KR101216246B1 - Process for producing an aluminium alloy brazing sheet aluminium alloy brazing sheet - Google Patents

Process for producing an aluminium alloy brazing sheet aluminium alloy brazing sheet Download PDF

Info

Publication number
KR101216246B1
KR101216246B1 KR1020067027051A KR20067027051A KR101216246B1 KR 101216246 B1 KR101216246 B1 KR 101216246B1 KR 1020067027051 A KR1020067027051 A KR 1020067027051A KR 20067027051 A KR20067027051 A KR 20067027051A KR 101216246 B1 KR101216246 B1 KR 101216246B1
Authority
KR
South Korea
Prior art keywords
alloy
sheet
brazing
weight
core
Prior art date
Application number
KR1020067027051A
Other languages
Korean (ko)
Other versions
KR20070058383A (en
Inventor
스캇 윌리엄 할러
데르 호에벤 조브 안토니우스 반
클라우스 비에레게
아킴 뷔르게르
삼파스 데시칸
Original Assignee
코루스 엘.피.
코루스 알루미늄 발쯔프로두크테 게엠베하
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=34968764&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=KR101216246(B1) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by 코루스 엘.피., 코루스 알루미늄 발쯔프로두크테 게엠베하 filed Critical 코루스 엘.피.
Publication of KR20070058383A publication Critical patent/KR20070058383A/en
Application granted granted Critical
Publication of KR101216246B1 publication Critical patent/KR101216246B1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22FCHANGING THE PHYSICAL STRUCTURE OF NON-FERROUS METALS AND NON-FERROUS ALLOYS
    • C22F1/00Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working
    • C22F1/04Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working of aluminium or alloys based thereon
    • C22F1/053Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working of aluminium or alloys based thereon of alloys with zinc as the next major constituent
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22FCHANGING THE PHYSICAL STRUCTURE OF NON-FERROUS METALS AND NON-FERROUS ALLOYS
    • C22F1/00Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working
    • C22F1/04Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working of aluminium or alloys based thereon
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21BROLLING OF METAL
    • B21B3/00Rolling materials of special alloys so far as the composition of the alloy requires or permits special rolling methods or sequences ; Rolling of aluminium, copper, zinc or other non-ferrous metals
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C21/00Alloys based on aluminium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C21/00Alloys based on aluminium
    • C22C21/10Alloys based on aluminium with zinc as the next major constituent
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C21/00Alloys based on aluminium
    • C22C21/12Alloys based on aluminium with copper as the next major constituent
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C21/00Alloys based on aluminium
    • C22C21/12Alloys based on aluminium with copper as the next major constituent
    • C22C21/14Alloys based on aluminium with copper as the next major constituent with silicon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C21/00Alloys based on aluminium
    • C22C21/12Alloys based on aluminium with copper as the next major constituent
    • C22C21/16Alloys based on aluminium with copper as the next major constituent with magnesium

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Laminated Bodies (AREA)
  • Details Of Heat-Exchange And Heat-Transfer (AREA)
  • Continuous Casting (AREA)

Abstract

본 발명은 알루미늄합금 브레이징 시트 제조방법에 관한 것으로서, 브레이징 시트에서 코어 합금으로써 사용될 때 개선된 액상 막 이행 저항을 갖는 Al-Mn 합금 시트 제조방법에 있어서, 상기 단계는: 하기 조성(중량%)을 갖는 조성물을 주조하는 단계: 0.5 < Mn ≤ 1.7, 0.06 < Cu ≤ 1.5, Si ≤ 1.3, Mg ≤ 0.25, Ti < 0.2, Zn ≤ 2.0, Fe ≤ 0.5, 0.05 < Zr ≤ 0.25 및 0.05 < Cr ≤ 0.25로 구성된 그룹으로부터 선택된 하나 이상의 원소, 각각 < 0.05, 합계 < 2.0의 기타 원소, 잔부 알루미늄; 균질화 및 예열 단계; 열간압연 단계; 냉간압연 단계(필요시 중간 어닐링 포함)를 포함하며, 상기 균질화온도는 450℃ 이상에서 1시간 이상 동안 유지하고, 이어서 20 ℃/h 이상의 속도로 공냉하며, 상기 예열온도는 400℃ 이상에서 0.5시간 이상 동안 유지되는 것을 특징으로 한다.The present invention relates to a method for producing an aluminum alloy brazing sheet, the method of producing an Al-Mn alloy sheet having an improved liquid film transition resistance when used as a core alloy in a brazing sheet, wherein the steps include: Casting a composition having: 0.5 <Mn <1.7, 0.06 <Cu <1.5, Si <1.3, Mg <0.25, Ti <0.2, Zn <2.0, Fe <0.5, 0.05 <Zr <0.25 and 0.05 <Cr <0.25 One or more elements selected from the group consisting of: <0.05, other elements in total <2.0, balance aluminum; Homogenization and preheating step; Hot rolling step; Cold rolling step (including intermediate annealing if necessary), the homogenization temperature is maintained for more than 1 hour at 450 ℃ or more, then air-cooled at a rate of 20 ℃ / h or more, the preheating temperature is 0.5 hours at 400 ℃ or more It is characterized in that it is maintained during the above.

Description

알루미늄합금 브레이징 시트 제조방법 및 알루미늄합금 브레이징 시트{PROCESS FOR PRODUCING AN ALUMINIUM ALLOY BRAZING SHEET, ALUMINIUM ALLOY BRAZING SHEET}Manufacturing method of aluminum alloy brazing sheet and aluminum alloy brazing sheet {PROCESS FOR PRODUCING AN ALUMINIUM ALLOY BRAZING SHEET, ALUMINIUM ALLOY BRAZING SHEET}

본 발명은 브레이징 시트 재료에서의 코어 합금으로써 사용될 때 개선된 액상 막 이행 저항(liquid film migration resistance)을 갖는 Al-Mn합금 시트 제조방법에 관한 것이다. 또한, 본 발명은 상기 제조방법에 따라 제조된 Al-Mn 합금시트 및 상기 시트의 용도에 관한 것이다.The present invention relates to a method for producing an Al-Mn alloy sheet having improved liquid film migration resistance when used as a core alloy in a brazing sheet material. In addition, the present invention relates to an Al-Mn alloy sheet prepared according to the production method and the use of the sheet.

브레이징 적용에 있어서, "액상 막 이행" 즉 LFM(liquid film migration)으로 알려진 현상은 증발기, 라디에이터, 히터 코어 등과 같은 브레이징 제품의 전체 성능을 열화시킨다. 문헌에 있어서, 용어 "LFM"은 또한 "코어 용해" 또는 "코어 관통" 또는 "코어 침식"으로 언급된다. 본 명세서에서 용어 "LFM"은 이들 용어 모두에 관한 것으로 한다. LFM을 일으키는 정확한 메카니즘은 아직 완전하게 이해되지 않지만, LFM의 심각성은 브레이징 시트의 코어 합금에서의 소정 양의 전위(dislocation)의 존재에 의해 증강되는 것 같다. LFM에 대한 재료의 민감성(sensitivity)은 동일한 재료의 연약 냉간가공 상태(soft and slightly cold worked condition)와 비교하여 완전 어닐링(O-템퍼)과 응력경화 및/또는 응력풀림템퍼(예컨대 H14, H24 등)에서 비교적 낮다. 용어 "약 냉간가공(slight cold working)"은 전형적으로 증발기 또는 오일쿨러 코어 플레이트, 접혀진 튜브와 같은 열교환기의 구성부품을 제조하는데 적용되는 스탬핑, 롤포밍 또는 인장 레벨링과 같은 산업적 공정으로부터 얻어지는 변형(deformation)을 의미한다. 코어 합금과 Al-Si 클래드 합금으로 구성된 브레이징 시트는 제품을 형성하기 위해 변형되고, 후속적으로 브레이징 사이클이 수행될 때, 적은 양의 변형이 브레이징 시트내에 LFM을 유도하는데 있어 충분한 것으로 보인다. LFM이 코어 합금내로 깊이 진행하면, 브레이징성, 강도 및 내부식성이 저하한다. 크롬, 지르코늄 및 바나듐과 같이 재결정을 지연시키는 합금화 원소(alloying element)는 LFM에 대한 감수성(susceptibility)을 증강시키는 것으로 알려져 있다. 망간 디스퍼소이드(dispersoid)는 또한 재결정을 지연시키는 것으로 알려져 있으며, 따라서 LFM에 대한 감수성을 증강시킨다. 망간 디소퍼소이드의 양과 크기는 브레이징 시트의 처리경로에 의존한다.In brazing applications, a phenomenon known as "liquid film migration" or liquid film migration (LFM), degrades the overall performance of brazing products such as evaporators, radiators, heater cores and the like. In the literature, the term "LFM" is also referred to as "core dissolution" or "core penetration" or "core erosion". The term "LFM" is used herein to refer to both of these terms. The exact mechanism that causes the LFM is not yet fully understood, but the severity of the LFM seems to be augmented by the presence of a certain amount of dislocation in the core alloy of the brazing sheet. The sensitivity of the material to LFM is comparable to the soft and slightly cold worked conditions of the same material, such as complete annealing (O-tempering) and stress hardening and / or stress relaxation tempering (eg H14, H24, etc.). Relatively low. The term “slight cold working” typically refers to variations resulting from industrial processes such as stamping, roll forming, or tensile leveling that are applied to manufacture components of heat exchangers such as evaporators or oil cooler core plates, folded tubes, etc. deformation). The brazing sheet composed of the core alloy and the Al-Si clad alloy is deformed to form the product, and when subsequent brazing cycles are performed, a small amount of deformation appears to be sufficient to induce LFM in the brazing sheet. As the LFM proceeds deep into the core alloy, the brazing, strength and corrosion resistance deteriorate. Alloying elements that retard recrystallization, such as chromium, zirconium and vanadium, are known to enhance susceptibility to LFM. Manganese dispersoids are also known to delay recrystallization and thus enhance susceptibility to LFM. The amount and size of manganese desopheroid depends on the processing path of the brazing sheet.

브레이징 적용에 대해, 브레이징 시트 제품의 코어 합금은 강도 및 성형성의 양호한 조합을 요구한다. 분명히, LFM에 대한 감수성은 적절한 내부식성과 브레이성을 보장하도록 충분히 낮은 레벨이어야 한다. 고강도는 실리콘, 망간, 크롬, 지르코늄 또는 바나듐과 같은 원소로 합금화하는 것에 의해 얻어질 수 있다. 그러나, 이들 합금화원소는 또한 LFM에 대한 감수성을 증가시킨다. H14-템퍼 또는 H24-템퍼와 같은 비 O-템퍼(non O-temper)의 이용이 LFM에 대한 감수성을 감소시키기 위해 또한 제안되고 있다. 그러나, 이들 템퍼는 LFM을 효과적으로 감소시키지만, 브레이징 시트 제품의 성형성이 종종 손상된다. 인장 레벨링과 같은 약 냉간 변형(light cold deforming) 공정과 같은 다른 선택적인 공정 또는 비재결정 표면층의 사용은 대량생산 실시에서 제어가 어려우며, 따라서 재현성(reproducibility) 및/또는 성형성을 손상시킬 수 있다.For brazing applications, the core alloy of the brazing sheet product requires a good combination of strength and formability. Clearly, the sensitivity to LFM should be at a level low enough to ensure adequate corrosion and braking. High strength can be obtained by alloying with an element such as silicon, manganese, chromium, zirconium or vanadium. However, these alloying elements also increase the susceptibility to LFM. The use of non O-tempers, such as H14-temper or H24-temper, has also been proposed to reduce sensitivity to LFM. However, these tempers effectively reduce the LFM, but often impair the moldability of the brazing sheet product. Other optional processes, such as light cold deforming processes such as tensile leveling, or the use of non-recrystallized surface layers, are difficult to control in mass production runs and may therefore impair reproducibility and / or formability.

본 발명의 목적은 브레이징 시트에서의 코어 합금으로써 사용될 때 개선된 액상 막 이행 저항을 갖는 Al-Mn 합금 시트를 제공하는 것으로서, 합금의 양호한 강도/성형성 조합은 LFM에 대한 충분히 낮은 감수성 및 적절한 내부식성과 결합된다.It is an object of the present invention to provide an Al-Mn alloy sheet having an improved liquid film transition resistance when used as a core alloy in a brazing sheet, wherein a good strength / formulation combination of the alloy has a sufficiently low sensitivity to LFM and adequate resistance. Combined with corrosiveness.

또한, 본 발명의 목적은 쉽게 제어할 수 있고 재현가능한 제품이 얻어지는 상기 Al-Mn 합금 시트 제조방법을 제공하는 것이다.It is also an object of the present invention to provide a method for producing the Al-Mn alloy sheet in which an easily controllable and reproducible product is obtained.

또한, 본 발명의 목적은 졉혀진 튜브, 증발기 또는 오일쿨러 코어 플레이트, 핀스톡에서의 개선된 액상 막 이행 저항을 갖는 Al-Mn 합금 시트를 제조하는 방법을 제공하는 것으로서, 합금의 양호한 강도/성형성 조합은 LFM에 대한 충분히 낮은 감수성, 적절한 브레이징성 및 내부식성과 결합된다.It is also an object of the present invention to provide a method for producing an Al-Mn alloy sheet having improved liquid film transition resistance in a stripped tube, evaporator or oil cooler core plate, finstock, wherein the alloy has good strength / molding. The combination of properties is combined with sufficiently low sensitivity to LFM, adequate brazing and corrosion resistance.

본 발명에 따르면, 상기 하나 이상의 목적은 알루미늄합금 시트가 브레이징 시트에서 코어 합금으로써 사용될 때 개선된 액상 막 이행 저항을 갖는 Al-Mn 합금 시트 제조방법으로 이루어지며, 상기 방법은According to the present invention, the at least one object consists of a method for producing an Al-Mn alloy sheet having improved liquid film transition resistance when the aluminum alloy sheet is used as a core alloy in a brazing sheet, the method comprising

ㆍ 하기 조성(중량%)을 갖는 조성물을 주조하는 단계:Casting a composition having the following composition (% by weight):

ㅇ 0.5 < Mn ≤ 1.7, 바람직하게는 0.6 - 1.7  0.5 <Mn <1.7, preferably 0.6-1.7

ㅇ 0.06 < Cu ≤ 1.5, 바람직하게는 0.2 - 1.5  0.06 <Cu ≤ 1.5, preferably 0.2-1.5

ㅇ 0 < Si ≤ 1.3, 바람직하게는 0 < Si ≤ 0.8, 더욱 바람직하게는 0 < Si ≤ 0.3  0 <Si <1.3, preferably 0 <Si <0.8, more preferably 0 <Si <0.3

ㅇ 0 < Mg ≤ 0.25  ㅇ 0 <Mg ≤ 0.25

ㅇ 0 < Ti < 0.2  ㅇ 0 <Ti <0.2

ㅇ 0 < Zn ≤ 2.0  ㅇ 0 <Zn ≤ 2.0

ㅇ 0 < Fe ≤ 0.5  ㅇ 0 <Fe ≤ 0.5

ㅇ 0 < Zr ≤ 0.05 및 0.05 < Cr ≤ 0.25  0 <Zr <0.05 and 0.05 <Cr <0.25

ㅇ 각각 < 0.05, 합계 < 0.20의 기타 원소, 잔부 알루미늄  ㅇ Other elements, balance aluminum of <0.05, total <0.20, respectively

ㆍ 균질화 및 예열 단계;Homogenization and preheating step;

ㆍ 열간압연 단계ㆍ Hot Rolling Step

ㆍ 냉간압연 단계(필요시 중간 어닐링 포함)를 포함하며,Cold rolling step (including intermediate annealing if necessary),

상기 균질화온도는 450℃ 이상에서 1시간 이상 동안 유지하고, 이어서 20 ℃h 이상의 속도로 공냉하며,The homogenization temperature is maintained at 450 ℃ or more for 1 hour or more, followed by air cooling at a rate of 20 ℃ h or more,

상기 예열온도는 400℃ 이상에서 0.5시간 이상 동안 유지된다.The preheating temperature is maintained for at least 400 hours at 400 ℃ or more.

주조는 DC주조 또는 연속주조와 같은 정규 생산기술을 사용하여 이루어진다.Casting is accomplished using regular production techniques such as DC casting or continuous casting.

본 발명에 따른 방법은 브레이징 시트에서의 코어 합금으로써 사용될 때 양호한 강도/성형성 조합이 LFM에 대한 상당히 낮은 감수성 및 충분한 내부식성과 결합되는 Al-Mn 합금의 제조가 가능하다. 본 발명자들은 크롬은 합금의 재결정에 대한 지연효과 때문에 LFM에 대한 감수성에 악영향을 갖는 것으로 보고되고 있지만 합금의 화학적 성질과 공정 파라미터, 특히 균질화 및 예열처리의 조합은 LFM에 대한 충분히 낮은 감수성을 가지며 그 결과 충분한 내부석성을 갖는 제품을 얻는다는 놀라운 사실을 발견하였다. 조성과 처리조건의 조합의 결과로써 합금내에 형성된 Cr함유 및/또는 Zr함유 석출물은 LFM에 대한 감수성을 감소시킨다. 또한, 크롬은 합금의 강도를 강화시키는 반면 합금의 재결정은 충분한 성형성을 얻는다. 본 발명자들은 유사한 결과가 V로 합금화 또는 V와 Cr 및/또는 Zr의 조합으로 합금화하는 것에 의해 얻어질 수 있다는 것을 발견하였다.The process according to the invention enables the production of Al-Mn alloys when used as core alloys in brazing sheets, in which a good strength / forming combination is combined with significantly lower sensitivity to LFM and sufficient corrosion resistance. The present inventors have reported that chromium has an adverse effect on the sensitivity to LFM due to the delay effect on the recrystallization of the alloy, but the combination of the alloy's chemical properties and process parameters, in particular homogenization and preheating, has a sufficiently low sensitivity to LFM. The results found the surprising fact that a product with sufficient internal stone was obtained. Cr-containing and / or Zr-containing precipitates formed in the alloy as a result of the combination of composition and treatment conditions reduce the susceptibility to LFM. In addition, chromium enhances the strength of the alloy while recrystallization of the alloy achieves sufficient formability. The inventors have found that similar results can be obtained by alloying with V or alloying V with Cr and / or Zr.

본 발명의 실시예에 있어서, Cr 및/또는 Zr 함량은 0.08 중량% 이상이다. 본 발명자들은 0.08 중량% 이상의 크롬 함량 또는 0.08% 이상의 지르코늄 함량을 사용하거나 또는 전술한 처리 조건과 조합한 이들의 조합은 충분한 LFM-저항과 조합된 고강도를 얻는다는 것을 발견하였다.In an embodiment of the invention, the Cr and / or Zr content is at least 0.08% by weight. We have found that a combination of chromium content of at least 0.08% by weight or zirconium content of at least 0.08%, or combinations thereof in combination with the aforementioned treatment conditions, results in high strength combined with sufficient LFM-resistance.

본 발명의 실시예에 있어서, 최대 마그네슘 함량은 0.1 중량% 이상, 바람직하게는 0.05 중량% 이상이다. 마그네슘 함량은 제어분위기 브레이징 동안 사용된 플럭스에 대한 마그네슘의 유해효과를 피하기 위해 가능한 한 낮추어야 한다. 본 발명의 실시예에 있어서, 구리 함량은 0.7 내지 1.2 중량%이다.In an embodiment of the invention, the maximum magnesium content is at least 0.1% by weight, preferably at least 0.05% by weight. The magnesium content should be as low as possible to avoid the deleterious effects of magnesium on the flux used during controlled atmosphere brazing. In an embodiment of the invention, the copper content is from 0.7 to 1.2% by weight.

본 발명의 실시예에 있어서, 망간 함량은 0.7 내지 1.4 중량%이다. 망간 함량이 1.4 중량%를 초과하면 제조성이 나빠지며, 0.7 중량% 이하는 합금강도가 불충분해진다. 본 발명의 실시예에 있어서, 최대 아연 함량은 특정 적용에 있어서 코어 합금이 과도하게 양극화(anodic)되는 것을 방지하기 위해 0.4 중량%가 바람직하다. 본 발명의 실시예에 있어서, 철 함량은 산업적규모 주조 실행동안 바람직하지 않은 대형 철 함유 금속간화합물(large iron containing intermetallic)의 형성을 방지하기 위해 0.35 중량% 이하가 바람직하다.In an embodiment of the present invention, the manganese content is 0.7 to 1.4 wt%. If the manganese content exceeds 1.4% by weight, the manufacturability is worsened, the alloy strength is less than 0.7% by weight. In embodiments of the invention, the maximum zinc content is preferably 0.4% by weight to prevent excessive anodization of the core alloy in certain applications. In an embodiment of the present invention, the iron content is preferably 0.35% by weight or less to prevent the formation of undesirable large iron containing intermetallics during industrial scale casting runs.

본 발명의 실시예에 있어서, 균질화 온도는 약 530℃ 내지 620℃, 바람직하게는 530℃ 내지 595℃ 사이이며, 바람직하게는 1 내지 25 시간, 더욱 바람직하게는 10 내지 16 시간동안 유지되며, 예열 온도는 약 400℃ 내지 530℃, 바람직하게는 420℃ 내지 510℃ 사이이며, 바람직하게는 1 내지 25 시간, 더욱 바람직하게는 1 내지 10 시간이다. 본 발명에 따른 합금에 있어서, 강도, 성형성, LFM에 대한 감수성 및 내부식성 사이의 최적 절충은 균질화 온도 및 시간과 예열 온도 및 시간이 주어진 경계내에서 선택되었을 때 발견되었으며, 특히 흥미로운 절충은 합금을 전술한 바람직한 온도 및 시간에 따라 처리할 때 얻어졌다.In an embodiment of the invention, the homogenization temperature is between about 530 ° C. and 620 ° C., preferably between 530 ° C. and 595 ° C., preferably maintained for 1 to 25 hours, more preferably 10 to 16 hours, and preheated. The temperature is between about 400 ° C. and 530 ° C., preferably between 420 ° C. and 510 ° C., preferably between 1 and 25 hours, more preferably between 1 and 10 hours. In the alloy according to the invention, an optimum compromise between strength, formability, susceptibility to LFM and corrosion resistance was found when homogenization temperature and time and preheat temperature and time were chosen within a given boundary, an especially interesting compromise being the alloy Was obtained upon treatment in accordance with the preferred temperatures and times described above.

본 발명이 속하는 기술분야의 당업자에게는 어닐링 시간과 온도는 통상 독립적으로 선택되지 않는다는 것은 알려져 있다. 가장 관련된 야금처리는 열적으로 활성이며, 짧은 시간과 결합된 고온이 낮은 온도 및 긴 시간과 동일한 결과가 얻어질 수 있는 상황에서 얻어진다.It is known to those skilled in the art that the present invention usually does not independently select annealing time and temperature. The most relevant metallurgical treatment is thermally active and is obtained in situations where high temperatures combined with short time can yield the same results as low temperature and long time.

또한, 본 발명에 따른 방법은 Al-Mn 합금의 실질적인 완전 재결정을 촉진시키기 위해 냉간압연후 충분한 어닐링 온도-어닐링 시간 조합에서 재결정 어닐링하는 단계를 포함한다. 이 조건에서 가장 높은 성형성이 얻어진다.The process according to the invention also comprises the step of recrystallization annealing at a sufficient annealing temperature-annealing time combination after cold rolling to promote substantially complete recrystallization of the Al-Mn alloy. Under these conditions, the highest moldability is obtained.

본 발명의 실시예에 있어서, Al-Mn 합금의 최대 실리콘 함량은 0.3 중량%이다. 본 발명의 바람직한 실시예에 있어서, Al-Mn 합금의 최대 실리콘 함량은 0.15 중량%이다. 실리콘은 LFM에 대한 감수성을 증가시키는 것으로 알려져 있다. 따라서, 실리콘 함량은 가능한 한 낮게 선택하여야 한다. 그러나, 본 발명자들은 최대 0.3 중량%, 바람직하게는 최대 0.15 중량%의 실리콘 함량을 사용할 때, LFM에 대한 감수성과 강도의 충분한 조합이 얻어지는 것을 발견하였다.In an embodiment of the present invention, the maximum silicon content of the Al-Mn alloy is 0.3% by weight. In a preferred embodiment of the present invention, the maximum silicon content of the Al-Mn alloy is 0.15% by weight. Silicon is known to increase susceptibility to LFM. Therefore, the silicon content should be selected as low as possible. However, the inventors have found that when using a silicon content of up to 0.3% by weight, preferably up to 0.15% by weight, a sufficient combination of sensitivity and strength to LFM is obtained.

본 발명의 실시예에 있어서, Cr≤0.18 중량%, 바람직하게는 0.06 중량% 이상, 더욱 바람직하게는 0.08 중량%<Cr≤0.15 중량%, 가장 바람직하게는 0.08 중량%<Cr≤0.12 중량%이다. Cr값이 0.18 중량%를 초과하면, 큰 금속간화합물의 형성으로 Al-Mn 합금의 주조가 매우 어려워진다. 0.15 중량% 이하 또는 0.12 중량% 이하의 Cr 함량을 갖는 Al-Mn 합금에서는 주조시 문제가 없다. 0.08 중량% 이상의 Cr을 첨가하는 것에 의해, 전술한 처리조건과 조합하여 LFM에 대한 크롬의 감수성 효과는 LFM에 대한 감수성과 강도의 충분한 조합이 얻어진다. 조성과 처리조건의 조합의 결과로써 합금내에 형성된 석출물은 LFM에 대한 감수성을 감소시킨다. 본 발명의 실시예에 있어서, 공정은 선택적으로 최대 2.0 중량%의 Zn을 포함하는 AA4000 시리즈 또는 Al-Si 브레이징 합금으로 Al-Mn 합금의 적어도 일면을 클래딩하는 단계를 또한 포함한다. 클래딩(clading)은 롤접합 또는 스프레이 클래딩 또는 주조 클래딩과 같은 다른 임의의 알려진 기술에 의해 실행될 수 있다.In an embodiment of the invention, Cr≤0.18% by weight, preferably at least 0.06% by weight, more preferably 0.08% by weight <Cr≤0.15% by weight, most preferably 0.08% by weight <Cr≤0.12% by weight. . When the Cr value exceeds 0.18% by weight, casting of Al-Mn alloy becomes very difficult due to the formation of large intermetallic compounds. Al-Mn alloys having a Cr content of 0.15 wt% or less or 0.12 wt% or less have no problem in casting. By adding 0.08% by weight or more of Cr, in combination with the treatment conditions described above, a susceptible effect of chromium on LFM is obtained with a sufficient combination of sensitivity and strength to LFM. Precipitates formed in the alloy as a result of the combination of composition and treatment conditions reduce the susceptibility to LFM. In an embodiment of the invention, the process also includes cladding at least one side of the Al—Mn alloy with an AA4000 series or Al—Si brazing alloy optionally comprising up to 2.0 wt.% Zn. Cladding may be performed by any other known technique such as roll bonding or spray cladding or cast cladding.

또한, 본 발명은 전술한 바와 같은 방법에 따라 제조된 시트제품으로 구현될 수 있고, 브레이징전 연신율은 18% 이상, 바람직하게는 19% 이상, 더욱 바람직하게는 21% 이상 및/또는 0.270 이상의 브레이징전 n-값(n-value) 및/또는 140 MPa 이상, 바람직하게는 150 MPa 이상의 브레이징후 인장강도를 갖는다. 연신율은 80 ㎜의 게이지 길이(A80으로 표시됨)를 통해 측정되었다.In addition, the present invention can be implemented as a sheet product prepared according to the method as described above, the elongation before brazing is at least 18%, preferably at least 19%, more preferably at least 21% and / or at least 0.270 brazing It has a total n-value and / or tensile strength after brazing of at least 140 MPa, preferably at least 150 MPa. Elongation was measured through a gauge length of 80 mm (denoted A80).

본 발명의 실시예에 있어서, ASTM G85 A3에 따른 시험시 천공(perforation)이 생기는 일수(day) 조건으로 측정된 브레이징후 절취시편(coupon) SWAAT 유효기간은 천공없이 15일 이상, 바람직하게는 2O일 이상이다. LFM에 대한 낮은 감수성은 브레이징후의 열교환기 구성부품에서의 개선된 내부식성으로 반영된다.In an embodiment of the present invention, the coupon SWAAT validity after brazing cut specimen measured in days condition that perforation occurs in the test according to ASTM G85 A3 is not less than 15 days, preferably 2O Is more than a day. Low susceptibility to LFM is reflected in improved corrosion resistance in heat exchanger components after brazing.

본 발명의 실시예에 있어서, 전술한 시트는 AA7072, AA1145 또는 AA3005과 같은 비브레이징 라이너(non-brazing liner) 또는 워터사이드 라이너(waterside liner) 합금 또는 Zn을 0.5 - 5.0 중량%, 바람직하게는 0.5 - 2.5 중량% 함유하는 Al-Mn계 합금을 갖거나 갖지 않는 브레이징 시트에서의 접혀진 튜브 또는 유사한 조건하에서 사용되는 코어로써 적용된다. 강도, 성형성, LFM 감수성 및 내부식성에 대한 요구조건은 예를 들면 접혀진 튜브를 이용하는 열교환기에서의 적용을 위해 브레이징 시트에서 코어로써 상기 시트의 적용과 특히 관련된다.In an embodiment of the invention, the sheet described above comprises 0.5-5.0% by weight, preferably 0.5, of a non-brazing liner or waterside liner alloy or Zn such as AA7072, AA1145 or AA3005. It is applied as a folded tube in brazing sheets with or without Al-Mn-based alloys containing 2.5% by weight or as a core used under similar conditions. Requirements for strength, formability, LFM susceptibility and corrosion resistance relate particularly to the application of the sheet as a core in a brazing sheet for application in heat exchangers using folded tubes, for example.

전술한 본 발명에 따라 제조된 시트 재료는 라디에이터, 히터 코어 및 응축기와 같은 튜브-핀형 열교환기의 구성부품의 제조, 또는 증발기 또는 오일쿨러 코어 플레이트 또는 라디에이터 탱크 또는 히터 코어와 같은 플레이트-핀형 열교환기의 구성부품을 제조하기 위한 브레이징 시트에서의 코어 합금 또는 열교환기용 구성부품을 제조하기 위한 브레이징 핀 스톡 재료에서의 코어 합금으로서 특히 유용하게 사용된다.Sheet materials produced according to the invention described above can be used in the manufacture of components of tube-finned heat exchangers such as radiators, heater cores and condensers, or plate-finned heat exchangers such as evaporators or oil cooler core plates or radiator tanks or heater cores. It is particularly useful as a core alloy in a brazing sheet for producing a component of a core or in a brazing fin stock material for producing a component for a heat exchanger.

본 발명의 특정 실시예는 이하의 비제한적인 예를 통해 설명될 것이다.Particular embodiments of the invention will be illustrated through the following non-limiting examples.

Figure 112006095360700-pct00001
Figure 112006095360700-pct00001

이들 합금(합금 1-4)은 다양한 온도에서 다양한 시간동안 균질화처리 되었다. 이어서, 이들 합금은 각각이 두께 10%의 AA4045로 양면이 클래딩되고, 열간압연전에 다양한 온도에서 다양한 시간동안 예열처리되었으며, 6.5 ㎜로 열간압연된 후 350℃에서 3시간동안 중간 어닐링(inter anneal), 2.3 ㎜로 제 1 냉간압연, 다시 350℃에서 3시간동안 중간 어닐링 및 0.5 ㎜의 최종 게이지로 제 2 냉간압연되었다. 이들 합금은 실질적인 완전 재결정을 촉진하도록 재결정 어닐링 처리되었다. LFM 거동을 테스트하기 위해, 재료는 2 내지 10% 사이로 연신되었다. 가장 깊은 관통을 나타낸 연신 레벨은 표 2의 LFM 데이터에 사용되었다.These alloys (alloys 1-4) were homogenized at various temperatures for various times. These alloys were then clad on both sides with 10% thickness AA4045, preheated for various hours at various temperatures prior to hot rolling, and hot annealed at 6.5 mm and then inter annealed at 350 ° C. for 3 hours. The first cold rolled to 2.3 mm, followed by intermediate annealing for 3 h at 350 ° C. and a second cold rolled to a final gauge of 0.5 mm. These alloys were recrystallized annealed to promote substantial complete recrystallization. To test the LFM behavior, the material was drawn between 2 and 10%. The drawing level showing the deepest penetration was used for the LFM data in Table 2.

합금 5와 6은 각각이 두께 10%의 AA4045로 양면이 클래딩되고, 열간압연전에 예열처리되었으며, 이어서 3.5 ㎜로 열간압연된 후 중간 어닐링 없이 0.41 ㎜로 냉간압연되었다. 냉간압연 후, 재료는 실질적인 완전 재결정을 촉진하도록 재결정 어닐링 처리되었다. LFM 거동은 전술한 바와 같이 테스트되었다. 결과는 표 2에 나타나 있다. '표준'으로 지정된 합금은 LFM-임계 적용에 사용되는 합금이다.Alloys 5 and 6 were each clad on both sides with 10% thickness AA4045, preheated prior to hot rolling, then hot rolled to 3.5 mm and cold rolled to 0.41 mm without intermediate annealing. After cold rolling, the material was recrystallized annealed to promote substantial complete recrystallization. LFM behavior was tested as described above. The results are shown in Table 2. Alloys designated as 'standard' are those used in LFM-critical applications.

표 2에 있어서:In Table 2:

ㆍ "+/-"는 코어 합금 두께의 50 내지 60% 사이의 관통을 의미한다."+/-" means penetration between 50 and 60% of the core alloy thickness.

ㆍ "+"는 코어 합금 두께의 30 내지 50% 사이의 관통을 의미한다."+" Means penetration between 30 and 50% of the core alloy thickness.

ㆍ "++"는 코어 합금 두께의 <30% 관통을 의미한다."++" means <30% penetration of the core alloy thickness.

연신율은 통상 큰 편차(scatter)를 보이기 때문에, 성형성의 선택적인 지표로서 n-값이 사용될 수 있다. 0.270 이상의 n-값은 140 MPa 이상의 최소 요구 강도를 감안할 때 양호한 성형성을 나타낸다. LFM-임계 적용에 대한 표준 합금과 비교할 때, 본 발명에 따른 합금, 예컨대 합금 2-6은 표 2에 나타낸 바와 같이 동등한 LFM 성능을 제공하며 상당히 높은 브레이징후 인장 특성을 제공한다.Since elongation usually exhibits a large scatter, the n-value can be used as an optional indicator of formability. An n-value of 0.270 or higher indicates good formability in view of the minimum required strength of 140 MPa or higher. Compared to standard alloys for LFM-critical applications, alloys according to the invention, such as alloys 2-6, provide equivalent LFM performance as shown in Table 2 and provide significantly higher post-brazing tensile properties.

Figure 112006095360700-pct00002
Figure 112006095360700-pct00002

본 발명에 따른 방법을 이용하여 제조될 수 있는 다른 특정 합금은 하기 조성(중량%) 범위를 가진다.Other specific alloys that can be prepared using the process according to the invention have the following composition (% by weight) ranges.

ㆍ Si 0.8 - 1.0, 및 전형적으로 약 0.9Si 0.8-1.0, and typically about 0.9

ㆍ Fe 0.25 - 0.4, 및 전형적으로 약 0.35Fe 0.25-0.4, and typically about 0.35

ㆍ Cu 0.25 - 0.45, 및 전형적으로 약 0.40Cu 0.25-0.45, and typically about 0.40

ㆍ Mn 0.55 - 0.9, 및 전형적으로 약 0.85Mn 0.55-0.9, and typically about 0.85

ㆍ Mg 0.1 - 0.22, 및 전형적으로 약 0.15Mg 0.1-0.22, and typically about 0.15

ㆍ Zn 0.06 - 0.10, 및 전형적으로 약 0.08Zn 0.06-0.10, and typically about 0.08

ㆍ Cr 0.06 - 0.10, 및 전형적으로 약 0.08Cr 0.06-0.10, and typically about 0.08

ㆍ Zr 0.06 - 0.10, 및 전형적으로 약 0.08Zr 0.06-0.10, and typically about 0.08

ㆍ 잔부 알루미늄 및 불가피한 불순물Balance aluminum and unavoidable impurities

이 합금은 특히 튜브 플레이트, 측면 지지체 및 헤더 탱크에 대해 사용될 수 있다.This alloy can be used in particular for tube plates, side supports and header tanks.

본 발명은 전술한 실시예에 한정되는 것은 아니며, 청구범위의 기술사상을 일탈하지 않는 범위내에서 다양한 변경이 가능하다.The present invention is not limited to the above-described embodiment, and various changes can be made without departing from the technical spirit of the claims.

Claims (16)

브레이징 시트에서 코어 합금으로써 사용될 때 개선된 액상 막 이행 저항을 갖는 Al-Mn 합금 시트 제조방법에 있어서,A method for producing Al-Mn alloy sheet having improved liquid film transition resistance when used as a core alloy in a brazing sheet, 상기 제조방법은The manufacturing method ㆍ 하기 조성(중량%)을 갖는 조성물을 주조하는 단계:Casting a composition having the following composition (% by weight): ㅇ 0.5 < Mn ≤ 1.7  ㅇ 0.5 <Mn ≤ 1.7 ㅇ 0.06 < Cu ≤ 1.5  ㅇ 0.06 <Cu ≤ 1.5 ㅇ 0 < Si ≤ 0.15  ㅇ 0 <Si ≤ 0.15 ㅇ 0 < Mg ≤ 0.25  ㅇ 0 <Mg ≤ 0.25 ㅇ 0 < Ti < 0.2  ㅇ 0 <Ti <0.2 ㅇ 0 < Zn ≤ 2.0  ㅇ 0 <Zn ≤ 2.0 ㅇ 0 < Fe ≤ 0.5  ㅇ 0 <Fe ≤ 0.5 ㅇ 0.05 < Cr ≤ 0.25 및 0 < Zr ≤ 0.05  0.05 <Cr <0.25 and 0 <Zr <0.05 ㅇ 각각 < 0.05, 합계 < 0.20의 기타 원소, 잔부 알루미늄  ㅇ Other elements, balance aluminum of <0.05, total <0.20, respectively ㆍ 균질화 및 예열 단계;Homogenization and preheating step; ㆍ 열간압연 단계;Hot rolling step; ㆍ 중간 어닐링과 함께 또는 중간 어닐링없이 냉간압연하는 단계를 포함하며,Cold rolling with or without intermediate annealing, 상기 균질화온도는 450℃ 이상에서 1시간 이상 동안 유지하고, 이어서 20 ℃/h 이상의 속도로 공냉하며,The homogenization temperature is maintained at 450 ℃ or more for 1 hour or more, followed by air cooling at a rate of 20 ℃ / h or more, 상기 예열온도는 400℃ 이상에서 0.5시간 이상 동안 유지되는 것을 특징으로 하는 Al-Mn 합금 시트 제조방법.The preheating temperature is Al-Mn alloy sheet manufacturing method characterized in that it is maintained for more than 0.5 hours at 400 ℃ or more. 제 1 항에 있어서,The method of claim 1, 상기 균질화온도는 530℃ 내지 620℃에서 1 내지 25시간 동안 유지되며,The homogenization temperature is maintained for 1 to 25 hours at 530 ℃ to 620 ℃, 상기 예열온도는 400℃ 내지 530℃에서 1 내지 25시간 동안 유지되는 것을 특징으로 하는 Al-Mn 합금 시트 제조방법.The preheating temperature is Al-Mn alloy sheet manufacturing method characterized in that maintained for 1 to 25 hours at 400 ℃ to 530 ℃. 제 1 항 또는 제 2 항에 있어서,3. The method according to claim 1 or 2, Mn은 0.7 내지 1.4 중량%인 것을 특징으로 하는 Al-Mn 합금 시트 제조방법.Mn is an Al-Mn alloy sheet manufacturing method, characterized in that 0.7 to 1.4% by weight. 제 1 항 또는 제 2 항에 있어서,3. The method according to claim 1 or 2, Cr ≤ 0.18 중량%인 것을 특징으로 하는 Al-Mn 합금 시트 제조방법.A method of producing Al-Mn alloy sheet, characterized in that Cr ≤ 0.18% by weight. 제 1 항 또는 제 2 항에 있어서,3. The method according to claim 1 or 2, Mg ≤ 0.15 중량%인 것을 특징으로 하는 Al-Mn 합금 시트 제조방법.Al-Mn alloy sheet manufacturing method characterized in that Mg ≤ 0.15% by weight. 제 1 항 또는 제 2 항에 있어서,3. The method according to claim 1 or 2, Zn ≤ 0.4 중량%인 것을 특징으로 하는 Al-Mn 합금 시트 제조방법.Al-Mn alloy sheet manufacturing method characterized in that Zn ≤ 0.4% by weight. 제 1 항 또는 제 2 항에 있어서,3. The method according to claim 1 or 2, 선택 원소로서 최대 2.0 중량% Zn을 포함하는 Al-Si 브레이징 합금으로 상기 Al-Mn 합금의 적어도 일면을 클래딩하는 단계를 추가로 포함하는 것을 특징으로 하는 Al-Mn 합금 시트 제조방법.And cladding at least one surface of the Al-Mn alloy with an Al-Si brazing alloy comprising at most 2.0 wt.% Zn as an optional element. 제 1 항 또는 제 2 항에 있어서,3. The method according to claim 1 or 2, 선택 원소로서 최대 2.0 중량% Zn을 포함하며, AA7072, AA1145, AA3005, 또는 0.5 - 5.0 중량%의 Zn을 함유하는 Al-Mn계 합금으로 이루어지는 그룹으로부터 선택된 비브레이징 라이너 합금을 갖는 Al-Si 브레이징 합금으로 상기 Al-Mn 합금의 적어도 일면을 클래딩하는 단계를 추가로 포함하는 것을 특징으로 하는 Al-Mn 합금 시트 제조방법.Al-Si brazing alloys having a non-brazing liner alloy selected from the group consisting of AA7072, AA1145, AA3005, or Al-Mn-based alloys containing up to 2.0 wt% Zn as an optional element and containing 0.5-5.0 wt% Zn Al-Mn alloy sheet manufacturing method characterized in that it further comprises the step of cladding at least one surface of the Al-Mn alloy. 브레이징전 연신율이 18% 이상인 제 1 항 또는 제 2 항에 따라 제조된 시트.A sheet made according to claim 1 or 2, wherein the elongation before brazing is at least 18%. 제 9 항에 있어서,The method of claim 9, 브레이징후 인장강도가 140 MPa 이상인 것을 특징으로 하는 시트.A sheet characterized by a tensile strength of at least 140 MPa after brazing. 제 9 항에 있어서,The method of claim 9, 브레이징전 n-값이 0.270 이상인 것을 특징으로 하는 시트.A sheet characterized by an n-value of at least 0.270 before brazing. 제 9 항에 있어서,The method of claim 9, ASTM G85 A3에 따라 테스트된 브레이징후 절취시편 SWAAT 수명이 천공없이 15일 이상인 것을 특징으로 하는 시트.Post-brazing cut specimens tested in accordance with ASTM G85 A3, characterized in that the SWAAT life is more than 15 days without puncture. 코어 합금으로서의 시트를 클래드와 결합하여 라디에이터, 히터 코어 및 응축기로 이루어지는 그룹으로부터 선택된 튜브-핀형 열교환기의 구성부품 제조용 브레이징 시트를 형성하는 것을 포함하는, 제 1 항 또는 제 2 항에 따라 제조된 시트의 사용방법.A sheet made according to claim 1, comprising combining a sheet as core alloy with a clad to form a brazing sheet for the manufacture of components of a tube-finned heat exchanger selected from the group consisting of a radiator, a heater core and a condenser. How to use. 코어 합금으로서의 시트를 클래드와 결합하여 증발기 또는 오일 쿨러 코어 플레이트 또는 라디에이터의 탱크 또는 히터 코어로 이루어지는 그룹으로부터 선택된 플레이트-핀형 열교환기의 구성부품 제조용 브레이징 시트를 형성하는 것을 포함하는, 제 1 항 또는 제 2 항에 따라 제조된 시트의 사용방법.1. The method of claim 1, comprising combining the sheet as a core alloy with a clad to form a brazing sheet for the manufacture of components of a plate-fin heat exchanger selected from the group consisting of evaporator or oil cooler core plates or radiator tanks or heater cores. Method of use of the sheet prepared according to paragraph 2. 코어 합금으로서의 시트를 클래드와 결합하여 열교환기의 구성부품 제조용 브레이징 시트를 형성하는 것을 포함하는, 제 1 항 또는 제 2 항에 따라 제조된 시트의 사용방법.A method of using a sheet made according to claim 1 or 2 comprising combining a sheet as core alloy with a clad to form a brazing sheet for producing a component of a heat exchanger. 삭제delete
KR1020067027051A 2004-05-26 2006-12-22 Process for producing an aluminium alloy brazing sheet aluminium alloy brazing sheet KR101216246B1 (en)

Applications Claiming Priority (7)

Application Number Priority Date Filing Date Title
EP04076545 2004-05-26
EP04076545.5 2004-05-26
EP04076785.7 2004-06-18
EP04076785 2004-06-18
EP04077623.9 2004-09-23
EP04077623 2004-09-23
PCT/EP2005/005751 WO2005118899A1 (en) 2004-05-26 2005-05-25 Process for producing an aluminium alloy brazing sheet, aluminium alloy brazing sheet

Publications (2)

Publication Number Publication Date
KR20070058383A KR20070058383A (en) 2007-06-08
KR101216246B1 true KR101216246B1 (en) 2012-12-28

Family

ID=34968764

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020067027051A KR101216246B1 (en) 2004-05-26 2006-12-22 Process for producing an aluminium alloy brazing sheet aluminium alloy brazing sheet

Country Status (8)

Country Link
EP (1) EP1753885B2 (en)
JP (1) JP5326123B2 (en)
KR (1) KR101216246B1 (en)
CN (1) CN1973056B (en)
CA (1) CA2565978C (en)
HU (1) HUE032303T2 (en)
MX (1) MXPA06013571A (en)
WO (1) WO2005118899A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020219032A1 (en) * 2019-04-24 2020-10-29 Arconic Inc. Interliner for roll bonded brazing sheet

Families Citing this family (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5704835B2 (en) * 2009-05-27 2015-04-22 株式会社神戸製鋼所 Aluminum alloy brazing sheet for heat exchanger
JP5515944B2 (en) * 2010-03-29 2014-06-11 マツダ株式会社 Aluminum alloy
CN101798645B (en) * 2010-04-17 2012-01-04 上海交通大学 Aluminum alloy for heat exchanger fins and preparation method thereof
JP5737798B2 (en) * 2010-07-08 2015-06-17 三菱アルミニウム株式会社 Aluminum alloy brazing sheet excellent in strength and formability and method for producing the same
CN102061432B (en) * 2010-12-20 2013-11-06 中国电力科学研究院 Aluminum layer heat treatment process for acoustic board
CN103122428A (en) * 2011-11-18 2013-05-29 萨帕铝热传输(上海)有限公司 Brazing aluminum alloy composite pipe and production method thereof
KR102033820B1 (en) 2011-12-16 2019-10-17 노벨리스 인코퍼레이티드 Aluminium fin alloy and method of making the same
EP2877317B2 (en) 2012-07-27 2022-07-27 Gränges Sweden AB Strip material with excellent corrosion resistance after brazing
ES2621871T3 (en) 2013-02-21 2017-07-05 Hydro Aluminium Rolled Products Gmbh Aluminum alloy for the manufacture of semi-finished products or components for automobiles, process for the manufacture of an aluminum alloy tape of this aluminum alloy as well as aluminum alloy tape and uses thereof
CN103290283A (en) * 2013-06-24 2013-09-11 靖江市新程汽车零部件有限公司 Thermal insulation board of automobile exhaust pipe and manufacturing method thereof
WO2015015767A1 (en) 2013-07-29 2015-02-05 株式会社Uacj Aluminum-alloy clad member, method for producing same, and heat exchanger using aluminum-alloy clad member
MX2016001557A (en) * 2013-08-08 2016-05-02 Novelis Inc High strength aluminum alloy fin stock for heat exchanger.
MX2016001558A (en) * 2013-08-08 2016-05-02 Novelis Inc High strength aluminum alloy fin stock for heat exchanger.
FR3018213B1 (en) 2014-03-06 2016-10-21 Constellium France MULTI-PLASTER SOLDERING SHEET
US9993897B2 (en) 2014-07-30 2018-06-12 Aleris Rolled Products Germany Gmbh Multi-layered aluminium brazing sheet material
JP6751713B2 (en) 2014-08-06 2020-09-09 ノベリス・インコーポレイテッドNovelis Inc. Aluminum alloy for heat exchanger fins
CA2959416C (en) 2014-09-12 2020-07-07 Novelis Inc. Alloys for highly shaped aluminum products and methods of making the same
CN105543575B (en) * 2015-12-21 2017-11-28 无锡市世达精密焊管制造有限公司 A kind of aluminium alloy plate ingot rich in silicon, copper and titanium elements and preparation method thereof
CN105648280A (en) * 2016-01-22 2016-06-08 济南大学 As-cast alloy material used for aluminum veneer and manufacturing method for as-cast alloy material
JP6604699B2 (en) * 2016-03-31 2019-11-13 株式会社デンソー Aluminum alloy clad material and method for producing the same
CN105886861B (en) * 2016-05-12 2017-08-22 宝鸡石油钢管有限责任公司 A kind of aluminium alloy is continuously managed and its manufacture method
JP7393360B2 (en) 2018-06-21 2023-12-06 アーコニック テクノロジーズ エルエルシー Corrosion resistant high strength brazing sheet
WO2020178507A1 (en) * 2019-03-04 2020-09-10 Constellium Neuf-Brisach Strip of aluminum alloy for manufacturing brazed heat exchangers
FR3093450A1 (en) * 2019-03-04 2020-09-11 Constellium Neuf-Brisach Aluminum alloy strip for the manufacture of brazed heat exchangers
CN111394625A (en) * 2020-04-17 2020-07-10 江苏鼎胜新能源材料股份有限公司 Composite finned aluminum strip for air cooling of power station and preparation method thereof

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20030121572A1 (en) 2000-11-16 2003-07-03 Jean-Claude Kucza Aluminum alloy strip manufacturing process for the manufacture of brazed heat exchangers

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60251246A (en) * 1984-05-25 1985-12-11 Kobe Steel Ltd Water resistant brazing sheet for vacuum brazing and heat exchanger using said material
JPH0641621B2 (en) * 1986-03-31 1994-06-01 スカイアルミニウム株式会社 Aluminum alloy core material for brazing clad material
JPS6396253A (en) * 1986-10-11 1988-04-27 Mitsubishi Alum Co Ltd Production of al alloy brazing sheet having superior sag and corrosion resistance
US5260142A (en) 1990-12-28 1993-11-09 Honda Giken Kogyo Kabushiki Kaisha Corrosion-resistant clad material made of aluminum alloys
JPH0598376A (en) 1991-10-03 1993-04-20 Furukawa Alum Co Ltd Aluminum alloy sacrificial fin material for low temperature brazing and its production
JPH05171326A (en) * 1991-12-24 1993-07-09 Furukawa Alum Co Ltd Aluminum alloy fin material for low temperature brazing and its production
EP0718072B1 (en) * 1994-12-19 2003-07-09 Corus Aluminium Walzprodukte GmbH Brazing sheet
NL1004415C2 (en) 1996-11-04 1998-05-08 Hoogovens Alu Walzprod Gmbh Non heat-treatable aluminum alloy as core alloy for brazing sheet.
GB2321869B (en) 1997-02-10 2001-05-30 Furukawa Electric Co Ltd Aluminum alloy brazing sheet
JPH10265882A (en) * 1997-03-25 1998-10-06 Mitsubishi Heavy Ind Ltd Aluminum alloy heat exchanger
US6413331B1 (en) 1998-04-29 2002-07-02 Corus Aluminium Walzprodukte Gmbh Aluminium alloy for use in a brazed assembly
JP4033562B2 (en) * 1998-09-11 2008-01-16 古河スカイ株式会社 Aluminum alloy heat exchanger brazing structure manufacturing method, aluminum alloy heat exchanger and brazed sheet molded body for heat exchanger
US6352789B1 (en) 1999-04-12 2002-03-05 Corus Aluminium Walzprodukte Gmbh Brazing sheet and method of making same
EP1158063A1 (en) 2000-05-22 2001-11-28 Norsk Hydro A/S Corrosion resistant aluminium alloy
FR2816534B1 (en) 2000-11-16 2003-01-31 Pechiney Rhenalu PROCESS FOR MANUFACTURING AN ALUMINUM ALLOY PLATED STRIP FOR THE MANUFACTURE OF BRAZED HEAT EXCHANGERS
DE602004013327T2 (en) 2003-07-18 2009-07-23 Aleris Aluminum Koblenz Gmbh HIGH-RESISTANT ALUMINUM ALLOY HARD SOLDERING PLATE

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20030121572A1 (en) 2000-11-16 2003-07-03 Jean-Claude Kucza Aluminum alloy strip manufacturing process for the manufacture of brazed heat exchangers

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020219032A1 (en) * 2019-04-24 2020-10-29 Arconic Inc. Interliner for roll bonded brazing sheet

Also Published As

Publication number Publication date
KR20070058383A (en) 2007-06-08
CN1973056A (en) 2007-05-30
CA2565978A1 (en) 2005-12-15
JP5326123B2 (en) 2013-10-30
CN1973056B (en) 2010-11-24
WO2005118899A1 (en) 2005-12-15
MXPA06013571A (en) 2007-03-15
CA2565978C (en) 2013-03-26
HUE032303T2 (en) 2017-09-28
EP1753885A1 (en) 2007-02-21
EP1753885B2 (en) 2022-08-24
JP2008500453A (en) 2008-01-10
EP1753885B1 (en) 2016-12-28

Similar Documents

Publication Publication Date Title
KR101216246B1 (en) Process for producing an aluminium alloy brazing sheet aluminium alloy brazing sheet
US7407714B2 (en) Process by producing an aluminium alloy brazing sheet, aluminium alloy brazing sheet
KR101216820B1 (en) Method of producing an aluminium alloy brazing sheet and light brazed heat exchanger assemblies
JP6554416B2 (en) Strip with excellent corrosion resistance after brazing
JP5049488B2 (en) Method for producing aluminum alloy brazing sheet
CA2901314C (en) Brazing sheet core alloy for heat exchanger
US6451453B1 (en) Aluminum alloy strip or tube for the manufacture of brazed heat exchangers
JP2011202285A (en) Brazing sheet
CN113396052B (en) Method of manufacturing a brazing sheet product
US20050211345A1 (en) High conductivity bare aluminum finstock and related process
WO2015141193A1 (en) Cladded aluminium-alloy material and production method therefor, and heat exchanger using said cladded aluminium-alloy material and production method therefor
CA2397752C (en) High thermal conductivity aluminum fin alloys

Legal Events

Date Code Title Description
A201 Request for examination
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20151215

Year of fee payment: 4

FPAY Annual fee payment

Payment date: 20161219

Year of fee payment: 5

FPAY Annual fee payment

Payment date: 20171207

Year of fee payment: 6

FPAY Annual fee payment

Payment date: 20181210

Year of fee payment: 7

FPAY Annual fee payment

Payment date: 20191217

Year of fee payment: 8