claims 9 to 13 wherein the SWAAT lifetime without holes is at least 15 days when the brazed specimen is tested according to ASTM G85A3. 請求項1〜のいずれか一項に記載の方法により製造されたシートまたは請求項9〜14のいずれか一項に記載の方法により製造されたシートの、ラジエータ、ヒーターコアおよびコンデンサーからなる群から選択される管−フィン型熱交換機の部品の製造用のろう付けシートのコア合金としての使用。 A group consisting of a radiator, a heater core and a condenser of a sheet produced by the method according to any one of claims 1 to 8 or a sheet produced by the method according to any one of claims 9 to 14. Use of a brazed sheet as a core alloy for the manufacture of parts of a tube-fin heat exchanger selected from: 請求項1〜のいずれか一項に記載の方法により製造されたシートまたは請求項9〜14のいずれか一項に記載の方法により製造されたシートの、蒸発装置、オイルクーラーコアプレート、ラジエータのタンクおよびヒーターコアから選択されるプレート−フィン型熱交換機の部品の製造用のろう付けシートのコア合金としての使用。 An evaporator, an oil cooler core plate, and a radiator of a sheet manufactured by the method according to any one of claims 1 to 8 or a sheet manufactured by the method according to any one of claims 9 to 14. As a core alloy of brazing sheets for the production of parts of plate-fin heat exchangers selected from tanks and heater cores. 請求項1〜のいずれか一項に記載の方法により製造されたシートまたは請求項9〜14のいずれか一項により製造されたシートの、熱交換機用部品の製造を意図するフィン原材料をろう付けする際のコア合金としての使用。 A fin raw material intended for the manufacture of heat exchanger components of a sheet produced by the method according to any one of claims 1-8 or a sheet produced according to any one of claims 9-14. Use as a core alloy when attaching.
JP2007513822A 2004-05-26 2005-05-25 Aluminum alloy brazing sheet manufacturing method and aluminum alloy brazing sheet Active JP5326123B2 (en)

Applications Claiming Priority (7)

Application Number Priority Date Filing Date Title
EP04076545.5 2004-05-26
EP04076545 2004-05-26
EP04076785.7 2004-06-18
EP04076785 2004-06-18
EP04077623 2004-09-23
EP04077623.9 2004-09-23
PCT/EP2005/005751 WO2005118899A1 (en) 2004-05-26 2005-05-25 Process for producing an aluminium alloy brazing sheet, aluminium alloy brazing sheet

Publications (2)

Publication Number Publication Date
JP2008500453A JP2008500453A (en) 2008-01-10
JP5326123B2 true JP5326123B2 (en) 2013-10-30

Family

ID=34968764

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007513822A Active JP5326123B2 (en) 2004-05-26 2005-05-25 Aluminum alloy brazing sheet manufacturing method and aluminum alloy brazing sheet

Country Status (8)

Country Link
EP (1) EP1753885B2 (en)
JP (1) JP5326123B2 (en)
KR (1) KR101216246B1 (en)
CN (1) CN1973056B (en)
CA (1) CA2565978C (en)
HU (1) HUE032303T2 (en)
MX (1) MXPA06013571A (en)
WO (1) WO2005118899A1 (en)

Families Citing this family (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5704835B2 (en) * 2009-05-27 2015-04-22 株式会社神戸製鋼所 Aluminum alloy brazing sheet for heat exchanger
JP5515944B2 (en) * 2010-03-29 2014-06-11 マツダ株式会社 Aluminum alloy
CN101798645B (en) * 2010-04-17 2012-01-04 上海交通大学 Aluminum alloy for heat exchanger fins and preparation method thereof
JP5737798B2 (en) * 2010-07-08 2015-06-17 三菱アルミニウム株式会社 Aluminum alloy brazing sheet excellent in strength and formability and method for producing the same
CN102061432B (en) * 2010-12-20 2013-11-06 中国电力科学研究院 Aluminum layer heat treatment process for acoustic board
CN103122428A (en) * 2011-11-18 2013-05-29 萨帕铝热传输(上海)有限公司 Brazing aluminum alloy composite pipe and production method thereof
CA2856488C (en) 2011-12-16 2019-10-22 Novelis Inc. Aluminium fin alloy and method of making the same
EP2877317B2 (en) 2012-07-27 2022-07-27 Gränges Sweden AB Strip material with excellent corrosion resistance after brazing
EP2770071B9 (en) 2013-02-21 2020-08-12 Hydro Aluminium Rolled Products GmbH Aluminium alloy for the production of semi-finished products or components for motor vehicles, method for producing an aluminium alloy strip from this aluminium alloy and aluminium alloy strip and uses thereof
CN103290283A (en) * 2013-06-24 2013-09-11 靖江市新程汽车零部件有限公司 Thermal insulation board of automobile exhaust pipe and manufacturing method thereof
WO2015015767A1 (en) 2013-07-29 2015-02-05 株式会社Uacj Aluminum-alloy clad member, method for producing same, and heat exchanger using aluminum-alloy clad member
JP6673826B2 (en) * 2013-08-08 2020-03-25 ノベリス・インコーポレイテッドNovelis Inc. High strength aluminum alloy fin material for heat exchanger
CA2919193A1 (en) * 2013-08-08 2015-02-12 Novelis Inc. High strength aluminum alloy fin stock for heat exchanger
FR3018213B1 (en) 2014-03-06 2016-10-21 Constellium France MULTI-PLASTER SOLDERING SHEET
EP3174663B2 (en) 2014-07-30 2021-11-17 Aleris Rolled Products Germany GmbH Multi-layered alumium brazing sheet material
EP3177748B1 (en) 2014-08-06 2020-09-30 Novelis, Inc. Aluminum alloy for heat exchanger fins
US9909199B2 (en) 2014-09-12 2018-03-06 Novelis Inc. Alloys for highly shaped aluminum products and methods of making the same
CN105543575B (en) * 2015-12-21 2017-11-28 无锡市世达精密焊管制造有限公司 A kind of aluminium alloy plate ingot rich in silicon, copper and titanium elements and preparation method thereof
CN105648280A (en) * 2016-01-22 2016-06-08 济南大学 As-cast alloy material used for aluminum veneer and manufacturing method for as-cast alloy material
JP6604699B2 (en) * 2016-03-31 2019-11-13 株式会社デンソー Aluminum alloy clad material and method for producing the same
CN105886861B (en) * 2016-05-12 2017-08-22 宝鸡石油钢管有限责任公司 A kind of aluminium alloy is continuously managed and its manufacture method
KR102647952B1 (en) 2018-06-21 2024-03-14 아르코닉 테크놀로지스 엘엘씨 Corrosion-resistant high-strength brazed sheet
WO2020178507A1 (en) * 2019-03-04 2020-09-10 Constellium Neuf-Brisach Strip of aluminum alloy for manufacturing brazed heat exchangers
FR3093450A1 (en) * 2019-03-04 2020-09-11 Constellium Neuf-Brisach Aluminum alloy strip for the manufacture of brazed heat exchangers
CA3136605A1 (en) * 2019-04-24 2020-10-29 Arconic Technologies Llc Interliner for roll bonded brazing sheet
CN111394625A (en) * 2020-04-17 2020-07-10 江苏鼎胜新能源材料股份有限公司 Composite finned aluminum strip for air cooling of power station and preparation method thereof

Family Cites Families (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60251246A (en) * 1984-05-25 1985-12-11 Kobe Steel Ltd Water resistant brazing sheet for vacuum brazing and heat exchanger using said material
JPH0641621B2 (en) * 1986-03-31 1994-06-01 スカイアルミニウム株式会社 Aluminum alloy core material for brazing clad material
JPS6396253A (en) * 1986-10-11 1988-04-27 Mitsubishi Alum Co Ltd Production of al alloy brazing sheet having superior sag and corrosion resistance
US5260142A (en) 1990-12-28 1993-11-09 Honda Giken Kogyo Kabushiki Kaisha Corrosion-resistant clad material made of aluminum alloys
JPH0598376A (en) 1991-10-03 1993-04-20 Furukawa Alum Co Ltd Aluminum alloy sacrificial fin material for low temperature brazing and its production
JPH05171326A (en) * 1991-12-24 1993-07-09 Furukawa Alum Co Ltd Aluminum alloy fin material for low temperature brazing and its production
EP0718072B1 (en) * 1994-12-19 2003-07-09 Corus Aluminium Walzprodukte GmbH Brazing sheet
NL1004415C2 (en) 1996-11-04 1998-05-08 Hoogovens Alu Walzprod Gmbh Non heat-treatable aluminum alloy as core alloy for brazing sheet.
GB2321869B (en) 1997-02-10 2001-05-30 Furukawa Electric Co Ltd Aluminum alloy brazing sheet
JPH10265882A (en) * 1997-03-25 1998-10-06 Mitsubishi Heavy Ind Ltd Aluminum alloy heat exchanger
ES2192836T3 (en) 1998-04-29 2003-10-16 Corus Aluminium Walzprod Gmbh ALUMINUM ALLOY FOR USE IN A SET SOLDED BY STRONG WELDING.
JP4033562B2 (en) * 1998-09-11 2008-01-16 古河スカイ株式会社 Aluminum alloy heat exchanger brazing structure manufacturing method, aluminum alloy heat exchanger and brazed sheet molded body for heat exchanger
US6352789B1 (en) 1999-04-12 2002-03-05 Corus Aluminium Walzprodukte Gmbh Brazing sheet and method of making same
EP1158063A1 (en) 2000-05-22 2001-11-28 Norsk Hydro A/S Corrosion resistant aluminium alloy
FR2816534B1 (en) 2000-11-16 2003-01-31 Pechiney Rhenalu PROCESS FOR MANUFACTURING AN ALUMINUM ALLOY PLATED STRIP FOR THE MANUFACTURE OF BRAZED HEAT EXCHANGERS
US6923876B2 (en) 2000-11-16 2005-08-02 Pechiney Rhenalu Aluminum alloy strip manufacturing process for the manufacture of brazed heat exchangers
CN1826220A (en) 2003-07-18 2006-08-30 克里斯铝轧制品有限公司 High strength aluminium alloy brazing sheet

Also Published As

Publication number Publication date
KR20070058383A (en) 2007-06-08
CA2565978A1 (en) 2005-12-15
CN1973056A (en) 2007-05-30
JP2008500453A (en) 2008-01-10
EP1753885B2 (en) 2022-08-24
EP1753885B1 (en) 2016-12-28
KR101216246B1 (en) 2012-12-28
EP1753885A1 (en) 2007-02-21
CA2565978C (en) 2013-03-26
WO2005118899A1 (en) 2005-12-15
CN1973056B (en) 2010-11-24
HUE032303T2 (en) 2017-09-28
MXPA06013571A (en) 2007-03-15

Similar Documents

Publication Publication Date Title
JP5326123B2 (en) Aluminum alloy brazing sheet manufacturing method and aluminum alloy brazing sheet
US7407714B2 (en) Process by producing an aluminium alloy brazing sheet, aluminium alloy brazing sheet
JP5414991B2 (en) Aluminum alloy brazing sheet and method for manufacturing lightweight brazed heat exchanger assembly
CA2901314C (en) Brazing sheet core alloy for heat exchanger
JP2011202285A (en) Brazing sheet
CA2721747A1 (en) Sandwich material for brazing with high strength at high temperature
US20050211345A1 (en) High conductivity bare aluminum finstock and related process
CA2856488C (en) Aluminium fin alloy and method of making the same
JP2022517861A (en) How to manufacture brazing sheet products
EP1254965B1 (en) High strength aluminium tube material
JP5306836B2 (en) Aluminum alloy brazing sheet with excellent strength and corrosion resistance
JP2000119783A (en) Fin material made of aluminum alloy for heat exchanger and its production
JPH0237992A (en) Production of thin aluminum sheet for brazing
JPH0133547B2 (en)
JPS641544B2 (en)
JPH0448554B2 (en)
JPH08291377A (en) Production of high strength and high heat resistant fin material for heat exchanger
JP2004084015A (en) Method for producing aluminum alloy fin material for heat exchanger having excellent erosion resistance and strength

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080502

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110413

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110422

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20110722

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110726

A602 Written permission of extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A602

Effective date: 20110729

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20120420

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120816

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20121116

A912 Re-examination (zenchi) completed and case transferred to appeal board

Free format text: JAPANESE INTERMEDIATE CODE: A912

Effective date: 20130111

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20130702

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130702

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20130702

R150 Certificate of patent or registration of utility model

Ref document number: 5326123

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350