JP3118980B2 - Vehicle collision determination device - Google Patents

Vehicle collision determination device

Info

Publication number
JP3118980B2
JP3118980B2 JP04250914A JP25091492A JP3118980B2 JP 3118980 B2 JP3118980 B2 JP 3118980B2 JP 04250914 A JP04250914 A JP 04250914A JP 25091492 A JP25091492 A JP 25091492A JP 3118980 B2 JP3118980 B2 JP 3118980B2
Authority
JP
Japan
Prior art keywords
collision
output
speed change
change amount
vehicle
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP04250914A
Other languages
Japanese (ja)
Other versions
JPH0699787A (en
Inventor
雅裕 宮森
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp filed Critical NEC Corp
Priority to JP04250914A priority Critical patent/JP3118980B2/en
Priority to EP93115182A priority patent/EP0590476B1/en
Priority to CA002106603A priority patent/CA2106603C/en
Priority to DE69315653T priority patent/DE69315653T2/en
Priority to US08/124,229 priority patent/US5436838A/en
Publication of JPH0699787A publication Critical patent/JPH0699787A/en
Application granted granted Critical
Publication of JP3118980B2 publication Critical patent/JP3118980B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Air Bags (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】この発明は、衝撃力と速度変化量
から車両の衝突を高速かつ高精度に判定するようにした
車両の衝突判定装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a vehicle collision judging device for judging a collision of a vehicle at high speed and with high accuracy from an impact force and a change in speed.

【0002】[0002]

【従来の技術】車両の衝突による乗員の死亡事故を減ら
すため、前部座席に座る運転者や運転助手を衝突時の衝
撃から保護するエアバック装置の導入が急がれている。
2. Description of the Related Art In order to reduce occupant fatal accidents due to a vehicle collision, there is an urgent need to introduce an air bag device for protecting a driver or a driver sitting in a front seat from an impact at the time of a collision.

【0003】例えば運転席側のエアバック装置は、車両
のステアリングホイールの中央部分にエアバックが埋め
込んであり、衝突により車両が一定限度を越える衝撃を
受けたときに接点を閉じる衝撃センサが展開信号を発
し、スクイブと呼ばれる起爆素子に動作電流を通電して
エアバックを爆発的に展開させる構成とされており、展
開したエアバックがステアリングホイールと運転者の間
に介在して緩衝機能を果たす。
For example, in an airbag device on the driver's seat side, an airbag is embedded in a central portion of a steering wheel of a vehicle, and an impact sensor that closes a contact when a vehicle receives an impact exceeding a certain limit due to a collision is a deployment signal. The air bag is explosively deployed by applying an operating current to a detonating element called a squib, and the deployed air bag intervenes between the steering wheel and the driver to perform a cushioning function.

【0004】しかし、この種の従来のエアバック装置
は、衝撃力に感応して機械的に接点を閉じる衝撃センサ
を用いているため、例えば車両が悪路を走行したときに
受ける衝撃や、或は車両が縁石に乗り上げたときに受け
る衝撃等によって衝撃センサが誤動作してしまう危険が
高く、さらにまた車両が電柱などに衝突したさいに電柱
が車体の一部にめり込んでしまうようなケースでは、比
較的緩慢に衝突が行われるために衝撃センサが作動しな
いこともあり、衝撃センサの動作に対する信頼度が低い
といった欠点があった。
However, this type of conventional airbag apparatus uses an impact sensor that mechanically closes a contact point in response to an impact force. There is a high risk that the impact sensor will malfunction due to the impact received when the vehicle rides on the curb, and furthermore, in the case where the electric pole sinks into part of the car body when the vehicle collides with the electric pole, etc. The impact sensor may not operate due to the relatively slow collision, and the reliability of the operation of the impact sensor is low.

【0005】そこで、衝撃判定をより確実に行うため、
例えば図6に示した車両の衝撃判定装置1のごとく、車
両に取り付けた加速度センサ2の出力を時間積分し、そ
の積分値が安全限界を越えたときに衝突判定するものが
提案されている。
[0005] Therefore, in order to more reliably determine the impact,
For example, as in the vehicle impact determination apparatus 1 shown in FIG. 6, an apparatus has been proposed in which the output of the acceleration sensor 2 attached to the vehicle is integrated over time and a collision is determined when the integrated value exceeds a safety limit.

【0006】同図に示した車両の衝突判定装置1は加速
度センサ2が検出する加速度信号を高域濾波回路3を介
してアンプ回路4に送り込み、アンプ回路4にて増幅さ
れた加速度信号G(t)をリミッタ回路5により振幅制
限したのち、オフセット積分器6に供給してオフセット
積分するものである。
The vehicle collision judging device 1 shown in FIG. 1 sends an acceleration signal detected by an acceleration sensor 2 to an amplifier circuit 4 via a high-pass filter circuit 3, and an acceleration signal G ( After t) is limited in amplitude by the limiter circuit 5, the signal is supplied to the offset integrator 6 for offset integration.

【0007】オフセット積分器6は、通常走行時に発生
する加速度信号の最大値をオフセットGsとしており、
加速度信号G(t)からオフセットGsを差し引いた値
に対し
The offset integrator 6 uses the maximum value of the acceleration signal generated during normal running as the offset Gs.
For the value obtained by subtracting the offset Gs from the acceleration signal G (t)

【数1】[G(t)−Gs]dt なる時間積分を行うものである。## EQU1 ## Time integration of [G (t) -Gs] dt is performed.

【0008】オフセット積分器6の積分出力は比較器7
に供給されてしきい値Erと比較され、積分出力がしき
い値を越えたときに衝突と判定し、エアバックのため展
開信号が出力されるようになっていた。
The integrated output of the offset integrator 6 is supplied to a comparator 7
Is compared with a threshold value Er. When the integrated output exceeds the threshold value, it is determined that a collision has occurred, and a deployment signal is output for airbag.

【0009】[0009]

【発明が解決しようとする課題】従来の車両の衝突判定
装置1は、オフセット積分器6が加速度信号G(t)を
時間積分する構成であるため、積分結果が得られるまで
に時間がかかり、このため瞬時にして衝突を判定する必
要がある場合などに展開信号が遅れやすいといった課題
があった。
The conventional vehicle collision judging device 1 has a configuration in which the offset integrator 6 integrates the acceleration signal G (t) with time, so that it takes time until the integration result is obtained. For this reason, there is a problem that the deployment signal is easily delayed when it is necessary to determine a collision instantaneously.

【0010】いま仮に、車両が中速或は高速で走行して
いるときに、エアバックの展開に要する時間が30ms
であるとすれば、衝突時の衝撃を受けて前のめりになっ
た乗員が12.5cm前傾したときに、展開しきったエ
アバックが乗員を受け止めるよう理想的に設計するため
には、実際に衝突が発生してから衝突判定を下すまでに
猶予される期間はきわめて短かい時間に限られてしま
い、現実に衝突判定の遅れからエアバックの展開が間に
合わず、満足すべき緩衝効果が得られないケースもあっ
た。
If the vehicle is running at medium speed or high speed, the time required to deploy the airbag is 30 ms.
In order to ideally design the deployed airbag to receive the occupant when the occupant who leans forward due to the impact of the collision and leans forward by 12.5 cm, it is necessary to actually perform the collision. The period of delay from the occurrence of the collision to the decision of the collision is limited to a very short time, and the deployment of the airbag is not in time due to the delay of the collision decision, and a satisfactory buffer effect cannot be obtained. There were cases.

【0011】また、オフセット積分器6から得られる速
度変化量は、衝突の前後で著しい変化を示すケースでは
衝突判定に役立つが、例えば車両が電柱に衝突した場合
のように比較的緩慢に停止に至る場合は、悪路走行時と
区別できないケースも希ではなく、このため電柱衝突時
にはエアバックが作動しないのに、山岳道路のような悪
路を走行したときにエアバックが作動してしまうなど、
衝突判定に正確さを欠くことがある等の課題を抱えてい
た。
The speed change amount obtained from the offset integrator 6 is useful for judging a collision in a case where the speed change is remarkable before and after the collision. However, the speed change amount is relatively slow, for example, when the vehicle collides with a utility pole. In some cases, it is not unusual to be able to distinguish it from running on rough roads, so the airbag does not work at the time of a power pole collision, but the airbag works when running on a bad road such as a mountain road. ,
There were problems such as lack of accuracy in collision determination.

【0012】[0012]

【課題を解決するための手段】この発明は、上記課題を
解決したものであり、車両に加わる加速度を検出する加
速度センサと、前記加速度センサの出力を区間積分して
区間速度変化量を演算する速度変化量演算手段と、前記
加速度センサの出力から車両の衝突時に車体速度、車体
構造に依存して発生する固有の周波数を抽出する帯域濾
波手段と、前記帯域濾波手段の出力を二乗して衝撃力を
演算する衝撃力演算手段と、前記衝撃力演算手段の出力
と前記速度変化量演算手段の出力にそれぞれ重みを掛け
る手段と、重みを掛けた後の前記速度変化量演算手段の
出力をあらかじめ設定した閾値と比較する第1の比較手
段と、重みを掛けた後の前記衝撃力演算手段の出力を予
め設定した閾値と比較する第2の比較手段と、前記重み
を掛けた後の速度変化量演算手段の出力と、前記重みを
掛けた後の衝撃力演算手段の出力とを加算する加算手段
と、前記加算手段の出力を予め設定された閾値と比較す
る第3の比較手段と、前記第1の比較手段、第2の比較
手段及び第3の比較手段の各出力の論理和をとり衝突判
定を行う判定手段とを具備することを特徴とするもので
ある。
SUMMARY OF THE INVENTION The present invention has been made to solve the above-mentioned problems, and comprises an acceleration sensor for detecting acceleration applied to a vehicle, and a section speed integration amount calculated by integrating the output of the acceleration sensor. Speed change amount calculating means, a vehicle speed, a vehicle speed at the time of a vehicle collision based on an output of the acceleration sensor ;
Band filtering means for extracting a unique frequency generated depending on the structure ; impact force calculating means for calculating an impact force by squaring the output of the band filtering means; output of the impact force calculating means and the speed change Means for weighting the output of the amount calculation means, and the speed change amount calculation means after weighting .
A first comparator for comparing the output with a preset threshold
And the output of the impact force calculating means after the weighting is applied.
Second comparing means for comparing with a set threshold value;
Multiplied by the output of the speed change amount calculating means and the weight
Adding means for adding the output of the impact force calculating means after multiplication
And comparing the output of the adding means with a preset threshold.
Third comparing means, the first comparing means, and the second comparing means.
Means for determining a logical sum of the outputs of the means and the third comparing means to determine a collision.

【0013】[0013]

【作用】この発明は、車両に加わる加速度を区間積分し
区間速度変化量を演算する一方、加速度に含まれる車
両の衝突時に車体速度、車体構造に依存して発生する固
有の周波数を抽出して二乗することで衝撃力を演算し、
上記区間速度変化量及び衝撃力にそれぞれ重みを掛け、
この重みを掛けた後の区間速度変化量、衝撃力及び重み
を掛けた後の区間速度変化量、衝撃力の加算値と、これ
らのそれぞれについて設定された閾値とをそれぞれ比較
し、これら3つの比較結果の論理和に基づいて衝突判定
を行うことにより、車両が衝突した時に乗員危害が及
ぶ塑性衝突について、衝撃力と速度変化量を併せて総合
的に衝突判定し、高速でなおかつ高精度の衝突判定を行
う。
According to the present invention, while the acceleration applied to the vehicle is integrated over the interval to calculate the interval speed change amount, the fixed speed generated at the time of the collision of the vehicle included in the acceleration depends on the vehicle speed and the vehicle structure.
Calculate the impact force by extracting the existing frequency and squaring it,
Weighting the section speed change amount and the impact force respectively,
Section speed change amount, impact force and weight after this weight is multiplied
And the added value of the impact force
Compare with each set threshold value
And, by performing the collision determination based on the logical sum of these three comparison result, the plastic collision may hurt the occupant when the vehicle collides, comprehensively judges the collision together impact force and speed variation, A high-speed and high-precision collision determination is performed.

【0014】[0014]

【実施例】以下、この発明の実施例について、図1ない
し図9を参照して説明する。図1は、この発明の車両の
衝突判定装置の一実施例を示す回路構成図、図2は図1
に示した判定手段に用いる衝突判定マップを示す図、図
3、図4、図5はそれぞれ正面衝突時とクッションドラ
ム衝突時及び悪路走行時の図1に示した回路各部の信号
波形図、図7は図1に示した帯域濾波回路の回路構成
図、図8は衝撃力を演算する際のフローチャート、図9
は速度変化量を演算するためのフローチャート、図10
は衝突判断を行なうためのフローチャートである。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS An embodiment of the present invention will be described below with reference to FIGS. FIG. 1 is a circuit diagram showing an embodiment of a vehicle collision judging device according to the present invention, and FIG.
FIG. 3, FIG. 4, FIG. 5 are signal waveform diagrams of respective parts of the circuit shown in FIG. 1 at the time of a frontal collision, at the time of a cushion drum collision, and at the time of traveling on a rough road, respectively. FIG. 7 is a circuit configuration diagram of the bandpass filter shown in FIG. 1, FIG. 8 is a flowchart for calculating an impact force, and FIG.
10 is a flowchart for calculating the speed change amount, and FIG.
Is a flowchart for making a collision determination.

【0015】図1に示す車両の衝突判定装置11は、加
速度センサ12により得られる加速度信号をAD変換に
よりディジタルデータに変換し、離散値データとして一
切の処理を行う。
The vehicle collision judging device 11 shown in FIG. 1 converts the acceleration signal obtained by the acceleration sensor 12 into digital data by AD conversion, and performs any processing as discrete value data.

【0016】加速度センサ12としては、半導体基板上
に応力歪みゲージを形成した半導体加速度を用いてお
り、応力を受けて歪んだときに半導体のピエゾ抵抗が変
化することを利用する応力歪みゲージを車両の進行方向
に受圧面を向けて組み込んである。
The acceleration sensor 12 uses a semiconductor acceleration in which a stress-strain gauge is formed on a semiconductor substrate. A stress-strain gauge that utilizes the fact that the piezoresistance of a semiconductor changes when it is distorted under stress is used as a vehicle. The pressure receiving surface is oriented in the direction of travel.

【0017】加速度センサ12の出力は、離散値データ
に変換する前に、まず折り返し歪みの影響を排除するた
めの低域濾波回路13において加速度信号を帯域制限
し、続いてサンプリングクロックに同期して動作する開
閉スイッチ14を介してAD変換器15に供給され、所
定の量子化ビットをもってディジタルデータに変換され
る。
Before the output of the acceleration sensor 12 is converted into discrete value data, the acceleration signal is first band-limited in a low-pass filter circuit 13 for eliminating the influence of aliasing, and then synchronized with a sampling clock. The data is supplied to an AD converter 15 via an open / close switch 14 that operates, and is converted into digital data with a predetermined quantization bit.

【0018】AD変換器15から得られる加速度データ
G(k)は同時並行的に区間積分と衝撃力演算にかけら
れる。
The acceleration data G (k) obtained from the AD converter 15 is simultaneously and concurrently subjected to section integration and impact force calculation.

【0019】まず区間積分は、区間累積型の区間積分器
16により行われ、離散値化された加速度デ−タG
(k)をサンプリングクロックに合わせて所定の区間、
加算することで行なわれる。
First, the interval integration is performed by the interval integrator 16 of the interval accumulation type, and the discrete acceleration data G is obtained.
(K) is a predetermined section according to the sampling clock,
This is performed by adding.

【0020】すなわち、区間積分により得られる速度変
化量△V(k)は
That is, the speed change amount ΔV (k) obtained by the interval integration is

【0021】[0021]

【数2】 (Equation 2)

【0022】所定の区間t2−t1は予め決められてい
て、新しい加速度信号が入力する毎に過去の信号は捨て
られる。これは図9のフローチャートに示される。
The predetermined interval t 2 -t 1 is predetermined, and the past signal is discarded every time a new acceleration signal is input. This is shown in the flowchart of FIG.

【0023】一方、衝撃力演算は、まず帯域濾波回路1
7において加速度デ−タに含まれる人体に影響を与える
帯域成分を描出し、続く二乗演算器18において二乗演
算することで行なわれる。
On the other hand, the calculation of the impact force is performed by first using the bandpass filtering circuit 1.
In FIG. 7, a band component affecting the human body included in the acceleration data is drawn, and the square operation unit 18 performs a square operation.

【0024】すなわち、加速度デ−タのうち人体に影響
を与える帯域成分は、車種ごとに固有の周波数分布を示
すが、衝突の激しさすなわち衝撃の大きさに応じて大き
な変化を示すことが判っており、従ってこれらの帯域成
分に着目することで、速度変化量を追跡しただけでは分
からない衝撃力を検出することができる。図7に帯域濾
波回路の具体的回路構成を示す。ここで、離散値データ
に変換された加速度データG(k)を、1サンプル周期
分の信号遅延を行なう4個の遅延器17aにより縦列的
に遅延し、各遅延出力を係数器17e〜17bにてそれ
ぞれE、−D、C、−Bなる係数を乗じて帰還させ、加
算器17fにて入力加速度データG(k)に加算する。
さらに、第4段遅延出力と係数器17gにて−2を乗じ
た第2段遅延出力を、加算器17fの出力とともに加算
器17hにて加算し、最後に加算器17hの出力を係数
器17iにてK倍して出力する。従って、帯域濾波回路
17のz変換伝達特性H(z)は、
That is, it can be seen that the band component of the acceleration data which affects the human body shows a frequency distribution peculiar to each vehicle type, but shows a large change according to the severity of the collision, that is, the magnitude of the impact. Therefore, by focusing on these band components, it is possible to detect an impact force that cannot be understood only by tracking the speed change amount. FIG. 7 shows a specific circuit configuration of the bandpass filter. Here, the acceleration data G (k) converted into the discrete value data is cascade-delayed by four delayers 17a for delaying the signal by one sample period, and each delay output is sent to coefficient units 17e to 17b. And multiplied by the coefficients of E, -D, C, and -B, and fed back, and added to the input acceleration data G (k) by the adder 17f.
Further, the second-stage delayed output obtained by multiplying the fourth-stage delayed output by -2 by the coefficient unit 17g is added together with the output of the adder 17f by the adder 17h, and finally, the output of the adder 17h is added to the coefficient unit 17i. And output K times. Therefore, the z-transform transfer characteristic H (z) of the bandpass filter 17 is:

【数3】 で表される。(Equation 3) It is represented by

【0025】また、二乗演算器18が正負にわたって変
化する上記の帯域成分を、二乗演算するため、加速度の
正負に関係なく衝撃力の大きさを正確に把握することが
でき、これにより後述する判定手段20において、悪路
走行や縁石乗り上げ等に伴う衝撃等と区別して、エアバ
ッグの作動を必要とする衝突であることを判定すること
ができる。図8に衝撃力△E(k)を演算する際のフロ
ーチャートを示す。
Further, since the square computing unit 18 squares the above-mentioned band component which changes in the positive and negative directions, the magnitude of the impact force can be accurately grasped regardless of the positive or negative of the acceleration. In the means 20, it is possible to determine that the collision requires the operation of the airbag, in distinction from an impact or the like caused by running on a rough road or riding on a curb. FIG. 8 shows a flowchart for calculating the impact force △ E (k).

【0026】区間積分出力と、衝撃力演算出力は、それ
ぞれ重みを掛けられ判定手段20に供給され、図2に示
す衝突判定マップに従って衝突判定にかけられる。
The section integral output and the impact force calculation output are each weighted and supplied to the judging means 20, where they are subjected to collision judgment according to the collision judgment map shown in FIG.

【0027】実施例に示した判定手段20は、衝撃力△
E(k)と速度変化量△V(k)を2軸とする平面上で
衝突域と非衝突域を区画する判定曲線を境界に衝突判定
を行う。
The judging means 20 shown in the embodiment employs an impact force △
A collision determination is performed on a plane having two axes of E (k) and a speed change amount ΔV (k), with a determination curve defining a collision area and a non-collision area as a boundary.

【0028】すなわち、判定手段20は、衝撃力ΔE
(k)と速度変化量ΔV(k)を媒介変数(パラメ−
タ)として、まず
That is, the judgment means 20 determines that the impact force ΔE
(K) and the speed change amount ΔV (k) as a parameter (parameter
First)

【数4】 なる算術演算を行い、演算結果が(Equation 4) Arithmetic operation, and the operation result is

【数5】 なる関係を満たす場合に衝突と判定するもので、回路全
体は算術演算手段から構成される。
(Equation 5) If the following relationship is satisfied, a collision is determined, and the entire circuit is composed of arithmetic operation means.

【0029】なお式中のK1、K2は速度変化量△V
(k)と衝撃力△E(k)を2軸とする衝突判定マップ
上での重み係数であり、K3は定数である。K1、K2
3は車種に固有の値をとるため、車種ごとに実際に衝
突試験を繰り返すことで経験的に最適値を求めることが
できる。
In the equation, K 1 and K 2 are speed change amounts ΔV.
(K) is a weighting coefficient on a collision determination map having two axes of impact force (E (k), and K 3 is a constant. K 1 , K 2 ,
K 3 is to take a unique value for vehicle type can be determined empirically optimal value by repeating the actual crash test for each vehicle type.

【0030】図2に示した衝突判定マップには、中速で
の正面衝突と高速での正面衝突の外に、緩衝機能をもっ
た缶状体からなるクッションドラムとの衝突や電柱、支
柱といったポールへの衝突といった事例ごとに、衝撃力
△E(k)と速度変化量△V(k)相関が最も深い領域
を、それぞれ点線で囲って示してある。
The collision determination map shown in FIG. 2 includes, in addition to a frontal collision at a medium speed and a frontal collision at a high speed, a collision with a cushion drum made of a can-shaped body having a cushioning function, a telephone pole, a pole, and the like. For each case such as a collision with a pole, the region where the impact force △ E (k) and the speed change amount △ V (k) have the deepest correlation is indicated by a dotted line.

【0031】また、判定曲線の内側の領域には、通常走
行や車体のシャーシ部分だけの危険を伴わない衝突を示
すアンダーキャリッジ或は悪路走行のごとく、判定手段
20が非衝突であると判定する事例についても、衝撃力
△E(k)と速度変化量△V(k)の相関が最も深い領
域をそれぞれ点線で囲って示してある。
In the area inside the judgment curve, the judgment means 20 judges that there is no collision, such as under-carriage or running on a rough road, which indicates a normal driving or a collision without danger of only the chassis portion of the vehicle body. In this case, the regions where the correlation between the impact force △ E (k) and the speed change amount △ V (k) are deepest are each surrounded by a dotted line.

【0032】これら分類パターンは、実際に車両を使っ
て衝突実験をしたさいに得られたデータにもとづいて作
成したものであり、衝撃力△E(k)と速度変化量△V
(k)が判れば、判定曲線に従って衝突と非衝突が鮮明
に区別できることを物語っている。
These classification patterns are created on the basis of data obtained during an actual collision test using a vehicle, and include an impact force △ E (k) and a speed change amount △ V
If (k) is known, it indicates that collision and non-collision can be clearly distinguished according to the determination curve.

【0033】事実、例えば時速50km前後の速度で正
面衝突した場合は、図3に示したように、衝撃力△E
(k)も速度変化量△V(k)もともに早い段階で一定
の限界を超える変化を見せ、総合的な判断から衝突判定
を行うことができる。
In fact, for example, in the case of a frontal collision at a speed of about 50 km / h, as shown in FIG.
Both (k) and the speed change amount ΔV (k) show a change exceeding a certain limit at an early stage, so that a collision judgment can be made from a comprehensive judgment.

【0034】従って、衝突の初期の段階でエアバッグを
展開し、乗員を安全に保護することができる。
Therefore, the airbag can be deployed at an early stage of the collision, and the occupant can be protected safely.

【0035】また、クッションドラムに時速30km前
後で衝突した場合には、図4に示したように、衝撃力△
E(k)自体は小さいものの、速度変化量△V(k)が
一定レベルを越えた時点でエアバッグを展開させること
ができる。
When the vehicle hits the cushion drum at a speed of about 30 km / h, as shown in FIG.
Although E (k) itself is small, the airbag can be deployed when the speed change amount ΔV (k) exceeds a certain level.

【0036】従って、クッションドラムとの衝突では、
速度変化量△V(k)衝突判定の支配的要因を占めるこ
とが判る。
Therefore, in the collision with the cushion drum,
It can be seen that the speed change amount ΔV (k) occupies the dominant factor in the collision determination.

【0037】さらにまた、従来ポール衝突時との判別が
難しかった悪路走行時については、図5に示したよう
に、衝撃力△E(k)は突発的にある程度のレベルに達
する変化を示すが、速度変化量△V(k)が規定レベル
にまで達しないため、誤って衝突判定が下されることは
ない。図10は、判定手段20がソフトウェアを使って
処理を行なう場合の、衝突判断を行なうためのフローチ
ャートであって、速度変化量△V(k)に重み係数K1
を掛けたもの(901)と、衝撃力△E(k)に重み係
数K2 を掛けたもの(902)を用い、速度変化量△V
(k)が一定値をこえる場合(903)、衝撃力△E
(k)が一定値をこえる場合(904)、及びK1
V(k)+K2△E(k)が一定値をこえる場合(9
05)に展開信号を出力することを示している。
Further, when the vehicle is traveling on a rough road where it has been difficult to discriminate the vehicle from a pole collision, as shown in FIG. 5, the impact force ΔE (k) suddenly reaches a certain level. However, since the speed change amount ΔV (k) does not reach the specified level, the collision is not erroneously determined. FIG. 10 is a flowchart for judging a collision when the judging means 20 performs a process using software, and the weighting factor K1 is added to the speed change amount ΔV (k).
Used and multiplied by (901), multiplied by the weighting coefficient K 2 to the impact force △ E (k) to (902), speed variation △ V
If (k) exceeds a certain value (903), the impact force ΔE
(K) exceeds a certain value (904), and K 1
When V (k) + K 2 ΔE (k) exceeds a certain value (9
05) shows that a development signal is output.

【0038】このように、車両の衝突判定装置11によ
れば、車両の前部を無数のばね体が複合された塑性ばね
と見なすことで、衝突により車両が停止に至る過程で加
速度信号の基本正弦波に重畳する無数のばね体による各
種の振動波形のなかから、衝突時に顕著で人体に影響を
与える特定の帯域成分を抽出することで、速度変化量を
追跡しただけでは分からない衝撃力を検出することがで
き、これにより悪路走行や縁石乗り上げ等に伴う衝撃等
と区別して、速度変化量と合せて、エアバッグの作動を
必要とする衝突かどうかを総合的に判定することによ
り、高速かつ高精度の衝突判定が可能である。
As described above, according to the vehicle collision judging device 11, the front part of the vehicle is regarded as a plastic spring in which a myriad of spring bodies are combined, so that the acceleration signal in the process of stopping the vehicle due to the collision is determined. By extracting specific band components that are remarkable at the time of collision and affect the human body from various vibration waveforms generated by countless spring bodies superimposed on sine waves, the impact force that cannot be understood only by tracking the speed change amount is obtained. It can be detected, thereby distinguishing from impacts caused by running on a rough road or climbing a curb, etc., together with the amount of speed change, by comprehensively determining whether or not the collision requires the operation of the airbag, High-speed and high-precision collision determination is possible.

【0039】また、衝撃力△E(k)と速度変化量△V
(k)が与えられたときにこれらを関数的に演算し、演
算結果が衝突域と非衝突域を区画する曲線の内外いずれ
の側に存在するかをもって衝突判定が可能であり、特に
車種によって判定曲線が異なろうとも、関数を置き換え
るだけで対応できるため、優れた汎用性を有するもので
ある。
The impact force ΔE (k) and the speed change ΔV
When (k) is given, these are functionally calculated, and the collision can be determined based on which side of the inside or outside of the curve demarcating the collision area and the non-collision area, and the result of the operation is determined by the type of vehicle. Even if the judgment curves are different, it can be dealt with simply by replacing the function, so that it has excellent versatility.

【0040】[0040]

【発明の効果】以上説明したように、この発明は、車両
に加わる加速度を区間積分して区間速度変化量を演算す
る一方、加速度に含まれる車両の衝突時に車体速度、車
体構造に依存して発生する固有の周波数を抽出して二乗
することで衝撃力を演算し、上記区間速度変化量及び衝
撃力にそれぞれ重みを掛け、この重みを掛けた後の区間
速度変化量、衝撃力及び重みを掛けた後の区間速度変化
量、衝撃力の加算値と、これらのそれぞれについて設定
された閾値とをそれぞれ比較し、これら3つの比較結果
の論理和に基づいて衝突判定を行う構成としたから、速
度変化量を追跡しただけでは判らない衝撃力を検出する
ことができ、したがって正負にわたって現れる車体速
度、車体構造に依存して発生する固有の周波数を二乗し
て得られる衝撃力から、悪路走行や縁石乗り上げ等に伴
う衝撃等と区別して、安全装置の作動を必要とする衝突
であると判定し、速度変化量と併せて総合的に衝突判定
することにより、高速かつ高精度の衝突判定が可能であ
り、衝突検知に車室内に単一センサを用いるシングルポ
イントセンサ方式にふさわしい衝突判定装置を提供する
ことができる等の優れた効果を奏する。
As described above, according to the present invention, the section speed is integrated by calculating the section speed change amount by integrating the acceleration applied to the vehicle.
The impact force is calculated by extracting and squaring a specific frequency generated depending on the body structure, and calculating the above-mentioned section speed change amount and impact force.
Weight is applied to each impact, and the section after this weight is applied
Section speed change after multiplying speed change amount, impact force and weight
Addition amount and impact force, and set for each of these
With the thresholds obtained, and these three comparison results
The collision judgment is made based on the logical sum of the vehicle speed. Therefore, it is possible to detect the impact force that cannot be understood only by tracking the speed change amount, and therefore, the vehicle speed that appears in both positive and negative directions
A collision that requires the operation of a safety device, distinguishing it from the impact force obtained by squaring the inherent frequency generated depending on the vehicle body structure from the impact caused by running on a rough road or climbing a curb, etc. High-speed and high-precision collision judgment is possible by making a judgment and comprehensively judging the collision together with the speed change amount. A collision judgment device suitable for a single point sensor system using a single sensor in the vehicle interior for collision detection. And so on.

【0041】また、この発明は、加速度センサとして、
半導体基板上に応力歪みゲージを形成した半導体加速度
センサを用いることにより、応力を受けて歪んだときに
半導体のピエゾ抵抗が変化することを利用する応力歪み
ゲージを、車両の進行方向に受圧面を向けて組み込むこ
とで、小形のものでも十分なダイナミックレンジをもっ
て加速度を検出することができ、特に半導体基板と応力
歪みゲージを一体化させた拡散型センサの場合、精度の
高いものが安価に入手できるため、全体の製造コストを
引き下げることができる等の効果を奏する。
Further, the present invention provides an acceleration sensor
By using a semiconductor acceleration sensor with a stress-strain gauge formed on a semiconductor substrate, a stress-strain gauge that utilizes the fact that the piezoresistance of a semiconductor changes when it is distorted under stress is applied to the pressure-receiving surface in the traveling direction of the vehicle. By incorporating the sensor in a small size, acceleration can be detected with a sufficient dynamic range even if it is small. Particularly in the case of a diffusion type sensor in which a semiconductor substrate and a stress strain gauge are integrated, a highly accurate one can be obtained at low cost. Therefore, there is an effect that the overall manufacturing cost can be reduced.

【0042】また、速度変化量演算手段として、加速度
センサの出力を、現在値に至るまでの予め設定された区
間で、積分する区間積分器を用いることにより、通常走
行している最中に悪路から受ける振動や、或は車両が縁
石に乗り上げた際に受ける速度変化といった、衝突判定
を狂わせやすい要因について、区間積分により堆積する
ことがない等の効果を奏する。
The speed change amount calculating means includes an acceleration
The output of the sensor is set to a preset value up to the current value.
By using a section integrator that integrates between factors, factors such as vibration received from a bad road during normal driving or a speed change received when a vehicle gets on a curb may easily cause collision judgment to be out of order. In addition, there is an effect that accumulation does not occur due to section integration.

【0043】また、前記帯域濾波手段として、衝突時に
塑性変形する車両の前部の加速度振動波形のうち、人体
に有害な周波数帯を含む衝突時に特有の顕著な変化を示
す帯域成分を描出し、衝撃力の目安として衝突判定に有
効活用することができる等の効果を奏する。
Further, as the band filtering means, a band component showing a remarkable change peculiar to the collision, including a frequency band harmful to the human body, is drawn out of an acceleration vibration waveform at the front portion of the vehicle which plastically deforms during the collision, It has the effect of being able to be effectively used for collision determination as a measure of impact force.

【0044】また、衝撃力演算手段として、AD変換に
より離散値化された加速度データを二乗演算する二乗演
算器を用いることにより、ディジタル式の掛算器を用い
た確実で正確な二乗演算が可能であり、高速演算が要求
される衝撃力の割り出しに有効である等の効果を奏す
る。
Further, by using, as the impact force calculating means, a square calculator for calculating the square of the acceleration data converted into a discrete value by AD conversion, a reliable and accurate square calculation using a digital multiplier can be performed. There are effects such as being effective in determining an impact force requiring high-speed calculation.

【0045】さらにまた、判定手段として、衝撃力と速
度変化量を2軸とする平面上で衝突域と非衝突域を区画
する曲線を境界に衝突判定を行う算術演算手段を用いる
ことにより、衝撃力と速度変化量が与えられたときにこ
れらを算術的に関数演算し、演算結果が衝突域と非衝突
域を区画する曲線の内外いずれの側に存在するかをもっ
て衝突判定が可能であり、特に車種等によって判定曲線
が異なろうとも、関数を置き換えるだけで対応できるた
め、優れた汎用性を有する等の効果を奏する。
Furthermore, by using an arithmetic operation means for making a collision judgment on a plane which defines the collision area and the non-collision area on a plane having two axes of the impact force and the speed change amount, the collision operation is performed. When the force and the speed change amount are given, these are arithmetically operated, and it is possible to determine the collision based on which side of the curve that divides the collision area and the non-collision area exists inside or outside the curve. In particular, even if the determination curve differs depending on the type of vehicle or the like, it can be dealt with only by replacing the function, so that there is an effect such as excellent versatility.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の車両の衝突判定装置の一実施例を示す
回路構成図である。
FIG. 1 is a circuit diagram showing an embodiment of a vehicle collision determination device according to the present invention.

【図2】図1に示した判定手段に用いる衝突判定マップ
を示す図である。
FIG. 2 is a diagram illustrating a collision determination map used for a determination unit illustrated in FIG. 1;

【図3】正面衝突時の図1に示した回路各部の信号波形
図である。
3 is a signal waveform diagram of each section of the circuit shown in FIG. 1 at the time of a frontal collision.

【図4】クッションドラム衝突時の図1に示した回路各
部の信号波形図である。
4 is a signal waveform diagram of each part of the circuit shown in FIG. 1 at the time of collision with a cushion drum.

【図5】悪路走行時の図1に示した回路各部の信号波形
図である。
FIG. 5 is a signal waveform diagram of each section of the circuit shown in FIG. 1 when traveling on a rough road.

【図6】従来の車両の衝突判定装置の一例を示す回路構
成図である。
FIG. 6 is a circuit diagram illustrating an example of a conventional vehicle collision determination device.

【図7】図1に示した帯域濾波回路の回路構成図であ
る。
FIG. 7 is a circuit configuration diagram of the bandpass filter shown in FIG. 1;

【図8】衝撃力を演算する場合のフローチャートであ
る。
FIG. 8 is a flowchart for calculating an impact force.

【図9】速度変化量を演算する場合のフローチャートで
ある。
FIG. 9 is a flowchart for calculating a speed change amount.

【図10】判定手段が衝突判断を行なう場合のフローチ
ャートである。
FIG. 10 is a flowchart in the case where a determination unit makes a collision determination.

【符号の説明】[Explanation of symbols]

11 車両の衝突判定装置 12 加速度センサ 13 エイリアシング手段 (低域濾波回路) 14 開閉スイッチ (サンプリング回路) 15 AD変換器 16 積分手段 (区間積分器) 17 帯域濾波手段 (帯域濾波回路) 18 衝撃力演算手段 (二乗演算器) 191 重み係数 192 重み係数 20 判定手段 DESCRIPTION OF SYMBOLS 11 Vehicle collision determination apparatus 12 Acceleration sensor 13 Aliasing means (low-pass filtering circuit) 14 On / off switch (sampling circuit) 15 AD converter 16 Integrating means (section integrator) 17 Band filtering means (band filtering circuit) 18 Impact force calculation Means (square operation unit) 191 Weight coefficient 192 Weight coefficient 20 Judgment means

フロントページの続き (58)調査した分野(Int.Cl.7,DB名) B60R 21/32 B60R 21/16 G01P 15/00 Continuation of the front page (58) Field surveyed (Int. Cl. 7 , DB name) B60R 21/32 B60R 21/16 G01P 15/00

Claims (6)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 車両に加わる加速度を検出する加速度セ
ンサと、前記加速度センサの出力を区間積分して区間速
度変化量を演算する速度変化量演算手段と、前記加速度
センサの出力から車両の衝突時に車体速度、車体構造に
依存して発生する固有の周波数を抽出する帯域濾波手段
と、前記帯域濾波手段の出力を二乗して衝撃力を演算す
る衝撃力演算手段と、前記衝撃力演算手段の出力と前記
速度変化量演算手段の出力にそれぞれ重みを掛ける手段
と、重みを掛けた後の前記速度変化量演算手段の出力を
あらかじめ設定した閾値と比較する第1の比較手段と、
重みを掛けた後の前記衝撃力演算手段の出力を予め設定
した閾値と比較する第2の比較手段と、前記重みを掛け
た後の速度変化量演算手段の出力と、前記重みを掛けた
後の衝撃力演算手段の出力とを加算する加算手段と、前
記加算手段の出力を予め設定された閾値と比較する第3
の比較手段と、前記第1の比較手段、第2の比較手段及
び第3の比較手段の各出力の論理和をとり衝突判定を行
う判定手段とを具備することを特徴とする車両の衝突判
定装置。
1. An acceleration sensor for detecting an acceleration applied to a vehicle, a speed change amount calculating means for calculating an interval speed change amount by integrating an output of the acceleration sensor in a zone, and a speed change amount calculating unit for calculating a section speed change amount based on an output of the acceleration sensor. Body speed, body structure
Band filtering means for extracting a unique frequency generated dependently, shock force calculating means for calculating an impact force by squaring the output of the band filtering means, output of the shock force calculating means and calculation of the speed change amount Means for weighting the output of the means, and the output of the speed change amount calculating means after the weighting.
First comparing means for comparing with a preset threshold value,
Preset the output of the impact force calculating means after weighting
Second comparing means for comparing the weight with the threshold value,
Multiplied by the output of the speed change amount calculating means after the
Adding means for adding the output of the subsequent impact force calculating means;
Comparing the output of the adding means with a preset threshold value;
Comparing means, the first comparing means, the second comparing means and
Determining means for determining a collision by taking a logical sum of outputs of the third and third comparing means .
【請求項2】 前記加速度センサは、半導体基板上に応
力歪みゲージを形成した半導体加速度センサであること
を、特徴とする請求項1記載の車両の衝突判定装置。
2. The vehicle collision judging device according to claim 1, wherein the acceleration sensor is a semiconductor acceleration sensor having a stress-strain gauge formed on a semiconductor substrate.
【請求項3】 前記速度変化量演算手段は、前記加速度
センサの出力を、現在値に至るまでの予め設定された区
間で、積分する区間積分器であることを特徴とする請求
項1記載の車両の衝突判定装置。
Wherein the speed change amount calculation means, the acceleration
The output of the sensor is set to a preset value up to the current value.
The apparatus according to claim 1, wherein the apparatus is a section integrator that integrates between them .
【請求項4】 前記帯域濾波手段は、車体によって決ま
る周波数帯域に濾波中心を有する帯域濾波回路であるこ
とを特徴とする請求項1記載の車両の衝突判定装置。
4. The vehicle collision judging device according to claim 1, wherein said band filtering means is a band filtering circuit having a filtering center in a frequency band determined by a vehicle body.
【請求項5】 前記衝撃力演算手段は、AD変換により
離散値化された加速度データを二乗演算する二乗演算器
であることを特徴とする請求項1記載の車両の衝突判定
装置。
5. The collision judging device for a vehicle according to claim 1, wherein said impact force calculating means is a square calculator for calculating a square of acceleration data which has been digitized by AD conversion.
【請求項6】 前記判定手段は、衝撃力と速度変化量を
2軸とする平面上で衝突域と非衝突域を区画する衝突曲
線を境界に衝突判定を行う算術演算手段であることを特
徴とする請求項1記載の車両の衝突判定装置。
6. The arithmetic operation means for judging a collision with a collision curve defining a collision area and a non-collision area as a boundary on a plane having two axes of an impact force and a speed change amount. The vehicle collision determination device according to claim 1, wherein:
JP04250914A 1992-09-21 1992-09-21 Vehicle collision determination device Expired - Lifetime JP3118980B2 (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP04250914A JP3118980B2 (en) 1992-09-21 1992-09-21 Vehicle collision determination device
EP93115182A EP0590476B1 (en) 1992-09-21 1993-09-21 Crash/non-crash discrimination using frequency components of acceleration uniquely generated upon crash impact
CA002106603A CA2106603C (en) 1992-09-21 1993-09-21 Crash/non-crash discrimination using frequency components of acceleration uniquely generated upon crash impact
DE69315653T DE69315653T2 (en) 1992-09-21 1993-09-21 Distinguishing an accident from a non-accident by analyzing the frequency components of the measured acceleration values generated during the impact
US08/124,229 US5436838A (en) 1992-09-21 1993-09-21 Crash/non-crash discrimination using frequency components of acceleration uniquely generated upon crash impact

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP04250914A JP3118980B2 (en) 1992-09-21 1992-09-21 Vehicle collision determination device

Publications (2)

Publication Number Publication Date
JPH0699787A JPH0699787A (en) 1994-04-12
JP3118980B2 true JP3118980B2 (en) 2000-12-18

Family

ID=17214901

Family Applications (1)

Application Number Title Priority Date Filing Date
JP04250914A Expired - Lifetime JP3118980B2 (en) 1992-09-21 1992-09-21 Vehicle collision determination device

Country Status (1)

Country Link
JP (1) JP3118980B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9592765B2 (en) 2013-09-28 2017-03-14 Quartix Limited Low-impact crash detection system

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3764101B2 (en) 1999-06-25 2006-04-05 三菱電機株式会社 Automatic door lock release device
JP5329194B2 (en) 2008-12-09 2013-10-30 タカタ株式会社 Collision determination system, occupant restraint system, vehicle
JP5447671B2 (en) * 2011-02-10 2014-03-19 トヨタ自動車株式会社 Collision detection device and occupant protection system
US9346428B2 (en) * 2011-11-22 2016-05-24 Autoliv Asp, Inc. System and method for determining when to deploy a vehicle safety system

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9592765B2 (en) 2013-09-28 2017-03-14 Quartix Limited Low-impact crash detection system

Also Published As

Publication number Publication date
JPH0699787A (en) 1994-04-12

Similar Documents

Publication Publication Date Title
JP3329080B2 (en) Vehicle collision determination method and collision determination device
US5363302A (en) Power rate system and method for actuating vehicle safety device
JP3270515B2 (en) Actuator of passive safety device
US5608628A (en) Process and apparatus for detecting vehicle impact
JP2543839B2 (en) Collision sensor
US7416042B2 (en) Method for triggering a two-stage belt tensioner
JP3117165B2 (en) Device and method for starting safety device in automobile
KR100196452B1 (en) Crash sensor
JP5496492B2 (en) System and method for high-speed detection of falling of a vehicle with soil trip and curve trip
EP0787081B1 (en) Envelope detector useful in crash discrimination
KR0159295B1 (en) System and method for a vehicle safety device
KR100492501B1 (en) Passive safety system background of the invention
US5461567A (en) Supplemental inflatable restraint system having a rear impact algorithm for seat belt pretensioner
JP3118980B2 (en) Vehicle collision determination device
JP3125365B2 (en) Vehicle collision determination device
JP3319104B2 (en) Vehicle collision determination device
JP3289583B2 (en) Vehicle collision determination method and collision determination device
JP3055361B2 (en) Vehicle collision determination method and collision determination device
US6157881A (en) Supplemental restraint rear impact deployment control method
JP3120290B2 (en) Collision detection method
JP4084943B2 (en) Assist system trigger method
JP2001294116A (en) Vehicular collision determination device
KR100250767B1 (en) Cap over type crash sensor
JP4800351B2 (en) Vehicle occupant protection system
JP3329101B2 (en) Vehicle collision determination method and collision determination device

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20000912

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20071013

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081013

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081013

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091013

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101013

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111013

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111013

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121013

Year of fee payment: 12

EXPY Cancellation because of completion of term