JP3120290B2 - Collision detection method - Google Patents

Collision detection method

Info

Publication number
JP3120290B2
JP3120290B2 JP03222611A JP22261191A JP3120290B2 JP 3120290 B2 JP3120290 B2 JP 3120290B2 JP 03222611 A JP03222611 A JP 03222611A JP 22261191 A JP22261191 A JP 22261191A JP 3120290 B2 JP3120290 B2 JP 3120290B2
Authority
JP
Japan
Prior art keywords
collision
value
signal
acceleration
acceleration signal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP03222611A
Other languages
Japanese (ja)
Other versions
JPH0560777A (en
Inventor
茂郎 桃原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Honda Motor Co Ltd
Original Assignee
Honda Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Honda Motor Co Ltd filed Critical Honda Motor Co Ltd
Priority to JP03222611A priority Critical patent/JP3120290B2/en
Priority to US07/852,629 priority patent/US5309138A/en
Priority to DE4208714A priority patent/DE4208714C2/en
Publication of JPH0560777A publication Critical patent/JPH0560777A/en
Application granted granted Critical
Publication of JP3120290B2 publication Critical patent/JP3120290B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Air Bags (AREA)
  • Switches Operated By Changes In Physical Conditions (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は、エアバッグ装置やベル
ト引込み装置等の車両用衝突安全装置を的確に起動させ
るための衝突検知方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a collision detection method for accurately starting a vehicle collision safety device such as an airbag device or a belt retraction device.

【0002】[0002]

【従来の技術】車両の衝突時に乗員を二次衝突の被害か
ら保護するためのエアバッグ装置において、その起動信
号として加速度センサが出力する加速度信号のみを用い
ると、車体に殆ど損傷を与えないような小さな物体が前
記加速度センサの近傍に衝突しただけで起動信号が出力
される可能性があるため、それを防止するための手段が
必要となる。また、衝撃が大きい衝突に限らず、衝撃が
小さく且つ長く継続するような衝突が発生した場合にも
エアバッグ装置を作動させる必要があるが、このような
場合に加速度センサからの起動信号に遅れが生じる可能
性があるため、それを補う手段が必要となる。
2. Description of the Related Art In an airbag device for protecting an occupant from a secondary collision during a vehicle collision, if only an acceleration signal output from an acceleration sensor is used as a starting signal of the airbag device, the vehicle body is hardly damaged. There is a possibility that a start signal may be output only when a small object collides with the vicinity of the acceleration sensor, and a means for preventing the start signal is required. In addition, it is necessary to operate the airbag device not only for a collision having a large impact but also for a collision where the impact is small and lasts for a long time. Therefore, there is a need for a means to compensate for this.

【0003】かかる問題を解決するために、加速度セン
サが出力する加速度を積分して求めた速度、すなわち衝
突による慣性で乗員が例えばステアリングホイールに向
けて接近する二次衝突速度を演算し、その二次衝突速度
が所定の基準値を越えた場合にエアバッグ装置の起動信
号を出力するものが提案されている(特公昭59−85
74号公報参照)。
In order to solve such a problem, a velocity obtained by integrating the acceleration output from the acceleration sensor, that is, a secondary collision velocity at which the occupant approaches a steering wheel, for example, is calculated by inertia due to the collision, and the secondary collision velocity is calculated. A device that outputs an activation signal of an airbag device when the next collision speed exceeds a predetermined reference value has been proposed (Japanese Patent Publication No. 59-85).
No. 74).

【0004】[0004]

【発明が解決しようとする課題】しかしながら上記従来
の手法では、衝撃が小さく且つ長く継続するような衝突
が発生した場合に、衝突の瞬間からエアバッグ装置の起
動信号が出力されるまでにかなりの時間が経過すること
があり、そのためにエアバッグ装置の起動タイミングが
多少ずれる可能性がある。
However, in the above-mentioned conventional method, when a collision occurs in which the impact is small and lasts for a long time, a considerable amount of time is required from the moment of the collision until the activation signal of the airbag device is output. Time may elapse, which may cause a slight shift in the activation timing of the airbag device.

【0005】本発明は前述の事情に鑑みてなされたもの
で、衝突発生後の極めて短時間のうちに的確な衝突検知
を行い得る衝突検知方法を提供することを目的とする。
The present invention has been made in view of the above circumstances, and has as its object to provide a collision detection method capable of performing accurate collision detection within a very short time after a collision has occurred.

【0006】[0006]

【課題を解決するための手段】上記目的を達成するため
に、本発明は、加速度センサが出力する加速度信号に基
づいて車両の衝突を検知する衝突検知方法において、前
記加速度信号を衝突発生直後の或る第1期間に亘って積
分した積分値が所定値を越え、且つ前記加速度信号の微
分値が所定値を越えた場合に車両の衝突を検知し、また
前記加速度信号を前記第1期間よりも長い第2期間に亘
って積分した積分値が、前記加速度信号の微分値の大小
に関わらず所定値を越えた場合にも車両の衝突を検知
ることを徴とする。
In order to achieve the above object, the present invention provides a collision detection method for detecting a vehicle collision based on an acceleration signal output from an acceleration sensor. Detecting a vehicle collision when an integrated value integrated over a certain first period exceeds a predetermined value and a differential value of the acceleration signal exceeds a predetermined value ;
The acceleration signal over a second period longer than the first period
Is the magnitude of the differential value of the acceleration signal.
The <br/> Rukoto to detect a collision of the vehicle to feature when it exceeds a predetermined value regardless.

【0007】[0007]

【0008】[0008]

【実施例】以下、図面に基づいて本発明の実施例を説明
する。
Embodiments of the present invention will be described below with reference to the drawings.

【0009】図1に示すように、バッテリ1と接地部2
との間には機械式加速度センサ3、スクイブ4、および
トランジスタ5が直列に配設される。機械式加速度セン
サ3は、車両の衝突により発生する加速度を検出するも
ので、検出された加速度が所定値を越えた場合にエアバ
ッグ装置を作動させるべく接点を閉成する。スクイブ4
は、前記機械式加速度センサ3の接点が閉成し且つ後述
する衝突検知回路6がトランジスタ5のベースに起動信
号を出力した場合、前記バッテリ1により通電されてエ
アバッグを展開するための推薬を点火する。
As shown in FIG. 1, a battery 1 and a ground 2
A mechanical acceleration sensor 3, a squib 4, and a transistor 5 are arranged in series between the two. The mechanical acceleration sensor 3 detects an acceleration generated by a collision of the vehicle, and closes a contact to operate the airbag device when the detected acceleration exceeds a predetermined value. Squibb 4
The propellant for energizing the battery 1 to deploy the airbag when the contact of the mechanical acceleration sensor 3 is closed and the collision detection circuit 6 described below outputs a start signal to the base of the transistor 5 Ignite.

【0010】符号7は電気式加速度センサであって、車
両の衝突により発生する加速度を歪み計により電気信号
すなわち電圧信号に変換して連続的に出力する。電気式
加速度センサ7の出力信号はアンプ8により増幅され、
加速度信号Gとして前記衝突検知回路6に入力される。
Reference numeral 7 denotes an electric acceleration sensor, which converts the acceleration generated by the collision of the vehicle into an electric signal, that is, a voltage signal by a strain gauge, and continuously outputs the electric signal. The output signal of the electric acceleration sensor 7 is amplified by the amplifier 8,
The acceleration signal G is input to the collision detection circuit 6.

【0011】図2に示すように、加速度信号Gが入力さ
れる衝突検知回路6は衝突判断ロジック9と衝突予測ロ
ジック10とを含み、これら衝突判断ロジック9と衝突
予測ロジック10はORゲート11を介して前記トラン
ジスタ5に接続される。
As shown in FIG. 2, the collision detection circuit 6 to which the acceleration signal G is inputted includes a collision judgment logic 9 and a collision prediction logic 10, and the collision judgment logic 9 and the collision prediction logic 10 have an OR gate 11. And the transistor 5.

【0012】衝突判断ロジック9の積分手段12では、
加速度信号Gが比較的長い第2期間t2 (例えば100
〜150ms)に亘って積分され、積分値ΔVaが演算
される。この積分値ΔVaは衝突により前記第2期間t
2に生じる車体速度の減少分、すなわち車体を基準に考
えるとシートに拘束されていない乗員がステアリングホ
イールに対して接近する速度の増加分に対応する。
In the integrating means 12 of the collision determination logic 9,
The second period t 2 where the acceleration signal G is relatively long (for example, 100
150150 ms), and an integrated value ΔVa is calculated. The integrated value ΔVa is determined by the collision during the second period t.
This corresponds to the decrease in the vehicle body speed occurring in 2 , that is, the increase in the speed at which the occupant who is not restrained by the seat approaches the steering wheel when considering the vehicle body as a reference.

【0013】前記積分値ΔVaはサンプリング毎に第2
期間t2 に亘って演算され、その値は比較手段13にお
いて予め設定された基準値ΔV0と比較される。そして
積分値ΔVaが基準値ΔV0 を越えると、ORゲート1
1を介して起動信号が出力される。
The integral value .DELTA.Va is equal to a second
The calculation is performed over the period t 2 , and the value is compared with a reference value ΔV 0 set in advance by the comparing means 13. When the integrated value ΔVa exceeds the reference value ΔV 0 , the OR gate 1
An activation signal is output via the switch 1.

【0014】上記衝突判断ロジック9によれば、衝撃が
小さく且つ長く継続するような衝突が発生した場合であ
っても、エアバッグ装置の起動信号を確実に出力するこ
とができる。
According to the collision determination logic 9, even if a collision occurs in which the impact is small and lasts for a long time, the activation signal of the airbag device can be reliably output.

【0015】ところで車両の衝突により発生する加速度
の波形、すなわち前記電気式加速度センサ7により検出
される加速度信号Gの波形は、図3に示すように正弦波
に類似した波形となり、しかもその波形における周期T
は加速度の大小によらず、個々の車体構造に依存する定
数であることが実験的に知られている。前記加速度信号
Gを半周期T/2に亘って積分した斜線部の面積は衝突
による車体の減速量、すなわちシートに拘束されていな
い乗員が衝突により車体に対して前方に投げ出される二
次衝突速度にほぼ対応している。上記加速度信号Gの波
形における斜線部の面積は、該加速度信号Gを比較的短
い第1期間t1 (例えば15〜20ms)に亘って積分
した積分値ΔVb(図3の二重斜線部分)の面積が増加
すれば増加し、前記積分値ΔVbが減少すれば減少す
る。また、上記加速度信号Gの波形における斜線部の面
積は、該波形における接線の傾き、すなわち加速度信号
Gの微分値dG/dtが増加すれば増加し、前記微分値
dG/dtが減少すれば減少する。要するに、最終的な
二次衝突速度は加速度信号Gの前記積分値ΔVbおよび
前記微分値dG/dtによりある程度予測可能であり、
以下に述べる衝突予測ロジック10では前記積分値ΔV
bと微分値dG/dtが起動信号出力のためのパラメー
タとして使用される。
The waveform of the acceleration generated by the collision of the vehicle, that is, the waveform of the acceleration signal G detected by the electric acceleration sensor 7 is similar to a sine wave as shown in FIG. Period T
It is experimentally known that is a constant that depends on the individual vehicle body structure regardless of the magnitude of the acceleration. The area of the shaded area obtained by integrating the acceleration signal G over the half cycle T / 2 is the amount of deceleration of the vehicle body due to the collision, that is, the secondary collision velocity at which the occupant not restrained by the seat is thrown forward against the vehicle body by the collision. Almost corresponds to. The area of the hatched portion in the waveform of the acceleration signal G is the integrated value ΔVb (double hatched portion in FIG. 3) obtained by integrating the acceleration signal G over a relatively short first period t 1 (for example, 15 to 20 ms). It increases when the area increases, and decreases when the integral value ΔVb decreases. The area of the hatched portion in the waveform of the acceleration signal G increases as the gradient of the tangent in the waveform, that is, the differential value dG / dt of the acceleration signal G increases, and decreases as the differential value dG / dt decreases. I do. In short, the final secondary collision speed can be predicted to some extent by the integral value ΔVb and the differential value dG / dt of the acceleration signal G,
In the collision prediction logic 10 described below, the integrated value ΔV
b and the differential value dG / dt are used as parameters for starting signal output.

【0016】図2に戻り、衝突予測ロジック10の積分
手段14では加速度信号Gが第2期間t2 よりも短い第
1期間t1 に亘って積分され、積分値ΔVbが演算され
る。この積分値ΔVbは衝突により第1期間t1 に生じ
る車体速度の減少分に対応し、前述のように乗員の二次
衝突速度を予測するパラメータとして使用される。すな
わち、積分値ΔVbは比較手段15において予め設定さ
れた基準値ΔV1 と比較され、積分値ΔVbが基準値Δ
1 を越えるとANDゲート16に信号が出力される。
Returning to FIG. 2, the integration means 14 of the collision prediction logic 10 integrates the acceleration signal G over a first period t 1 shorter than the second period t 2 , and calculates an integrated value ΔVb. This integral value ΔVb corresponds to the decrease in the vehicle body speed that occurs during the first period t 1 due to the collision, and is used as a parameter for predicting the secondary collision speed of the occupant as described above. That is, the integrated value ΔVb is compared with a preset reference value ΔV 1 by the comparing means 15, and the integrated value ΔVb is compared with the reference value ΔV 1.
Signal is output to the AND gate 16 exceeds V 1.

【0017】一方、前記加速度信号Gはバンドパスフィ
ルタ17を通過し、そこでローパスフィルタにより不要
成分が濾波されるとともに、ハイパスフィルタの微分型
伝達関数により加速度信号Gの微分値に対応するGBPF
が得られる。続く平均値演算手段18により、前記G
BPF が第1期間t1 に亘って平均化され、加速度信号G
の微分値dG/dtが演算される。この微分値dG/d
tも乗員の二次衝突速度を予測するパラメータとして使
用されるもので、比較手段19において予め設定された
基準値ΔGと比較され、微分値dG/dtが基準値ΔG
を越えるとANDゲート16に信号が出力される。
On the other hand, the acceleration signal G passes through a band-pass filter 17, where unnecessary components are filtered by a low-pass filter, and a G BPF corresponding to a differential value of the acceleration signal G by a differential-type transfer function of a high-pass filter.
Is obtained. The average value calculating means 18 calculates G
BPF is averaged over the first period t 1 and the acceleration signal G
Is calculated as dG / dt. This differential value dG / d
t is also used as a parameter for predicting the secondary collision speed of the occupant, and is compared with a preset reference value ΔG by the comparing means 19, and the differential value dG / dt is compared with the reference value ΔG.
Is exceeded, a signal is output to the AND gate 16.

【0018】而して、ANDゲート16に前記両比較手
段15,19から共に信号が入力されると、ANDゲー
ト16はエアバッグ装置の起動信号を出力する。図4の
グラフから明らかなように、ANDゲート16が起動信
号を出力する領域は、積分値ΔVbが基準値ΔV1 を越
え、且つ微分値dG/dtが基準値ΔGを越えるA領域
となる。これに対し、従来の機械式の加速度センサのみ
を使用した場合には、B領域において起動信号が出力さ
れるようになる。
When signals are input to the AND gate 16 from both of the comparing means 15 and 19, the AND gate 16 outputs a start signal of the airbag device. As is clear from the graph of FIG. 4, the area where the AND gate 16 outputs the activation signal is the area A where the integrated value ΔVb exceeds the reference value ΔV 1 and the differential value dG / dt exceeds the reference value ΔG. On the other hand, when only the conventional mechanical acceleration sensor is used, a start signal is output in the B region.

【0019】車両の一般的な衝突における積分値ΔVb
と微分値dG/dtの変化はaのような軌跡になるが、
本発明のものではA領域との交点であるA1点で起動信
号が出力されるのに対し、従来のものではB領域との交
点であるB1 点で起動信号が出力される。つまり従来の
衝突検知方法は、Lに相当する分だけ本発明の衝突検知
方法よりも時間遅れが生じることになる。
Integral value ΔVb in a general vehicle collision
And the change of the differential value dG / dt has a locus like a,
Than those of the present invention while activation signal A 1 point is an intersection of the A region is output, than the conventional activation signal by B 1 point is an intersection of the B region are output. In other words, the conventional collision detection method has a time delay corresponding to L compared to the collision detection method of the present invention.

【0020】また、縁石乗り上げの場合(軌跡b参照)
や低速での衝撃の小さい衝突の場合(軌跡c参照)にエ
アバッグ装置が作用しないようにするには、従来の衝突
検知方法ではB領域を原点から右上方に大きく離す必要
があり、その結果起動信号の出力が更に遅れることにな
る。しかるに本発明の衝突検知方法では、A領域を比較
的広く設定しても縁石乗り上げや低速衝突の際にエアバ
ッグ装置が不要な作動をすることを回避できる。
In the case of a curb ride (see locus b)
In order to prevent the airbag device from acting in the event of a small impact at low speed or at a low speed (see trajectory c), the conventional collision detection method requires the B region to be largely separated to the upper right from the origin, and as a result The output of the start signal will be further delayed. However, according to the collision detection method of the present invention, even when the area A is set relatively wide, it is possible to avoid unnecessary operation of the airbag device in the event of a curb climb or a low-speed collision.

【0021】尚、衝突の状況によっては積分値ΔVbと
微分値dG/dtがdの様な軌跡を描く場合があるが、
この様な場合に起動信号の出力タイミングに遅れが生じ
る可能性がある。また前記積分値ΔVbと微分値dG/
dtがeのような軌跡をとる場合には、起動信号が出力
されない可能性がある。このために、積分値ΔVbと微
分値dG/dtがそれぞれ所定値ΔV1 ′,ΔG′より
も大きい領域(図4のA′領域)を前記A領域に付加
し、A領域とA′領域において起動信号を出力するよう
にしても良い。
Incidentally, depending on the situation of the collision, the integral value ΔVb and the differential value dG / dt may draw a locus such as d.
In such a case, the output timing of the activation signal may be delayed. Further, the integral value ΔVb and the differential value dG /
When dt takes a locus like e, the activation signal may not be output. For this purpose, a region (A ′ region in FIG. 4) in which the integral value ΔVb and the differential value dG / dt are larger than the predetermined values ΔV 1 ′ and ΔG ′, respectively, is added to the A region. A start signal may be output.

【0022】以上、本発明の実施例を詳述したが、本発
明は前記実施例に限定されるものでなく、特許請求の範
囲に記載された本発明を逸脱することなく種々の小設計
変更を行うことが可能である。
Although the embodiments of the present invention have been described in detail, the present invention is not limited to the above embodiments, and various small design changes can be made without departing from the present invention described in the appended claims. It is possible to do.

【0023】例えば、加速度信号Gをバンドパスフィル
タ17を通過させてその微分値に対応するGBPF を得る
代わりに、その加速度信号Gを直接微分演算して微分値
を得ても良い。また、本発明はエアバッグ装置に限ら
ず、シートベルト引込み装置に対しても適用することが
できる。
For example, instead of passing the acceleration signal G through the band-pass filter 17 to obtain a G BPF corresponding to the differential value, a differential value may be obtained by directly differentiating the acceleration signal G. Further, the present invention is not limited to an airbag device, and can be applied to a seat belt retraction device.

【0024】[0024]

【発明の効果】以上のように本発明の第1の特徴によれ
ば,衝突発生後の極めて短い第1期間内における加速
度信号の積分値および微分値を求め,その積分値および
微分値から衝突による車両の減速量を推定して衝突検知
を行っているので,衝突安全装置を時間遅れを生じるこ
となく的確に作動させることができる。特に衝突発生直
後の極めて短期間内において,加速度信号の積分値が所
定値を越えたことと,微分値が所定値を越えたことの両
条件が共に成立したときに「衝突」と判断しているた
め,加速度信号の積分値・微分値の両面より衝突判断を
的確且つ高精度に行うことができる。
According to a first aspect of the above the present invention, obtains an integration value and the differential value of the acceleration signal within a very short first period of time after collision straight from the integrated value and the differential value Since the collision detection is performed by estimating the deceleration amount of the vehicle due to the collision, the collision safety device can be operated accurately without a time delay. Especially when a collision occurs
Within a very short period of time, the integrated value of the acceleration signal
Both when the fixed value is exceeded and when the derivative value exceeds the predetermined value
When both conditions are satisfied, it is judged as "collision"
Therefore, collision judgment is made based on both the integral value and the derivative value of the acceleration signal.
It can be performed accurately and with high accuracy.

【0025】また本発明の第2の特徴によれば、前記第
1期間よりも長い第2期間に亘る加速度信号の積分値が
所定値を越えた場合に、前記加速度信号の微分値と関わ
りなく衝突検知を行っているので、小さい衝撃が長く継
続するような衝突をも的確に検知することができる。
According to a second feature of the present invention, when the integral value of the acceleration signal over a second period longer than the first period exceeds a predetermined value, regardless of the differential value of the acceleration signal. Since the collision detection is performed, it is possible to accurately detect a collision in which a small impact continues for a long time.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の全体構成を示すブロック図FIG. 1 is a block diagram showing the overall configuration of the present invention.

【図2】衝突検知回路のブロック図FIG. 2 is a block diagram of a collision detection circuit.

【図3】衝突予測ロジックの原理を示す図FIG. 3 is a diagram showing the principle of collision prediction logic.

【図4】エアバッグ装置の起動信号出力領域を示すグラ
FIG. 4 is a graph showing a start signal output area of the airbag device.

【符号の説明】[Explanation of symbols]

7・・・・・加速度センサ G・・・・・加速度信号 t1 ・・・・第1期間 t2 ・・・・第2期間7 ----- acceleration sensor G ----- acceleration signal t 1 · · · · first period t 2 · · · · second period

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 加速度センサ(7)が出力する加速度信
号(G)に基づいて車両の衝突を検知する衝突検知方法
において、 前記加速度信号(G)を衝突発生直後の或る第1期間
(t1 )に亘って積分した積分値(ΔVb)が所定値
(ΔV1 )を越え、且つ前記加速度信号(G)の微分値
(dG/dt)が所定値(ΔG)を越えた場合に車両の
衝突を検知し、 また前記加速度信号(G)を前記第1期間(t 1 )より
も長い第2期間(t 2 )に亘って積分した積分値(ΔV
a)が、前記加速度信号(G)の微分値の大小に関わら
ず所定値(ΔV 0 )を越えた場合にも車両の衝突を検知
することを特徴とする、衝突検知方法
1. A collision detection method for detecting a collision of a vehicle based on an acceleration signal (G) output from an acceleration sensor (7), wherein the acceleration signal (G) is detected in a first period (t) immediately after the occurrence of the collision. 1 ), the integrated value (ΔVb) exceeds a predetermined value (ΔV 1 ) and the differential value (dG / dt) of the acceleration signal (G) exceeds a predetermined value (ΔG). A collision is detected, and the acceleration signal (G) is output from the first period (t 1 ).
Is integrated over the long second period (t 2 ) (ΔV
a) is different from the magnitude of the differential value of the acceleration signal (G).
A collision detection method characterized by detecting a collision of a vehicle even when a predetermined value (ΔV 0 ) is exceeded .
JP03222611A 1991-03-19 1991-09-03 Collision detection method Expired - Fee Related JP3120290B2 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP03222611A JP3120290B2 (en) 1991-09-03 1991-09-03 Collision detection method
US07/852,629 US5309138A (en) 1991-03-19 1992-03-17 Vehicle collision detecting method employing an acceleration sensor
DE4208714A DE4208714C2 (en) 1991-03-19 1992-03-18 Vehicle collision detection method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP03222611A JP3120290B2 (en) 1991-09-03 1991-09-03 Collision detection method

Publications (2)

Publication Number Publication Date
JPH0560777A JPH0560777A (en) 1993-03-12
JP3120290B2 true JP3120290B2 (en) 2000-12-25

Family

ID=16785171

Family Applications (1)

Application Number Title Priority Date Filing Date
JP03222611A Expired - Fee Related JP3120290B2 (en) 1991-03-19 1991-09-03 Collision detection method

Country Status (1)

Country Link
JP (1) JP3120290B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2953215B2 (en) * 1992-09-28 1999-09-27 日産自動車株式会社 Control device for occupant restraint system
JP2806172B2 (en) * 1992-09-28 1998-09-30 日産自動車株式会社 Control device for occupant restraint system
US5478108A (en) * 1994-08-31 1995-12-26 Automotive Systems Laboratory, Inc. System and method for reducing effect of negative data in crash discrimination
JP2010105493A (en) * 2008-10-29 2010-05-13 Hino Motors Ltd Device and method of determining collision, vehicle, and program
JP5253965B2 (en) * 2008-10-29 2013-07-31 日野自動車株式会社 Automatic braking control device, collision determination method, vehicle, and program

Also Published As

Publication number Publication date
JPH0560777A (en) 1993-03-12

Similar Documents

Publication Publication Date Title
US5967548A (en) Safety arrangement
JP2657154B2 (en) How to activate restraint
JP2990381B2 (en) Collision judgment circuit
US5081587A (en) Control system for actuating vehicle safety devices
US5309138A (en) Vehicle collision detecting method employing an acceleration sensor
US5445413A (en) Method for releasing an airbag in a motor vehicle
US20060108787A1 (en) Method for controlling the preload device of a two-level belt
US7684914B2 (en) Collision determining apparatus for a vehicle
EP0511556B1 (en) Crash sensor
US20060069509A1 (en) Collision determining apparatus for a vehicle
JPH03114944A (en) Air bag control device
US8433480B2 (en) Method and device for triggering personal protection means during a rollover accident
KR100492501B1 (en) Passive safety system background of the invention
JP3120290B2 (en) Collision detection method
JPH07251702A (en) Method of operating vehicle occupant protecting device
JP2932007B2 (en) Collision judgment circuit
JPH04146847A (en) Collision detector for vehicle
JP3125365B2 (en) Vehicle collision determination device
JP3965513B2 (en) Collision determination device for airbag system
JP3118980B2 (en) Vehicle collision determination device
JPH0769171A (en) Driver protecting device
KR100250767B1 (en) Cap over type crash sensor
JP2001277998A (en) Vehicular collision judging device
JP4183882B2 (en) Vehicle collision determination device
JP4084943B2 (en) Assist system trigger method

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20071020

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081020

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081020

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091020

Year of fee payment: 9

LAPS Cancellation because of no payment of annual fees