JPH0560777A - Collision detecting method - Google Patents

Collision detecting method

Info

Publication number
JPH0560777A
JPH0560777A JP3222611A JP22261191A JPH0560777A JP H0560777 A JPH0560777 A JP H0560777A JP 3222611 A JP3222611 A JP 3222611A JP 22261191 A JP22261191 A JP 22261191A JP H0560777 A JPH0560777 A JP H0560777A
Authority
JP
Japan
Prior art keywords
collision
value
period
acceleration
exceeds
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP3222611A
Other languages
Japanese (ja)
Other versions
JP3120290B2 (en
Inventor
Shigero Momohara
茂郎 桃原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Honda Motor Co Ltd
Original Assignee
Honda Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Honda Motor Co Ltd filed Critical Honda Motor Co Ltd
Priority to JP03222611A priority Critical patent/JP3120290B2/en
Priority to US07/852,629 priority patent/US5309138A/en
Priority to DE4208714A priority patent/DE4208714C2/en
Publication of JPH0560777A publication Critical patent/JPH0560777A/en
Application granted granted Critical
Publication of JP3120290B2 publication Critical patent/JP3120290B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Abstract

PURPOSE:To output the starting signal of a collision safety apparatus such as an air bag apparatus accurately without time delay from the occurrence of collision. CONSTITUTION:Acceleration signals G outputted from an acceleration sensor are integrated with an integrating means 14 of a collision estimating logic 10 for the first period t1 and differentiated with a band-pass filter 17. When the integrated value DELTAVb exceeds a reference value DELTAV1 and the average value dG/dt of the differentiated values during the first period t1 exceeds a reference value DELTAG, a starting signal S is outputted through an AND gate 16 because the large secondary collision speed is estimated. Meanwhile, the acceleration signals G are integrated for the second period t2, which is longer than the above described first period t1 in an integrating means 12 in a collision judging logic 9. When the integrated value DELTAVa exceeds a reference value DELTAV0, the starting signal is outputted regardless of the output of the collision estimating logic 10.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、エアバッグ装置やベル
ト引込み装置等の車両用衝突安全装置を的確に起動させ
るための衝突検知方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a collision detecting method for accurately activating a vehicle collision safety device such as an airbag device or a belt retracting device.

【0002】[0002]

【従来の技術】車両の衝突時に乗員を二次衝突の被害か
ら保護するためのエアバッグ装置において、その起動信
号として加速度センサが出力する加速度信号のみを用い
ると、車体に殆ど損傷を与えないような小さな物体が前
記加速度センサの近傍に衝突しただけで起動信号が出力
される可能性があるため、それを防止するための手段が
必要となる。また、衝撃が大きい衝突に限らず、衝撃が
小さく且つ長く継続するような衝突が発生した場合にも
エアバッグ装置を作動させる必要があるが、このような
場合に加速度センサからの起動信号に遅れが生じる可能
性があるため、それを補う手段が必要となる。
2. Description of the Related Art In an airbag device for protecting an occupant from a secondary collision during a vehicle collision, if only an acceleration signal output from an acceleration sensor is used as a starting signal for the airbag apparatus, the vehicle body is hardly damaged. Since there is a possibility that the activation signal is output only when a small object collides with the vicinity of the acceleration sensor, means for preventing this may be required. Further, the airbag device needs to be activated not only when the impact is large, but also when the impact is small and lasts for a long time. In such a case, the start signal from the acceleration sensor is delayed. Since there is a possibility that there will be a problem, a means to compensate for it will be required.

【0003】かかる問題を解決するために、加速度セン
サが出力する加速度を積分して求めた速度、すなわち衝
突による慣性で乗員が例えばステアリングホイールに向
けて接近する二次衝突速度を演算し、その二次衝突速度
が所定の基準値を越えた場合にエアバッグ装置の起動信
号を出力するものが提案されている(特公昭59−85
74号公報参照)。
In order to solve such a problem, the speed obtained by integrating the acceleration output from the acceleration sensor, that is, the secondary collision speed at which the occupant approaches the steering wheel by the inertia due to the collision is calculated. It has been proposed to output an activation signal for an airbag device when the next collision velocity exceeds a predetermined reference value (Japanese Patent Publication No. 59-85).
74 publication).

【0004】[0004]

【発明が解決しようとする課題】しかしながら上記従来
の手法では、衝撃が小さく且つ長く継続するような衝突
が発生した場合に、衝突の瞬間からエアバッグ装置の起
動信号が出力されるまでにかなりの時間が経過すること
があり、そのためにエアバッグ装置の起動タイミングが
多少ずれる可能性がある。
However, in the above-described conventional method, when a collision occurs in which the impact is small and continues for a long time, a considerable amount of time is required from the moment of the collision until the activation signal of the airbag device is output. Since time may elapse, the activation timing of the airbag device may be slightly shifted.

【0005】本発明は前述の事情に鑑みてなされたもの
で、衝突発生後の極めて短時間のうちに的確な衝突検知
を行い得る衝突検知方法を提供することを目的とする。
The present invention has been made in view of the above circumstances, and an object thereof is to provide a collision detection method capable of performing accurate collision detection within an extremely short time after a collision occurs.

【0006】[0006]

【課題を解決するための手段】上記目的を達成するため
に、本発明は、加速度センサが出力する加速度信号に基
づいて車両の衝突を検知する衝突検知方法において、前
記加速度信号を或る第1期間に亘って積分した積分値が
所定値を越え、且つ前記加速度号の微分値が所定値を越
えた場合に車両の衝突を検知することを第1の特徴とす
る。
In order to achieve the above object, the present invention provides a collision detection method for detecting a collision of a vehicle based on an acceleration signal output from an acceleration sensor, wherein the acceleration signal is set to a certain first value. A first feature is to detect a collision of a vehicle when an integrated value integrated over a period exceeds a predetermined value and a differential value of the acceleration signal exceeds a predetermined value.

【0007】また本発明は前述の第1の特徴に加えて、
前記加速度信号を前記第1期間よりも長い第2期間に亘
って積分した積分値が所定値を越えた場合に、前記加速
度信号の微分値の大小に関わらず車両の衝突を検知する
ことを第2の特徴とする。
In addition to the first feature described above, the present invention also provides
When an integrated value obtained by integrating the acceleration signal over a second period longer than the first period exceeds a predetermined value, it is possible to detect a vehicle collision regardless of the magnitude of the differential value of the acceleration signal. There are two characteristics.

【0008】[0008]

【実施例】以下、図面に基づいて本発明の実施例を説明
する。
Embodiments of the present invention will be described below with reference to the drawings.

【0009】図1に示すように、バッテリ1と接地部2
との間には機械式加速度センサ3、スクイブ4、および
トランジスタ5が直列に配設される。機械式加速度セン
サ3は、車両の衝突により発生する加速度を検出するも
ので、検出された加速度が所定値を越えた場合にエアバ
ッグ装置を作動させるべく接点を閉成する。スクイブ4
は、前記機械式加速度センサ3の接点が閉成し且つ後述
する衝突検知回路6がトランジスタ5のベースに起動信
号を出力した場合、前記バッテリ1により通電されてエ
アバッグを展開するための推薬を点火する。
As shown in FIG. 1, a battery 1 and a ground portion 2
A mechanical acceleration sensor 3, a squib 4, and a transistor 5 are arranged in series between and. The mechanical acceleration sensor 3 detects the acceleration generated by the collision of the vehicle, and closes the contact so as to activate the airbag device when the detected acceleration exceeds a predetermined value. Squib 4
Is a propellant for expanding the air bag by being energized by the battery 1 when the contact point of the mechanical acceleration sensor 3 is closed and the collision detection circuit 6 described later outputs a start signal to the base of the transistor 5. Ignite

【0010】符号7は電気式加速度センサであって、車
両の衝突により発生する加速度を歪み計により電気信号
すなわち電圧信号に変換して連続的に出力する。電気式
加速度センサ7の出力信号はアンプ8により増幅され、
加速度信号Gとして前記衝突検知回路6に入力される。
Reference numeral 7 is an electric acceleration sensor, which converts the acceleration generated by the collision of the vehicle into an electric signal, that is, a voltage signal by a strain gauge and continuously outputs the electric signal. The output signal of the electric acceleration sensor 7 is amplified by the amplifier 8,
The acceleration signal G is input to the collision detection circuit 6.

【0011】図2に示すように、加速度信号Gが入力さ
れる衝突検知回路6は衝突判断ロジック9と衝突予測ロ
ジック10とを含み、これら衝突判断ロジック9と衝突
予測ロジック10はORゲート11を介して前記トラン
ジスタ5に接続される。
As shown in FIG. 2, the collision detection circuit 6 to which the acceleration signal G is input includes a collision judgment logic 9 and a collision prediction logic 10. The collision judgment logic 9 and the collision prediction logic 10 have an OR gate 11. It is connected to the transistor 5 via.

【0012】衝突判断ロジック9の積分手段12では、
加速度信号Gが比較的長い第2期間t2 (例えば100
〜150ms)に亘って積分され、積分値ΔVaが演算
される。この積分値ΔVaは衝突により前記第2期間t
2に生じる車体速度の減少分、すなわち車体を基準に考
えるとシートに拘束されていない乗員がステアリングホ
イールに対して接近する速度の増加分に対応する。
In the integrating means 12 of the collision judgment logic 9,
The second period t 2 (for example, 100
(-150 ms), and the integrated value ΔVa is calculated. This integrated value ΔVa is the second period t due to collision.
It corresponds to the decrease in the vehicle speed that occurs in 2 , that is, the increase in the speed at which the occupant who is not restrained by the seat approaches the steering wheel when considering the vehicle as a reference.

【0013】前記積分値ΔVaはサンプリング毎に第2
期間t2 に亘って演算され、その値は比較手段13にお
いて予め設定された基準値ΔV0と比較される。そして
積分値ΔVaが基準値ΔV0 を越えると、ORゲート1
1を介して起動信号が出力される。
The integrated value ΔVa is the second value for each sampling.
The value is calculated over the period t 2 , and its value is compared with the preset reference value ΔV 0 in the comparison means 13. When the integrated value ΔVa exceeds the reference value ΔV 0 , the OR gate 1
An activation signal is output via 1.

【0014】上記衝突判断ロジック9によれば、衝撃が
小さく且つ長く継続するような衝突が発生した場合であ
っても、エアバッグ装置の起動信号を確実に出力するこ
とができる。
According to the collision determination logic 9, the activation signal of the airbag device can be reliably output even when a collision occurs in which the impact is small and continues for a long time.

【0015】ところで車両の衝突により発生する加速度
の波形、すなわち前記電気式加速度センサ7により検出
される加速度信号Gの波形は、図3に示すように正弦波
に類似した波形となり、しかもその波形における周期T
は加速度の大小によらず、個々の車体構造に依存する定
数であることが実験的に知られている。前記加速度信号
Gを半周期T/2に亘って積分した斜線部の面積は衝突
による車体の減速量、すなわちシートに拘束されていな
い乗員が衝突により車体に対して前方に投げ出される二
次衝突速度にほぼ対応している。上記加速度信号Gの波
形における斜線部の面積は、該加速度信号Gを比較的短
い第1期間t1 (例えば15〜20ms)に亘って積分
した積分値ΔVb(図3の二重斜線部分)の面積が増加
すれば増加し、前記積分値ΔVbが減少すれば減少す
る。また、上記加速度信号Gの波形における斜線部の面
積は、該波形における接線の傾き、すなわち加速度信号
Gの微分値dG/dtが増加すれば増加し、前記微分値
dG/dtが減少すれば減少する。要するに、最終的な
二次衝突速度は加速度信号Gの前記積分値ΔVbおよび
前記微分値dG/dtによりある程度予測可能であり、
以下に述べる衝突予測ロジック10では前記積分値ΔV
bと微分値dG/dtが起動信号出力のためのパラメー
タとして使用される。
By the way, the waveform of the acceleration generated by the collision of the vehicle, that is, the waveform of the acceleration signal G detected by the electric acceleration sensor 7 becomes a waveform similar to a sine wave as shown in FIG. Cycle T
It is experimentally known that is a constant that depends on the individual vehicle body structure, regardless of the magnitude of acceleration. The area of the hatched portion obtained by integrating the acceleration signal G over the half cycle T / 2 is the deceleration amount of the vehicle body due to the collision, that is, the secondary collision speed at which the occupant not restrained by the seat is thrown forward to the vehicle body due to the collision. Almost corresponds to. The area of the shaded portion in the waveform of the acceleration signal G is the integral value ΔVb (double shaded portion in FIG. 3) obtained by integrating the acceleration signal G over a relatively short first period t 1 (for example, 15 to 20 ms). It increases as the area increases, and decreases as the integrated value ΔVb decreases. The area of the shaded portion in the waveform of the acceleration signal G increases when the slope of the tangent line in the waveform, that is, the differential value dG / dt of the acceleration signal G increases, and decreases when the differential value dG / dt decreases. To do. In short, the final secondary collision velocity can be predicted to some extent by the integral value ΔVb and the differential value dG / dt of the acceleration signal G,
In the collision prediction logic 10 described below, the integrated value ΔV
b and the differential value dG / dt are used as parameters for outputting the start signal.

【0016】図2に戻り、衝突予測ロジック10の積分
手段14では加速度信号Gが第2期間t2 よりも短い第
1期間t1 に亘って積分され、積分値ΔVbが演算され
る。この積分値ΔVbは衝突により第1期間t1 に生じ
る車体速度の減少分に対応し、前述のように乗員の二次
衝突速度を予測するパラメータとして使用される。すな
わち、積分値ΔVbは比較手段15において予め設定さ
れた基準値ΔV1 と比較され、積分値ΔVbが基準値Δ
1 を越えるとANDゲート16に信号が出力される。
Returning to FIG. 2, the integrator 14 of the collision prediction logic 10 integrates the acceleration signal G over the first period t 1 which is shorter than the second period t 2 , and calculates the integral value ΔVb. This integral value ΔVb corresponds to the amount of decrease in the vehicle body speed that occurs in the first period t 1 due to the collision, and is used as a parameter for predicting the secondary collision speed of the occupant as described above. That is, the integrated value ΔVb is compared with the preset reference value ΔV 1 in the comparison unit 15, and the integrated value ΔVb is compared with the reference value ΔVb.
When V 1 is exceeded, a signal is output to AND gate 16.

【0017】一方、前記加速度信号Gはバンドパスフィ
ルタ17を通過し、そこでローパスフィルタにより不要
成分が濾波されるとともに、ハイパスフィルタの微分型
伝達関数により加速度信号Gの微分値に対応するGBPF
が得られる。続く平均値演算手段18により、前記G
BPF が第1期間t1 に亘って平均化され、加速度信号G
の微分値dG/dtが演算される。この微分値dG/d
tも乗員の二次衝突速度を予測するパラメータとして使
用されるもので、比較手段19において予め設定された
基準値ΔGと比較され、微分値dG/dtが基準値ΔG
を越えるとANDゲート16に信号が出力される。
On the other hand, the acceleration signal G passes through the bandpass filter 17, where unnecessary components are filtered by the lowpass filter, and G BPF corresponding to the differential value of the acceleration signal G is obtained by the differential transfer function of the highpass filter.
Is obtained. Then, the average value calculating means 18 causes the G
The BPF is averaged over the first period t 1 , and the acceleration signal G
The differential value dG / dt of is calculated. This differential value dG / d
t is also used as a parameter for predicting the secondary collision velocity of the occupant, and is compared with a preset reference value ΔG in the comparison means 19, and the differential value dG / dt is the reference value ΔG.
When it exceeds, a signal is output to the AND gate 16.

【0018】而して、ANDゲート16に前記両比較手
段15,19から共に信号が入力されると、ANDゲー
ト16はエアバッグ装置の起動信号を出力する。図4の
グラフから明らかなように、ANDゲート16が起動信
号を出力する領域は、積分値ΔVbが基準値ΔV1 を越
え、且つ微分値dG/dtが基準値ΔGを越えるA領域
となる。これに対し、従来の機械式の加速度センサのみ
を使用した場合には、B領域において起動信号が出力さ
れるようになる。
When signals are input to the AND gate 16 from both the comparing means 15 and 19, the AND gate 16 outputs a start signal of the airbag device. As is clear from the graph of FIG. 4, the area in which the AND gate 16 outputs the activation signal is the area A in which the integrated value ΔVb exceeds the reference value ΔV 1 and the differential value dG / dt exceeds the reference value ΔG. On the other hand, when only the conventional mechanical acceleration sensor is used, the activation signal is output in the B region.

【0019】車両の一般的な衝突における積分値ΔVb
と微分値dG/dtの変化はaのような軌跡になるが、
本発明のものではA領域との交点であるA1点で起動信
号が出力されるのに対し、従来のものではB領域との交
点であるB1 点で起動信号が出力される。つまり従来の
衝突検知方法は、Lに相当する分だけ本発明の衝突検知
方法よりも時間遅れが生じることになる。
Integral value ΔVb in a general vehicle collision
And the change of the differential value dG / dt becomes a locus like a,
In the present invention, the activation signal is output at the point A 1 which is the intersection with the area A, whereas in the conventional one the activation signal is output at the point B 1 which is the intersection with the area B. In other words, the conventional collision detection method has a time lag corresponding to L compared with the collision detection method of the present invention.

【0020】また、縁石乗り上げの場合(軌跡b参照)
や低速での衝撃の小さい衝突の場合(軌跡c参照)にエ
アバッグ装置が作用しないようにするには、従来の衝突
検知方法ではB領域を原点から右上方に大きく離す必要
があり、その結果起動信号の出力が更に遅れることにな
る。しかるに本発明の衝突検知方法では、A領域を比較
的広く設定しても縁石乗り上げや低速衝突の際にエアバ
ッグ装置が不要な作動をすることを回避できる。
When riding on a curb (see locus b)
In order to prevent the airbag device from acting in the case of a collision with a small impact at a low speed (see locus c), the conventional collision detection method requires that the region B be largely separated from the origin in the upper right direction. The output of the start signal will be further delayed. However, in the collision detection method of the present invention, even if the area A is set to be relatively wide, it is possible to avoid unnecessary operation of the airbag device when riding on a curb or in a low-speed collision.

【0021】尚、衝突の状況によっては積分値ΔVbと
微分値dG/dtがdの様な軌跡を描く場合があるが、
この様な場合に起動信号の出力タイミングに遅れが生じ
る可能性がある。また前記積分値ΔVbと微分値dG/
dtがeのような軌跡をとる場合には、起動信号が出力
されない可能性がある。このために、積分値ΔVbと微
分値dG/dtがそれぞれ所定値ΔV1 ′,ΔG′より
も大きい領域(図4のA′領域)を前記A領域に付加
し、A領域とA′領域において起動信号を出力するよう
にしても良い。
Depending on the situation of the collision, the integrated value ΔVb and the differential value dG / dt may draw a locus like d.
In such a case, the output timing of the activation signal may be delayed. Further, the integrated value ΔVb and the differential value dG /
When dt takes a locus like e, the start signal may not be output. For this purpose, areas (A 'area in FIG. 4) in which the integrated value ΔVb and the differential value dG / dt are larger than the predetermined values ΔV 1 ′ and ΔG ′, respectively, are added to the A area, and in the A area and the A ′ area. You may make it output a starting signal.

【0022】以上、本発明の実施例を詳述したが、本発
明は前記実施例に限定されるものでなく、特許請求の範
囲に記載された本発明を逸脱することなく種々の小設計
変更を行うことが可能である。
Although the embodiments of the present invention have been described in detail above, the present invention is not limited to the above embodiments, and various small design changes can be made without departing from the present invention described in the claims. It is possible to

【0023】例えば、加速度信号Gをバンドパスフィル
タ17を通過させてその微分値に対応するGBPF を得る
代わりに、その加速度信号Gを直接微分演算して微分値
を得ても良い。また、本発明はエアバッグ装置に限ら
ず、シートベルト引込み装置に対しても適用することが
できる。
For example, instead of passing the acceleration signal G through the bandpass filter 17 to obtain G BPF corresponding to its differential value, the acceleration signal G may be directly differentiated to obtain the differential value. The present invention can be applied not only to the airbag device but also to a seat belt retracting device.

【0024】[0024]

【発明の効果】以上のように本発明の第1の特徴によれ
ば、衝突発生後の極めて短い第1期間内における加速度
信号の積分値および微分値を求め、その積分値および微
分値から衝突による車両の減速量を推定して衝突検知を
おこなっているので、衝突安全装置を時間遅れを生じる
ことなく的確に作動させることができる。
As described above, according to the first feature of the present invention, the integrated value and the differential value of the acceleration signal in the extremely short first period after the occurrence of the collision are obtained, and the collision is calculated from the integrated value and the differential value. Since the collision detection is performed by estimating the deceleration amount of the vehicle due to, the collision safety device can be accurately operated without causing a time delay.

【0025】また本発明の第2の特徴によれば、前記第
1期間よりも長い第2期間に亘る加速度信号の積分値が
所定値を越えた場合に、前記加速度信号の微分値と関わ
りなく衝突検知を行っているので、小さい衝撃が長く継
続するような衝突をも的確に検知することができる。
According to the second aspect of the present invention, when the integrated value of the acceleration signal over a second period longer than the first period exceeds a predetermined value, regardless of the differential value of the acceleration signal. Since collision detection is performed, it is possible to accurately detect a collision in which a small impact continues for a long time.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の全体構成を示すブロック図FIG. 1 is a block diagram showing the overall configuration of the present invention.

【図2】衝突検知回路のブロック図FIG. 2 is a block diagram of a collision detection circuit.

【図3】衝突予測ロジックの原理を示す図FIG. 3 is a diagram showing the principle of a collision prediction logic.

【図4】エアバッグ装置の起動信号出力領域を示すグラ
FIG. 4 is a graph showing an activation signal output region of the airbag device.

【符号の説明】 7・・・・・加速度センサ G・・・・・加速度信号 t1 ・・・・第1期間 t2 ・・・・第2期間[Explanation of Codes] 7 ... Acceleration sensor G ... Acceleration signal t 1 ... First period t 2 ... Second period

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 加速度センサ(7)が出力する加速度信
号(G)に基づいて車両の衝突を検知する衝突検知方法
において、 前記加速度信号(G)を或る第1期間(t1 )に亘って
積分した積分値が所定値を越え、且つ前記加速度号
(G)の微分値が所定値を越えた場合に車両の衝突を検
知することを特徴とする、衝突検知方法。
1. A collision detection method for detecting a vehicle collision based on an acceleration signal (G) output from an acceleration sensor (7), wherein the acceleration signal (G) is applied for a certain first period (t 1 ). A collision detection method, characterized in that a collision of the vehicle is detected when an integrated value obtained by integration as a result exceeds a predetermined value and a differential value of the acceleration signal (G) exceeds a predetermined value.
【請求項2】 前記加速度信号(G)を前記第1期間
(t1 )よりも長い第2期間(t2 )に亘って積分した
積分値が、前記加速度信号(G)の微分値の大小に関わ
らず所定値を越えた場合に車両の衝突を検知することを
特徴とする、請求項1記載の衝突検知方法。
2. An integrated value obtained by integrating the acceleration signal (G) over a second period (t 2 ) longer than the first period (t 1 ) is larger or smaller than a differential value of the acceleration signal (G). The collision detection method according to claim 1, wherein a collision of the vehicle is detected when the predetermined value is exceeded regardless of the predetermined value.
JP03222611A 1991-03-19 1991-09-03 Collision detection method Expired - Fee Related JP3120290B2 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP03222611A JP3120290B2 (en) 1991-09-03 1991-09-03 Collision detection method
US07/852,629 US5309138A (en) 1991-03-19 1992-03-17 Vehicle collision detecting method employing an acceleration sensor
DE4208714A DE4208714C2 (en) 1991-03-19 1992-03-18 Vehicle collision detection method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP03222611A JP3120290B2 (en) 1991-09-03 1991-09-03 Collision detection method

Publications (2)

Publication Number Publication Date
JPH0560777A true JPH0560777A (en) 1993-03-12
JP3120290B2 JP3120290B2 (en) 2000-12-25

Family

ID=16785171

Family Applications (1)

Application Number Title Priority Date Filing Date
JP03222611A Expired - Fee Related JP3120290B2 (en) 1991-03-19 1991-09-03 Collision detection method

Country Status (1)

Country Link
JP (1) JP3120290B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06107116A (en) * 1992-09-28 1994-04-19 Nissan Motor Co Ltd Control device of occupant restraint system
JPH06107115A (en) * 1992-09-28 1994-04-19 Nissan Motor Co Ltd Control device of occupant restraint system
JPH09505016A (en) * 1994-08-31 1997-05-20 オートモーティブ システムズ ラボラトリー インコーポレーテッド System and method for reducing collision discrimination errors
JP2010105496A (en) * 2008-10-29 2010-05-13 Hino Motors Ltd Automatic brake control device, collision determination method, vehicle and program
JP2010105493A (en) * 2008-10-29 2010-05-13 Hino Motors Ltd Device and method of determining collision, vehicle, and program

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06107116A (en) * 1992-09-28 1994-04-19 Nissan Motor Co Ltd Control device of occupant restraint system
JPH06107115A (en) * 1992-09-28 1994-04-19 Nissan Motor Co Ltd Control device of occupant restraint system
JPH09505016A (en) * 1994-08-31 1997-05-20 オートモーティブ システムズ ラボラトリー インコーポレーテッド System and method for reducing collision discrimination errors
JP2010105496A (en) * 2008-10-29 2010-05-13 Hino Motors Ltd Automatic brake control device, collision determination method, vehicle and program
JP2010105493A (en) * 2008-10-29 2010-05-13 Hino Motors Ltd Device and method of determining collision, vehicle, and program

Also Published As

Publication number Publication date
JP3120290B2 (en) 2000-12-25

Similar Documents

Publication Publication Date Title
JP2990381B2 (en) Collision judgment circuit
US5309138A (en) Vehicle collision detecting method employing an acceleration sensor
US5967548A (en) Safety arrangement
US5483449A (en) Inflatable restraint system and method of controlling deployment thereof
JP2879977B2 (en) Collision sensor
JPH03208749A (en) Activation device for passenger restricting device which activates car passenger restricting device in response to vehicle jerk and device activation method
US5396424A (en) Crash sensor
JPH0764246B2 (en) How to activate the restraint
US6756889B2 (en) Dual sensor crash sensing system
US7278657B1 (en) Method and apparatus for controlling an actuatable occupant protection device using an ultrasonic sensor
KR100492501B1 (en) Passive safety system background of the invention
JP3120290B2 (en) Collision detection method
JPH1067295A (en) Occupant protective device of vehicle
JP2932007B2 (en) Collision judgment circuit
JP3119001B2 (en) Acceleration measuring method and acceleration measuring device
JP3118980B2 (en) Vehicle collision determination device
JP3125365B2 (en) Vehicle collision determination device
JP3965513B2 (en) Collision determination device for airbag system
JP3876112B2 (en) Vehicle collision determination device
JPH05278559A (en) Controller of vehicle safety device
JPH0769171A (en) Driver protecting device
JP4183882B2 (en) Vehicle collision determination device
JP2001277998A (en) Vehicular collision judging device
JP2001277993A (en) Vehicular collision judging device
JP3055361B2 (en) Vehicle collision determination method and collision determination device

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20071020

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081020

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081020

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091020

Year of fee payment: 9

LAPS Cancellation because of no payment of annual fees