JPH0560622A - Acoustic temperature measuring method and its apparatus - Google Patents

Acoustic temperature measuring method and its apparatus

Info

Publication number
JPH0560622A
JPH0560622A JP22311991A JP22311991A JPH0560622A JP H0560622 A JPH0560622 A JP H0560622A JP 22311991 A JP22311991 A JP 22311991A JP 22311991 A JP22311991 A JP 22311991A JP H0560622 A JPH0560622 A JP H0560622A
Authority
JP
Japan
Prior art keywords
time
sound wave
propagation time
temperature
wave
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP22311991A
Other languages
Japanese (ja)
Other versions
JP3130975B2 (en
Inventor
Noriyuki Imada
典幸 今田
Hidehisa Yoshizako
秀久 吉廻
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Power Ltd
Original Assignee
Babcock Hitachi KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Babcock Hitachi KK filed Critical Babcock Hitachi KK
Priority to JP03223119A priority Critical patent/JP3130975B2/en
Publication of JPH0560622A publication Critical patent/JPH0560622A/en
Application granted granted Critical
Publication of JP3130975B2 publication Critical patent/JP3130975B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Measuring Temperature Or Quantity Of Heat (AREA)

Abstract

PURPOSE:To improve the temperature measuring accuracy by storing a reference reflecting wave and a reflecting wave at the measuring time within a sound wave sensor, and detecting the propagating time based on the stored reflecting waves. CONSTITUTION:One or more sound wave sensors are provided at a side wall 29 of a duct wherein a high temperature fluid runs. The propagating time of sound waves from a sound wave transmitter 30 through the fluid to a sound wave receiver 31 is detected at 12, and the propagating time when the sound waves are reflected in the sensors is detected at 52. The temperature of the fluid is calculated at 27 from the relationship of the propagating time and the distance of a propagating route. Before measuring, a reference reflecting waveform in the sensors when the duct is at ordinary temperatures is stored in a reflecting wave memory 26, and the reflecting waves in the sensors at the measuring time are stored in a detecting wave memory 11. A reaching time corrector 51 consequently adjusts the time, and a temperature operator 27 calculates the propagating time within the duct and converts to the temperature.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は音響式温度測定方法およ
び装置に係り、特に高温雰囲気または腐食雰囲気にある
ダクト内の流体温度を音波を用いて求める音響式温度測
定方法および装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an acoustic temperature measuring method and apparatus, and more particularly to an acoustic temperature measuring method and apparatus for determining a fluid temperature in a duct in a high temperature atmosphere or a corrosive atmosphere by using sound waves.

【0002】[0002]

【従来の技術】従来の音響式温度計測装置(特開平2−
112741号公報参照)を図3に示す。この音響式温
度計はダクトの側壁29に取り付けたホーン32、導波
管33、音波送信器30、音波受信器31(以後、これ
ら4つをまとめて音波センサと呼ぶ)、制御器4、波形
発生器6、送信用アンプ7、受信用アンプ10、A/D
変換器9、伝播時間検出器12、温度演算器27、表示
器28とからなっている。
2. Description of the Related Art A conventional acoustic temperature measuring device (Japanese Patent Application Laid-Open No. HEI 2-
(See Japanese Patent No. 112741) is shown in FIG. This acoustic thermometer includes a horn 32 attached to a side wall 29 of a duct, a waveguide 33, a sound wave transmitter 30, a sound wave receiver 31 (hereinafter, these four are collectively called a sound wave sensor), a controller 4, a waveform. Generator 6, transmission amplifier 7, reception amplifier 10, A / D
It comprises a converter 9, a propagation time detector 12, a temperature calculator 27, and a display 28.

【0003】温度計測の手順を以下に示す。制御器4か
ら測定開始信号を波形発生器6に送出し、波形発生器6
から送信信号を送出する。この送信信号を送信用アンプ
7で増幅し、音波送信器30で音波に変換し、導波管と
ホーンを経由してダクト内に発信する。そして、ダクト
内のガス中を伝わった音波を音波受信器31で受信し、
受信用アンプ10で増幅する。伝播時間検出器12で
は、この受信信号を用いて音波の伝播時間を求める。た
だし、受信器に到達した音波の伝播時間は音波が導波管
中を伝播する時間を含んでいるので、後述する方法で補
正する。そして、温度演算器27で伝播時間を温度に換
算し、その結果を表示器28で表示する。
The procedure for measuring temperature is shown below. The controller 4 sends a measurement start signal to the waveform generator 6, and the waveform generator 6
To send a transmission signal from. The transmission signal is amplified by the transmission amplifier 7, converted into a sound wave by the sound wave transmitter 30, and transmitted into the duct via the waveguide and the horn. Then, the sound wave that has propagated in the gas in the duct is received by the sound wave receiver 31,
It is amplified by the reception amplifier 10. The propagation time detector 12 obtains the propagation time of the sound wave using this received signal. However, the propagation time of the sound wave that has reached the receiver includes the time for the sound wave to propagate through the waveguide, so it is corrected by the method described below. Then, the temperature calculator 27 converts the propagation time into temperature, and the result is displayed on the display 28.

【0004】上記の例は二組の音波センサを使用してい
るが一組のみを使用し、壁からの反射波を測定すること
によっても同様の原理で測定可能である。また、ホーン
と導波管はいずれか一つで間に合う場合もあるし、2つ
を同時に備えることが必要な場合もある。導波管部の伝
播時間を補正する方法を図4に示す。同図(a)に伝播
経路の概略を示す。tABは14のスピーカAから15の
マイクBに、tBAは16のスピーカBから17のマイク
Aに到達した音波の伝播時間である。tdAは音波センサ
A内の、tdBは音波センサB内の反射波の伝播時間であ
る。図4の(b)にスピーカAからマイクBに到達した
音波信号を示す。横軸はスピーカから音波を発信してか
らの時刻、縦軸はマイクアンプの出力電圧である。音波
信号中の到達波から伝播時間tABを求める。この伝播時
間tABは音波が導波管部を伝播する時間も含んでいる。
そこで、音波センサ内の反射波を用いて導波管部の伝播
時間を補正する。図4の(c)に音波センサA内の反射
波を示す。音波発信直後の波形はスピーカAからマイク
Aに直接到達する直接波18である。音波発信から約8
ms後に到達した音波はホーン先端から反射して返って
きた反射波19である。この反射波より伝播時間tdA
求める。同様にしてtBA、tdBを求め、次式でダクト内
を伝わる伝播時間tを算出する。
The above example uses two sets of acoustic sensors, but only one set can be used, and the same principle can be used by measuring the reflected wave from the wall. Also, either one of the horn and the waveguide may be sufficient, or it may be necessary to provide two at the same time. FIG. 4 shows a method of correcting the propagation time of the waveguide section. An outline of the propagation path is shown in FIG. t AB is the propagation time of the sound wave from the 14 speakers A to the 15 microphone B, and t BA is the propagation time of the sound waves from the 16 speakers B to the 17 microphone A. t dA is the propagation time of the reflected wave in the sound wave sensor A, and t dB is the propagation time of the reflected wave in the sound wave sensor B. FIG. 4B shows a sound wave signal that reaches the microphone B from the speaker A. The horizontal axis represents the time after the sound wave is emitted from the speaker, and the vertical axis represents the output voltage of the microphone amplifier. The propagation time t AB is obtained from the arrival wave in the sound wave signal. This propagation time t AB also includes the time during which the sound wave propagates through the waveguide section.
Therefore, the propagation time of the waveguide section is corrected using the reflected wave in the sound wave sensor. FIG. 4C shows a reflected wave in the sound wave sensor A. The waveform immediately after the sound wave is transmitted is the direct wave 18 that directly reaches the microphone A from the speaker A. About 8 from sound wave transmission
The sound wave that arrived after ms is a reflected wave 19 that is reflected back from the tip of the horn. The propagation time t dA is obtained from this reflected wave. Similarly, t BA and t dB are obtained, and the propagation time t which propagates in the duct is calculated by the following equation.

【0005】[0005]

【数1】 [Equation 1]

【0006】この伝播時間を用い、以下の式により流体
温度T(K)を求める。
Using this propagation time, the fluid temperature T (K) is determined by the following equation.

【0007】[0007]

【数2】 [Equation 2]

【0008】ここに、Lはダクト内の伝播距離、αはガ
ス組成によって決まるガス定数である。
Here, L is the propagation distance in the duct, and α is a gas constant determined by the gas composition.

【0009】[0009]

【発明が解決しようとする課題】上記従来技術では、ホ
ーンの先端とマイクとの距離が短い場合や、ホーンと導
波管の接続部に段または角がある場合、次の問題が生じ
る。図5(a)はホーン先端とマイク間の距離が短い例
である。同図(b)にマイクとホーン先端との距離L1
を200mmとした時に受信した波形36を示す。この受
信波形は図5(c)に示すように、直接波34とホーン
先端からの反射波35とが重なっているため、ホーン先
端からの反射波の伝播時間td を求めることができな
い。
In the above prior art, the following problems occur when the distance between the tip of the horn and the microphone is short, or when the connecting portion between the horn and the waveguide has steps or corners. FIG. 5A shows an example in which the distance between the tip of the horn and the microphone is short. The distance L 1 between the microphone and the tip of the horn is shown in FIG.
Shows a waveform 36 received when is set to 200 mm. As shown in FIG. 5C, since the direct wave 34 and the reflected wave 35 from the tip of the horn overlap this received waveform, the propagation time t d of the reflected wave from the tip of the horn cannot be obtained.

【0010】図6(a)はホーンと導波管との接続部に
段または角がある例である。同図(b)に接続部37と
ホーン先端との距離L2 を200mmとし、受信した波形
を示す。この反射波19は同図(c)に示すように接続
部の段または角によって生じた反射波38とホーン先端
からの反射波35が重なっている。そのため、ホーン先
端からの反射波35のtd を正確に求めることができな
い。
FIG. 6A shows an example in which a step or a corner is provided at the connecting portion between the horn and the waveguide. FIG. 3B shows the received waveform when the distance L 2 between the connecting portion 37 and the tip of the horn is 200 mm. As shown in FIG. 7C, the reflected wave 19 is a superposed wave of the reflected wave 38 generated by the step or corner of the connecting portion and the reflected wave 35 of the tip of the horn. Therefore, t d of the reflected wave 35 from the tip of the horn cannot be accurately obtained.

【0011】上記のように伝播時間が補正できない場合
の誤差の大きさを試算した結果を次に示す。ダクト内の
温度を1200℃、ダクト内の伝播距離を2m、導波管
部の平均温度を200℃としたとき、上記のように
1 ,L2 =200mmの伝播時間の補正ができないと、
測定温度は885℃となり、315℃低い値となる。
The following is the result of trial calculation of the magnitude of the error when the propagation time cannot be corrected as described above. When the temperature in the duct is 1200 ° C., the propagation distance in the duct is 2 m, and the average temperature of the waveguide is 200 ° C., the propagation time of L 1 and L 2 = 200 mm cannot be corrected as described above,
The measurement temperature is 885 ° C, which is 315 ° C lower.

【0012】本発明の目的は、ホーン先端からの反射波
が直接波や他の部分の反射波と重なったとき、重なった
波形からホーン先端からの反射波を検出し、これを用い
て正確な伝播時間td を求めることにより、計測精度が
向上する音響式温度測定方法および装置を提供すること
にある。
An object of the present invention is to detect a reflected wave from the horn tip from the overlapped waveform when the reflected wave from the horn tip overlaps with a direct wave or a reflected wave of other portions, and uses this to detect an accurate wave. An object of the present invention is to provide an acoustic temperature measuring method and device that improve measurement accuracy by obtaining the propagation time t d .

【0013】[0013]

【課題を解決するための手段】上記目的を達成するため
本願の第1の発明は、被測定流体を囲む側壁に、導波管
および/またはホーンと音波の送信器と受信器とから構
成される1台以上の音波センサを設け、送信器から被測
定流体を経由し受信器に到達した音波の総伝播時間を測
定し、該音波センサ内を反射する音波の伝播時間を求
め、これらの時間と伝播経路の距離との関係より被測定
流体の温度を算出する音響式温度測定方法において、基
準時の音波センサ内の基準反射波形と測定時の該音波セ
ンサ内の反射波形とを記憶し、前記基準反射波形の初期
時刻を測定時反射波形の初期時刻に合わせて両波形の差
を求め、これにより音波センサ内の正しい伝播時間を求
め、この伝播時間と前記総伝播時間とに基づき被測定流
体の温度を算出することを特徴とする音響式温度測定方
法に関する。
In order to achieve the above object, the first invention of the present application comprises a waveguide and / or a horn, a sound wave transmitter and a receiver on a side wall surrounding a fluid to be measured. One or more sound wave sensors are installed, the total propagation time of the sound waves that reach the receiver from the transmitter via the fluid to be measured is measured, and the propagation time of the sound waves reflected in the sound wave sensor is calculated. In the acoustic temperature measuring method for calculating the temperature of the fluid to be measured from the relationship between the distance of the propagation path and the distance of the propagation path, the reference reflection waveform in the sound wave sensor at the time of reference and the reflection waveform in the sound wave sensor at the time of measurement are stored, The difference between the two waveforms is obtained by matching the initial time of the reference reflection waveform with the initial time of the measurement reflection waveform, thereby obtaining the correct propagation time in the sound wave sensor, and the measured time based on this propagation time and the total propagation time. Calculate fluid temperature On Acoustic temperature measuring method comprising and.

【0014】第2の発明は、被測定流体を囲む側壁に設
けられ、導波管および、またはホーンと音波の送信器と
受信器とから構成される1台以上の音波センサと、送信
器から被測定流体を経由し受信器に到達した音波の伝播
時間を測定する総伝播時間検出器と、該音波センサ内を
反射する音波の伝播時間を求める音波センサ内伝播時間
検出器と、これらの時間と伝播経路の距離との関係よ
り、被測定流体の温度を算出する温度演算器とを備えた
音響式温度測定装置において、音波センサ内の基準反射
波形を記憶する反射波メモリと、測定時に該音波センサ
内の反射波を記憶する受信波メモリと、両メモリ内の反
射波に基づき音波センサ内の正しい伝播時間を検出する
手段とを設けたことを特徴とする音響式温度測定装置に
関する。
According to a second aspect of the present invention, one or more acoustic wave sensors, which are provided on a side wall surrounding a fluid to be measured and are composed of a waveguide and / or a horn, an acoustic wave transmitter and a receiver, and a transmitter. A total propagation time detector that measures the propagation time of a sound wave that has reached the receiver via a fluid to be measured, a sound wave sensor propagation time detector that finds the propagation time of a sound wave reflected in the sound wave sensor, and these times In the acoustic temperature measuring device including a temperature calculator for calculating the temperature of the fluid to be measured from the relationship between the distance of the propagation path and the distance of the propagation path, a reflection wave memory for storing the reference reflection waveform in the sound wave sensor, and The present invention relates to an acoustic temperature measuring device, which is provided with a reception wave memory for storing reflected waves in the sound wave sensor and a means for detecting a correct propagation time in the sound wave sensor based on the reflected waves in both memories.

【0015】[0015]

【作用】図2を用いて本発明の作用を説明する。ここに
示す波形はホーンと導波管の接続部で生じた反射波とホ
ーン先端からの反射波とが重なった波形である。図2
(a)にホーン内部が10℃の時の反射波を実線で、1
00℃の時の反射波を破線で示す。測定したときの導波
管部の温度が両者で異なるので、各々の接続部からの反
射波の到達時刻、すなわち反射波の到達時刻がずれる。
そこで、両者の反射波の到達時刻が同じになるように、
各々の反射波の到達時刻を検出し、10℃の時の波形を
100℃の波形の到達時刻に合わせて時間軸の左方向に
ずらして表示している。それぞれ測定時のホーン部の温
度が異なるので、接続部からの反射波とホーン先端から
の反射波との時間差τが変化し、両者の波形に差が生じ
ている。両者の差を求めた結果を同図(b)に示す。差
が生じている部分は100℃の時のホーン先端からの反
射波に相当するので、この差の波形から求めた時間td
は100℃の時のホーン先端からの反射波の伝播時間で
ある。すなわち、図2において波形23と22は、図6
の反射波38と35よりなる合成波であり、ホーン内部
温度が100℃と10℃の時の合成波である。
The operation of the present invention will be described with reference to FIG. The waveform shown here is a waveform in which the reflected wave generated at the connection portion between the horn and the waveguide and the reflected wave from the tip of the horn overlap. Figure 2
In (a), the reflected wave when the temperature inside the horn is 10 ° C is indicated by a solid line,
The reflected wave at 00 ° C. is shown by a broken line. Since the temperature of the waveguide portion at the time of measurement is different between the two, the arrival time of the reflected wave from each connection portion, that is, the arrival time of the reflected wave is deviated.
So that the arrival times of the reflected waves of both are the same,
The arrival time of each reflected wave is detected, and the waveform at 10 ° C. is displayed while being shifted to the left on the time axis according to the arrival time of the waveform at 100 ° C. Since the temperature of the horn portion at the time of measurement is different, the time difference τ between the reflected wave from the connection portion and the reflected wave from the tip of the horn changes, and a difference occurs between the two waveforms. The result of obtaining the difference between the two is shown in FIG. The portion where the difference is generated corresponds to the reflected wave from the tip of the horn at 100 ° C., so the time t d obtained from the waveform of this difference is obtained.
Is the propagation time of the reflected wave from the tip of the horn at 100 ° C. That is, the waveforms 23 and 22 in FIG.
Is a composite wave composed of the reflected waves 38 and 35, and is a composite wave when the horn internal temperature is 100 ° C. and 10 ° C.

【0016】また、10℃の時の波形の初期時刻は10
0℃の時の波形のそれに合わせて表示してあるので、両
波形23と22の差を求めると、波形38の部分は消去
され、温度100℃と10℃の時の波形35の差が波形
24として生成される。この波形24から求めた時間t
d が100℃の時のホーン先端からの反射波の伝播時間
に相当する。
The initial time of the waveform at 10 ° C. is 10
Since it is displayed according to that of the waveform at 0 ° C., when the difference between both waveforms 23 and 22 is obtained, the portion of the waveform 38 is erased, and the difference between the waveform 35 at the temperature of 100 ° C. and 10 ° C. Is generated as 24. Time t obtained from this waveform 24
This corresponds to the propagation time of the reflected wave from the horn tip when d is 100 ° C.

【0017】すなわち、常温時の反射波をあらかじめメ
モリに記憶しておき、測定時の反射波との差を求めるこ
とでホーン先端からの反射波の伝播時間が検出できる。
That is, the propagation time of the reflected wave from the tip of the horn can be detected by storing the reflected wave at room temperature in the memory in advance and obtaining the difference from the reflected wave at the time of measurement.

【0018】[0018]

【実施例】本発明の実施例を図1に示す。内部を120
0℃の高温流体が流れるダクト側壁29に音波送信器3
0と音波受信器31とからなる音波送受信器を一対取り
付けた。受信信号から伝播時間を求める処理部に、本発
明による反射波メモリ26と到達時刻修正器51と音波
センサ内伝播時間検出器52が設けてある。測定に先立
ち、ダクト内が常温の時に各々の音波送信器から音波を
発信し、同じ位置にあるマイクで受信した波形を反射波
メモリ26に記録した。
FIG. 1 shows an embodiment of the present invention. 120 inside
The acoustic wave transmitter 3 is provided on the duct side wall 29 through which the high temperature fluid of 0 ° C. flows.
A pair of sound wave transmitters / receivers consisting of 0 and a sound wave receiver 31 were attached. The processing unit for obtaining the propagation time from the received signal is provided with the reflected wave memory 26, the arrival time corrector 51, and the acoustic wave sensor propagation time detector 52 according to the present invention. Prior to the measurement, when the inside of the duct was at room temperature, a sound wave was emitted from each sound wave transmitter, and the waveform received by the microphone at the same position was recorded in the reflected wave memory 26.

【0019】温度測定の手順を以下に示す。まず、制御
器4からの信号に基づき、波形発生器6と一方の音波送
信器30とを接続する。つぎに、制御器4から測定開始
信号を波形発生器6に発信し、波形発生器6はパルス信
号を発信する。このパルス信号が音波送信器のスピーカ
30で音波に変換され、導波管内を伝わって、ダクト内
に放出される。このとき、測定開始信号は同時にA/D
変換器9にも発信され、A/D変換器は音波受信器から
の信号をデジタル化し、受信波形用メモリ11に記録し
始める。伝播時間検出器12では、音波を発信した送信
器の反対側の受信器からの信号を用いて、伝播時間tAB
を求める。到達時刻修正器51では、まず、音波を発信
した送信器と同じ位置にある受信器で受信した波形(音
波センサ内の反射波)を用いて反射波の到達時刻を検出
する。つぎに、到達時刻修正器51では、あらかじめ記
録しておいた同じ経路の常温時の反射波の到達時刻と比
較し、両反射波の到達時刻が同じになるように常温時の
波形を修正(時間合わせ)した後、両波形の差を求め受
信波メモリ11に記憶する。音波センサ内伝播時間検出
器52では上記処理後の波形からホーン先端からの伝播
時間tdAを求める。
The procedure for measuring temperature is shown below. First, based on the signal from the controller 4, the waveform generator 6 and one of the sound wave transmitters 30 are connected. Next, the controller 4 sends a measurement start signal to the waveform generator 6, and the waveform generator 6 sends a pulse signal. This pulse signal is converted into a sound wave by the speaker 30 of the sound wave transmitter, transmitted through the waveguide, and emitted into the duct. At this time, the measurement start signals are simultaneously A / D
The signal is also transmitted to the converter 9, and the A / D converter starts digitizing the signal from the sound wave receiver and recording it in the reception waveform memory 11. The propagation time detector 12 uses the signal from the receiver on the opposite side of the transmitter that emitted the sound wave to measure the propagation time t AB.
Ask for. The arrival time corrector 51 first detects the arrival time of the reflected wave using the waveform (the reflected wave in the sound wave sensor) received by the receiver located at the same position as the transmitter that emitted the sound wave. Next, the arrival time corrector 51 compares the arrival time of the reflected wave of the same route at room temperature recorded in advance, and corrects the waveform at normal temperature so that the arrival times of both reflected waves become the same ( After adjusting the time, the difference between the two waveforms is obtained and stored in the received wave memory 11. The propagation time detector 52 in the sound wave sensor obtains the propagation time t dA from the tip of the horn from the waveform after the above processing.

【0020】つぎに、リレーを切り替えて、他方の音波
送信器から音波を発信し、伝播時間tBA、tdBを求め
る。そして、温度演算器27では(1)式を用いてダク
ト内の伝播時間tを算出し、(2)式を用いて温度に換
算する。この結果は表示器28に表示される。図1に基
づいて説明した音響式温度計は本発明の好ましい具体例
を示すものであるが、本発明の全体範囲を逸脱すること
なく種々の変更が可能である。
Next, the relay is switched, and a sound wave is emitted from the other sound wave transmitter to obtain propagation times t BA and t dB . Then, the temperature calculator 27 calculates the propagation time t in the duct using the equation (1) and converts it into the temperature using the equation (2). The result is displayed on the display 28. The acoustic thermometer described with reference to FIG. 1 shows a preferred specific example of the present invention, but various modifications can be made without departing from the overall scope of the present invention.

【0021】[0021]

【発明の効果】本発明によれば、ホーン先端からの反射
波が直接波や接続部からの反射波と重なっても、ホーン
先端からの反射波の伝播時間が検出できるので、温度計
測の精度が向上できる。
According to the present invention, the propagation time of the reflected wave from the horn tip can be detected even if the reflected wave from the horn tip overlaps with the direct wave or the reflected wave from the connection part, so that the accuracy of temperature measurement can be improved. Can be improved.

【図面の簡単な説明】[Brief description of drawings]

【図1】図1は、本発明の実施例説明図である。FIG. 1 is an explanatory diagram of an embodiment of the present invention.

【図2】図2は、本発明の原理を説明する図である。FIG. 2 is a diagram illustrating the principle of the present invention.

【図3】、[Fig. 3]

【図4】図3および図4は、従来技術の説明図である。FIG. 3 and FIG. 4 are explanatory views of a conventional technique.

【図5】、[FIG. 5]

【図6】図5および図6は、従来技術の問題点の説明図
である。
FIG. 5 and FIG. 6 are explanatory diagrams of problems in the conventional technique.

【符号の説明】[Explanation of symbols]

4…制御器、5…リレー、6…波形発生器、9…A/D
変換器、10…受信用アンプ、11…受信波メモリ、1
2…伝播時間検出器、13…参照波形用メモリ、14…
スピーカ(送信用)A、15…マイク(受信用)B、1
6…スピーカB、17…マイクA、18…直接波、19
…反射波、20…到達波、22…10℃時反射波、23
…100℃時反射波、24…差、26…反射波メモリ、
27…温度演算器、28…表示器、29…側壁、30…
音波送信器、31…音波受信器、32…ホーン、33…
導波管、51…到達時刻修正器、52…音波センサ内伝
播時間検出器。
4 ... Controller, 5 ... Relay, 6 ... Waveform generator, 9 ... A / D
Converter, 10 ... Receiving amplifier, 11 ... Receiving wave memory, 1
2 ... Propagation time detector, 13 ... Reference waveform memory, 14 ...
Speaker (for transmission) A, 15 ... Microphone (for reception) B, 1
6 ... Speaker B, 17 ... Microphone A, 18 ... Direct wave, 19
... Reflected wave, 20 ... Arrival wave, 22 ... Reflected wave at 10 ° C, 23
... reflected wave at 100 ° C, 24 ... difference, 26 ... reflected wave memory,
27 ... Temperature calculator, 28 ... Indicator, 29 ... Side wall, 30 ...
Sound wave transmitter, 31 ... Sound wave receiver, 32 ... Horn, 33 ...
Waveguide, 51 ... Arrival time corrector, 52 ... Sound wave sensor internal transit time detector.

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 被測定流体を囲む側壁に、導波管および
/またはホーンと音波の送信器と受信器とから構成され
る1台以上の音波センサを設け、前記送信器から被測定
流体を経由し受信器に到達した音波の総伝播時間を測定
し、該音波センサ内を反射する音波の伝播時間を求め、
これらの時間と伝播経路の距離との関係より被測定流体
の温度を算出する音響式温度測定方法において、基準時
の音波センサ内の基準反射波形と測定時の該音波センサ
内の反射波形とを記憶し、前記基準反射波形の初期時刻
を測定時反射波形の初期時刻に合わせて両波形の差を求
め、これにより音波センサ内の正しい伝播時間を求め、
この伝播時間と前記総伝播時間とに基づき被測定流体の
温度を算出することを特徴とする音響式温度測定方法。
1. A side wall surrounding a fluid to be measured is provided with one or more acoustic wave sensors composed of a waveguide and / or a horn, a transmitter of acoustic waves and a receiver, and the fluid to be measured is sent from the transmitter. The total propagation time of the sound waves that have reached the receiver via is measured, and the propagation time of the sound waves reflected in the sound wave sensor is obtained.
In the acoustic temperature measuring method for calculating the temperature of the fluid to be measured from the relationship between the time and the distance of the propagation path, the reference reflection waveform in the sound wave sensor at the time of reference and the reflection waveform in the sound wave sensor at the time of measurement are calculated. Stored, the initial time of the reference reflection waveform is found to match the initial time of the measurement-time reflection waveform to obtain the difference between the two waveforms, thereby obtaining the correct propagation time in the sound wave sensor,
An acoustic temperature measuring method, wherein the temperature of the fluid to be measured is calculated based on this propagation time and the total propagation time.
【請求項2】 被測定流体を囲む側壁に設けられ、導波
管および/またはホーンと音波の送信器と受信器とから
構成される1台以上の音波センサと、前記送信器から被
測定流体を経由し受信器に到達した音波の伝播時間を測
定する総伝播時間検出器と、該音波センサ内を反射する
音波の伝播時間を求める音波センサ内伝播時間検出器
と、これらの時間と伝播経路の距離との関係より、被測
定流体の温度を算出する温度演算器とを備えた音響式温
度測定装置において、音波センサ内の基準反射波形を記
憶する反射波メモリと、測定時に該音波センサ内の反射
波を記憶する受信波メモリと、両メモリ内の反射波に基
づき音波センサ内の正しい伝播時間を検出する手段とを
設けたことを特徴とする音響式温度測定装置。
2. One or more acoustic wave sensors provided on a side wall surrounding the fluid to be measured, the waveguide and / or the horn, a transmitter of acoustic waves and a receiver, and the fluid to be measured from the transmitter. Total propagation time detector that measures the propagation time of the sound wave that has reached the receiver via the, propagation time detector in the sound wave sensor that obtains the propagation time of the sound wave reflected in the sound wave sensor, and these times and propagation paths In an acoustic temperature measuring device equipped with a temperature calculator for calculating the temperature of a fluid to be measured from the relationship with the distance, the reflected wave memory for storing the reference reflected waveform in the sound wave sensor and the sound wave sensor in the sound wave sensor at the time of measurement. An acoustic temperature measuring device, comprising: a received wave memory for storing the reflected waves of the above, and means for detecting a correct propagation time in the sound wave sensor based on the reflected waves in both memories.
JP03223119A 1991-09-03 1991-09-03 Acoustic temperature measurement method and device Expired - Lifetime JP3130975B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP03223119A JP3130975B2 (en) 1991-09-03 1991-09-03 Acoustic temperature measurement method and device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP03223119A JP3130975B2 (en) 1991-09-03 1991-09-03 Acoustic temperature measurement method and device

Publications (2)

Publication Number Publication Date
JPH0560622A true JPH0560622A (en) 1993-03-12
JP3130975B2 JP3130975B2 (en) 2001-01-31

Family

ID=16793120

Family Applications (1)

Application Number Title Priority Date Filing Date
JP03223119A Expired - Lifetime JP3130975B2 (en) 1991-09-03 1991-09-03 Acoustic temperature measurement method and device

Country Status (1)

Country Link
JP (1) JP3130975B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3839495B1 (en) * 2019-12-18 2024-06-12 KIMA Process Control GmbH Device for acoustic temperature measurement

Also Published As

Publication number Publication date
JP3130975B2 (en) 2001-01-31

Similar Documents

Publication Publication Date Title
JP2002513924A (en) Fluid temperature measuring method and device
JPS6314762B2 (en)
JP3130975B2 (en) Acoustic temperature measurement method and device
KR20090040699A (en) Extension apparatus for measurement range of ultrasonic thickness gage
JPH10185654A (en) Method of detecting liquid level of furnace-melted matter
JPS6367151B2 (en)
JPH08271322A (en) Ultrasonic liquid level measuring method
JP7246021B2 (en) ultrasonic flow meter
JP3006270B2 (en) Ultrasonic position measuring device
JPH0727551A (en) Tube inner shape inspecting device
JP2653855B2 (en) Acoustic fluid temperature measurement method
JPH04157359A (en) Apparatus for measuring gas density
JPS59218973A (en) On-vehicle obstacle detector
JPS5928384Y2 (en) Probe for current meter used for 3-directional measurement
JPH05172793A (en) Sound characteristic value measuring device
JPH07218242A (en) Peripheral length measuring apparatus
JP2765317B2 (en) Sonar device
JPS61104277A (en) Correction of acoustic velocity in ultrasonic measuring apparatus
JPH0666627A (en) Acoustic characteristic measuring apparatus
JPH06323839A (en) Ultrasonic plate thickness measuring apparatus
JPH10122844A (en) Ultrasonic measuring device and its temperature correction method
JP2020180813A (en) Ultrasonic flowmeter
JPH10186060A (en) Ultrasonic snow meter
JPH0472590A (en) Distance measuring device using ultrasonic wave
JPH01203967A (en) Temperature compensation type ultrasonic flaw detector

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20071117

Year of fee payment: 7

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081117

Year of fee payment: 8

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091117

Year of fee payment: 9

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101117

Year of fee payment: 10

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 10

Free format text: PAYMENT UNTIL: 20101117

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111117

Year of fee payment: 11

EXPY Cancellation because of completion of term
FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 11

Free format text: PAYMENT UNTIL: 20111117